1
|
Zeng JQ, Zhou HF, Du HX, Wu YJ, Mao QP, Yin JJ, Wan HT, Yang JH. Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats. Chin J Integr Med 2024:10.1007/s11655-024-4002-3. [PMID: 39644459 DOI: 10.1007/s11655-024-4002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats. METHODS A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively. RESULTS Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01). CONCLUSION THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Collapse
Affiliation(s)
- Jie-Qiong Zeng
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hui-Fen Zhou
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Xia Du
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Yu-Jia Wu
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Qian-Ping Mao
- College of Life Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jun-Jun Yin
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Hai-Tong Wan
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China
| | - Jie-Hong Yang
- College of Basic Medicine Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310051, China.
| |
Collapse
|
2
|
Wang Z, Wang X, Fu L, Xu S, Wang X, Liao Q, Zhuang T, Liu L, Zhang H, Li W, Xiong A, Gu L, Wang Z, Wang R, Tao F, Yang L, Ding L. Shengmai San formula alleviates high-fat diet-induced obesity in mice through gut microbiota-derived bile acid promotion of M2 macrophage polarization and thermogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155938. [PMID: 39163753 DOI: 10.1016/j.phymed.2024.155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Shengmai San Formula (SMS) is a traditional Chinese medicine (TCM) that has been used to treat wasting-thirst regarded as diabetes mellitus, which occurs disproportionately in obese patients. Therefore, we investigated whether SMS could be used to treat obesity, and explored possible mechanisms by which it might improve glucose and fat metabolism. METHODS To investigate the effects of SMS on a high-fat diet (HFD)-induced obesity (DIO) model, we studied glucose metabolism via glucose tolerance testing (GTT) and insulin tolerance testing (ITT). Browning of white adipose tissue (WAT) was evaluated using H&E staining, along with browning-related gene and protein expression. Changes in bile acid (BA) levels in serum, liver, ileum, and inguinal white adipose tissue were detected by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In addition, antimicrobial mixture (ABX) and fecal microbial transplantation (FMT) experiments were used to verify the role of gut flora in the effects produced by SMS on HFD-induced obesity model. RESULTS SMS ameliorated diet-induced dyslipidemia in a dose-dependent manner and reduced glucose intolerance and insulin resistance in DIO mice, helping to restore energy metabolism homeostasis. SMS significantly altered the structure of intestinal microbiome composition, decreasing the abundance of Lactobacillus carrying bile salt hydrolase (BSH) enzymes and thereby increasing the level of conjugated BAs in the blood, ileum, and iWAT. Increased TCA content promoted the secretion of Slit3 from M2 macrophages in iWAT, which activates the protein kinase A/calmodulin-dependent protein kinase II (PKA/CaMKII) signaling pathway in sympathetic neurons via the roundabouts receptor 1(ROBO1). This pathway promotes the synthesis and release of norepinephrine (NE), inducing cyclic adenosine monophosphate (cAMP) release in adipose tissue that activates the cyclic adenosine monophosphate/protein kinase A/phosphorylated hormone-sensitive lipase (cAMP/PKA/pHSL) pathway and enhances WAT browning. ABX treatment eliminated SMS effects on glucose and lipid metabolism in DIO mice, whereas glucose and lipid metabolism in obese mice improved following SMS-FMT and increased the level of serum bile acids. CONCLUSION SMS affects intestinal flora and bile acid composition in vivo and increased TCA promotes M2 macrophage polarization and Slit3 release in adipose tissue. This induces NE release and increases WAT browning in obese mice, which may be a mechanism by which SMS could be used to treat obesity.
Collapse
Affiliation(s)
- Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihong Fu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shuyang Xu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Qi Liao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Longchan Liu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Haoyue Zhang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Aizhen Xiong
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihua Gu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Rufeng Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Feng Tao
- Endocrinology department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
3
|
Xu N, Liu S, Zhang Y, Chen Y, Zuo Y, Tan X, Liao B, Li P, Feng J. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin. Redox Rep 2023; 28:2246720. [PMID: 37747066 PMCID: PMC10538464 DOI: 10.1080/13510002.2023.2246720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders that poses a global threat to human health. It can lead to complications in multiple organs and tissues, owing to its wide-ranging impact on the human body. Diabetic cardiomyopathy (DCM) is a specific cardiac manifestation of DM, which is characterized by heart failure in the absence of coronary heart disease, hypertension and valvular heart disease. Given that oxidative stress is a key factor in the pathogenesis of DCM, intervening to mitigate oxidative stress may serve as a therapeutic strategy for managing DCM. Naringenin is a natural product with anti-oxidative stress properties that can suppress oxidative damage by regulating various oxidative stress signaling pathways. In this review, we address the relationship between oxidative stress and its primary signaling pathways implicated in DCM, and explores the therapeutic potential of naringenin in DCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, People’s Republic of China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yujing Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
| | - Pengyun Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
4
|
Yin G, Hu ZQ, Li JY, Wen ZY, Du YQ, Zhou P, Wang L. Shengmai injection inhibits palmitic acid-induced myocardial cell inflammatory death via regulating NLRP3 inflammasome activation. Heliyon 2023; 9:e21522. [PMID: 38027923 PMCID: PMC10660519 DOI: 10.1016/j.heliyon.2023.e21522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To determine the protective effect of Shengmai injection (SMI) on myocardial injury in diabetic rats and its mechanism based on NLRP3/Caspase1 signaling pathway. Materials and methods Rat H9c2 cardiomyocytes were cultured in vitro, and the cell survival rate of different concentrations of palmitate acid (PA) and different concentrations of SMI were detected by CCK-8. The myocardial injury cell model was induced with PA, treated with SMI, and combined with NLRP3 specific inhibitor (MCC950) to interfere with the high-fat-induced rat H9c2 myocardial cell injury model. The cell changes were observed by Hoechst/PI staining and the expression levels of MDA, SOD, and ROS in each group were detected. The protein and gene changes of the NLRP3/Caspase-1 signaling pathway were detected by Western blot and RT-qPCR, respectively. Results 200 μmol/L of PA were selected to induce the myocardial injury cell model and 25 μL/mL of SMI was selected for intervention concentration. SMI could significantly reduce MDA expression, increase SOD level, and decrease ROS production. SMI could decrease the gene expression levels of NLRP3, ASC, Caspase-1, and GSDMD, and the protein expressions of NLRP3, ASC, Cleaved Caspase-1, GSDMD, and GSDMD-N. Conclusion SMI can inhibit the high-fat-induced activation of the NLRP3/Caspase-1 signaling pathway, intervene in cardiomyocyte pyroptosis, and prevent diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Gang Yin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zi-qing Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jing-ya Li
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zhong-yu Wen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yong-qin Du
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
5
|
Ma J, Yu Z, Chen T, Li P, Liu Y, Chen J, Lyu C, Hao X, Zhang J, Wang S, Gao F, Zhang J, Bu S. The effect of Shengmai injection in patients with coronary heart disease in real world and its personalized medicine research using machine learning techniques. Front Pharmacol 2023; 14:1208621. [PMID: 37781710 PMCID: PMC10537936 DOI: 10.3389/fphar.2023.1208621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Objective: Shengmai injection is a common treatment for coronary heart disease. The accurate dose regimen is important to maximize effectiveness and minimize adverse reactions. We aim to explore the effect of Shengmai injection in patients with coronary heart disease based on real-world data and establish a personalized medicine model using machine learning and deep learning techniques. Methods: 211 patients were enrolled. The length of hospital stay was used to explore the effect of Shengmai injection in a case-control study. We applied propensity score matching to reduce bias and Wilcoxon rank sum test to compare results between the experimental group and the control group. Important variables influencing the dose regimen of Shengmai injection were screened by XGBoost. A personalized medicine model of Shengmai injection was established by XGBoost selected from nine algorithm models. SHapley Additive exPlanations and confusion matrix were used to interpret the results clinically. Results: Patients using Shengmai injection had shorter length of hospital stay than those not using Shengmai injection (median 10.00 days vs. 11.00 days, p = 0.006). The personalized medicine model established via XGBoost shows accuracy = 0.81 and AUC = 0.87 in test cohort and accuracy = 0.84 and AUC = 0.84 in external verification. The important variables influencing the dose regimen of Shengmai injection include lipid-lowering drugs, platelet-lowering drugs, levels of GGT, hemoglobin, prealbumin, and cholesterol at admission. Finally, the personalized model shows precision = 75%, recall rate = 83% and F1-score = 79% for predicting 40 mg of Shengmai injection; and precision = 86%, recall rate = 79% and F1-score = 83% for predicting 60 mg of Shengmai injection. Conclusion: This study provides evidence supporting the clinical effectiveness of Shengmai injection, and established its personalized medicine model, which may help clinicians make better decisions.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Li
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd., Dalian, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Shuang Wang
- Dalian Medicinovo Technology Co., Ltd., Dalian, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuhong Bu
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
7
|
Wang W, Liu R, Zhu Y, Wang L, Tang Y, Dou B, Tian S, Wang F. YuNü-Jian attenuates diabetes-induced cardiomyopathy: integrating network pharmacology and experimental validation. Front Endocrinol (Lausanne) 2023; 14:1195149. [PMID: 37288289 PMCID: PMC10242144 DOI: 10.3389/fendo.2023.1195149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Diabetic cardiomyopathy (DCM) is one of the most prevalent complications of diabetes with complex pathogenesis. YuNü-Jian (YNJ) is a traditional Chinese medicinal formula widely used for diabetes with hypoglycemic and cardioprotective effects. This study aims to investigate the actions and mechanisms of YNJ against DCM which has never been reported. Methods Network pharmacology approach was used to predict the potential pathways and targets of YNJ on DCM. Molecular docking between hub targets and active components of YNJ was performed and visualized by AutoDock Vina and PyMOL. Then type 2 diabetic model was employed and intervened with YNJ for 10 weeks to further validate these critical targets. Results First, a total of 32 main ingredients of YNJ were identified and 700 potential targets were screened to construct herb-compound-target network. Then 94 differentially expressed genes of DCM were identified from GEO database. After that, PPI network of DCM and YNJ were generated from which hub genes (SIRT1, Nrf2, NQO1, MYC and APP) were assessed by topology analysis. Next, functional and pathway analysis indicated that the candidate targets were enriched in response to oxidative stress and Nrf2 signaling pathway. Furthermore, molecular docking revealed strong affinity between core targets and active components of YNJ. Finally, in rats with type 2 diabetes, YNJ obviously attenuated cardiac collagen accumulation and degree of fibrosis. Meanwhile, YNJ significantly upregulated protein expression of SIRT1, Nrf2 and NQO1 in diabetic myocardium. Discussion Collectively, our findings suggested that YNJ could effectively ameliorate cardiomyopathy induced by diabetes possibly through SIRT1/Nrf2/NQO1 signaling.
Collapse
Affiliation(s)
- Wei Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixia Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingying Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Tang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baolei Dou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Furong Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Li JY, Zhao CC, Peng JF, Zhang M, Wang L, Yin G, Zhou P. The Protective Effect of Sheng Mai Yin on Diabetic Cardiomyopathy via NLRP3/Caspase-1 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1234434. [PMID: 36506810 PMCID: PMC9731757 DOI: 10.1155/2022/1234434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Sheng Mai Yin (SMY) has therapeutic effects on myocardial infarction (MI), heart failure (HF), diabetic cardiomyopathy (DCM), and myocarditis. To study whether SMY can relieve pyroptosis and play a protective role in diabetic cardiomyopathy, a molecular docking technique was used to predict the possible mechanism of SMY against DCM. Then, a DCM rat model was induced by intraperitoneal injection of streptozotocin (STZ), divided into 5 groups: the DM group (model), SMY-L group (2.7 mL/kg SMY), SMY-M group (5.4 mL/kg SMY), SMY-H group (10.8 mL/kg SMY), and Met group (120 mg/kg metformin). Rats in the CTL group (control) and DM group were given normal saline. After 8 weeks, the levels of blood glucose, lipids, and myocardial enzymes were detected according to the kit instructions. Cardiac function was detected by echocardiography. HE and Masson were used to observing the pathological changes, collagen deposition, and collagen volume fraction (CVF). The apoptosis rate of cardiomyocytes was determined by Tunel. The IL-1β level was determined by ELISA and RT-PCR. The expressions of NLRP3, caspase-1, and GSDMD were measured using RT-PCR and Western blotting. The docking results suggested that SMY may act on NLRP3 and its downstream signal pathway. The in vivo results showed that SMY could reduce blood glucose and lipid levels, improve heart function, improve histopathological changes and myocardial enzymes, and alleviate cardiomyocyte apoptosis and myocardial fibrosis. SMY inhibited the mRNA and protein expressions of NLRP3, ASC, Caspase-1, and GSDMD and IL-1β production. SMY can reduce DCM by regulating the NLRP3/caspase-1 signaling pathway, providing a new research direction for the treatment of DCM.
Collapse
Affiliation(s)
- Jing-Ya Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chun-Chun Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jian-Fei Peng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Meng Zhang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
9
|
Niu Z, Qiang T, Lin W, Li Y, Wang K, Wang D, Wang X. Evaluation of Potential Herb-Drug Interactions Between Shengmai Injection and Losartan Potassium in Rat and In Vitro. Front Pharmacol 2022; 13:878526. [PMID: 35517807 PMCID: PMC9065348 DOI: 10.3389/fphar.2022.878526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.
Collapse
Affiliation(s)
- Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Qiang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keyan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|