1
|
Momenzadeh A, Cranney C, Choi SY, Bresee C, Tighiouart M, Gianchandani R, Pevnick J, Moore JH, Meyer JG. Medications that Regulate Gastrointestinal Transit Influence Inpatient Blood Glucose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.31.24311287. [PMID: 39132476 PMCID: PMC11312652 DOI: 10.1101/2024.07.31.24311287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Objective A multitude of factors affect a hospitalized individual's blood glucose (BG), making BG difficult to predict and manage. Beyond medications well established to alter BG, such as beta-blockers, there are likely many medications with undiscovered effects on BG variability. Identification of these medications and the strength and timing of these relationships has potential to improve glycemic management and patient safety. Materials and Methods EHR data from 103,871 inpatient encounters over 8 years within a large, urban health system was used to extract over 500 medications, laboratory measurements, and clinical predictors of BG. Feature selection was performed using an optimized Lasso model with repeated 5-fold cross-validation on the 80% training set, followed by a linear mixed regression model to evaluate statistical significance. Significant medication predictors were then evaluated for novelty against a comprehensive adverse drug event database. Results We found 29 statistically significant features associated with BG; 24 were medications including 10 medications not previously documented to alter BG. The remaining five factors were Black/African American race, history of type 2 diabetes mellitus, prior BG (mean and last) and creatinine. Discussion The unexpected medications, including several agents involved in gastrointestinal motility, found to affect BG were supported by available studies. This study may bring to light medications to use with caution in individuals with hyper- or hypoglycemia. Further investigation of these potential candidates is needed to enhance clinical utility of these findings. Conclusion This study uniquely identifies medications involved in gastrointestinal transit to be predictors of BG that may not well established and recognized in clinical practice.
Collapse
Affiliation(s)
- Amanda Momenzadeh
- Department of Computational Biomedicine; Cedars-Sinai; Los Angeles, CA USA
| | - Caleb Cranney
- Department of Computational Biomedicine; Cedars-Sinai; Los Angeles, CA
| | - So Yung Choi
- Biostatistics Shared Resource; Cedars-Sinai; Los Angeles, CA
| | | | | | - Roma Gianchandani
- Division of Endocrinology, Diabetes & Metabolism; Cedars-Sinai; Los Angeles, CA
| | - Joshua Pevnick
- Division of General Internal Medicine; Cedars-Sinai; Los Angeles, CA
| | - Jason H Moore
- Department of Computational Biomedicine; Cedars-Sinai; Los Angeles, CA
| | - Jesse G Meyer
- Department of Computational Biomedicine; Cedars-Sinai; Los Angeles, CA
| |
Collapse
|
2
|
Wei M, Liu X, Tan Z, Tian X, Li M, Wei J. Ferroptosis: a new strategy for Chinese herbal medicine treatment of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1188003. [PMID: 37361521 PMCID: PMC10289168 DOI: 10.3389/fendo.2023.1188003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication of diabetes. It has become a leading cause of death in patients with diabetes and end-stage renal disease. Ferroptosis is a newly discovered pattern of programmed cell death. Its main manifestation is the excessive accumulation of intracellular iron ion-dependent lipid peroxides. Recent studies have shown that ferroptosis is an important driving factor in the onset and development of DN. Ferroptosis is closely associated with renal intrinsic cell (including renal tubular epithelial cells, podocytes, and mesangial cells) damage in diabetes. Chinese herbal medicine is widely used in the treatment of DN, with a long history and definite curative effect. Accumulating evidence suggests that Chinese herbal medicine can modulate ferroptosis in renal intrinsic cells and show great potential for improving DN. In this review, we outline the key regulators and pathways of ferroptosis in DN and summarize the herbs, mainly monomers and extracts, that target the inhibition of ferroptosis.
Collapse
Affiliation(s)
- Maoying Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingxing Liu
- Department of Emergency, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijuan Tan
- Department of Traditional Chinese Medicine, The Seventh Hospital of Xingtai, Xingtai, Heibei, China
| | - Xiaochan Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingdi Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Li X, Wang X, Huang B, Huang R. Sennoside A restrains TRAF6 level to modulate ferroptosis, inflammation and cognitive impairment in aging mice with Alzheimer's Disease. Int Immunopharmacol 2023; 120:110290. [PMID: 37216800 DOI: 10.1016/j.intimp.2023.110290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease and a momentous cause of dementia in the elderly. Sennoside A (SA) is an anthraquinone compound and possesses decisive protective functions in various human diseases. The purpose of this research was to elucidate the protective effect of SA against AD and investigate its mechanism. METHODS Male APPswe/PS1dE9 (APP/PS1) transgenic mice with a C57BL/6J background were chosen as AD model. Age-matched nontransgenic littermates (C57BL/6 mice) were negative controls. SA's functions in AD in vivo were estimated by cognitive function analysis, Western blot, hematoxylin-eosin staining, TUNEL staining, Nissl staining, detection of Fe2+ levels, glutathione and malondialdehyde contents, and quantitative real-time PCR. Also, SA's functions in AD in LPS-induced BV2 cells were examined using Cell Counting Kit-8 assay, flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and analysis of reactive oxygen species levels. Meanwhile, SA's mechanisms in AD were assessed by several molecular experiments. RESULTS Functionally, SA mitigated cognitive function, hippocampal neuronal apoptosis, ferroptosis, oxidative stress, and inflammation in AD mice. Furthermore, SA reduced BV2 cell apoptosis, ferroptosis, oxidative stress, and inflammation induced by LPS. Rescue assay revealed that SA abolished the high expressions of TRAF6 and p-P65 (NF-κB pathway-related proteins) induced by AD, and this impact was reversed after TRAF6 overexpression. Conversely, this impact was further enhanced after TRAF6 knockdown. CONCLUSIONS SA relieved ferroptosis, inflammation and cognitive impairment in aging mice with AD through decreasing TRAF6.
Collapse
Affiliation(s)
- Xiaojia Li
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| | - Xiaoping Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China.
| | - Bin Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| |
Collapse
|
4
|
Le J, Ji H, Zhou X, Wei X, Chen Y, Fu Y, Ma Y, Han Q, Sun Y, Gao Y, Wu H. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front Pharmacol 2021; 12:714586. [PMID: 34764866 PMCID: PMC8576406 DOI: 10.3389/fphar.2021.714586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Zhou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Nanjing University of Chinese Medicine Affiliated 81st Hospital, Nanjing, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Nayan SI, Chowdhury FI, Akter N, Rahman MM, Selim S, Saffoon N, Khan F, Subhan N, Hossain M, Ahmed KS, Hossain H, Haque MA, Alam MA. Leaf powder supplementation of Senna alexandrina ameliorates oxidative stress, inflammation, and hepatic steatosis in high-fat diet-fed obese rats. PLoS One 2021; 16:e0250261. [PMID: 33878116 PMCID: PMC8057619 DOI: 10.1371/journal.pone.0250261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
Obesity is an enduring medical issue that has raised concerns around the world. Natural plant extracts have shown therapeutic potential in preventing oxidative stress and inflammation related to obesity complications. In this study, Senna alexandrina Mill. leaves were utilized to treat high-fat diet-related metabolic disorders and non-alcoholic fatty liver diseases. Plasma biochemical assays were conducted to determine the lipid profiles and oxidative stress parameters, and the gene expression of antioxidant enzymes and inflammatory mediators was measured. Histological stained livers of high-fat diet-fed rats were observed. S. alexandrina leaf powder supplementation prevented the increase in cholesterol and triglyceride levels in high-fat diet-fed rats. Moreover, S. alexandrina leaves also reduced lipid peroxidation and nitric oxide production in these rats. Prevention of oxidative stress by S. alexandrina leaf supplementation in high-fat diet-fed rats is regulated by enhancing the antioxidant enzyme activity, followed by the restoration of corresponding gene expressions, such as NRF-2, HO-1, SOD, and CAT. Histological staining provides further evidence that S. alexandrina leaf supplementation prevents inflammatory cell infiltration, lipid droplet deposition, and fibrosis in the liver of high-fat diet-fed rats. Furthermore, this investigation revealed that S. alexandrina leaf supplementation controlled non-alcoholic fatty liver disease by modulating the expression of fat metabolizing enzymes in high-fat diet-fed rats. Therefore, S. alexandrina leaf supplementation inhibits fatty liver inflammation and fibrosis, suggesting its usefulness in treating non-alcoholic steatohepatitis. Thus, this natural leaf extract has potential in treatment of obesity related liver dysfunction.
Collapse
Affiliation(s)
- Shariful Islam Nayan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Noushin Akter
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Saima Selim
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nadia Saffoon
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - K. Shahin Ahmed
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- * E-mail: , (MAA); , (MAH)
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- * E-mail: , (MAA); , (MAH)
| |
Collapse
|