1
|
Suthon S, Tangjittipokin W. Mechanisms and Physiological Roles of Polymorphisms in Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:2039. [PMID: 38396716 PMCID: PMC10888615 DOI: 10.3390/ijms25042039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a significant pregnancy complication linked to perinatal complications and an elevated risk of future metabolic disorders for both mothers and their children. GDM is diagnosed when women without prior diabetes develop chronic hyperglycemia due to β-cell dysfunction during gestation. Global research focuses on the association between GDM and single nucleotide polymorphisms (SNPs) and aims to enhance our understanding of GDM's pathogenesis, predict its risk, and guide patient management. This review offers a summary of various SNPs linked to a heightened risk of GDM and explores their biological mechanisms within the tissues implicated in the development of the condition.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Wang Y, Wang Y, Sun Y, Zhang N, Liang X, Luo S, Dai L, Sun C, Yang Y, Li S, Zhang X, Zhang Q. Serum folate mediates the associations of MTHFR rs1801133 polymorphism with blood glucose levels and gestational diabetes mellitus in Chinese Han pregnant women. Br J Nutr 2023; 130:1329-1337. [PMID: 36756752 DOI: 10.1017/s0007114523000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This study aimed to explore the mediation effects of one-carbon metabolism (OCM) related nutrients on the association between MTHFR rs1801133 polymorphism and gestational diabetes mellitus (GDM). Folate, vitamin B12 and homocysteine (Hcy) were measured in the serum of 1254 pregnant women. Linear and logistic regressions were used to estimate the associations of OCM nutrients and MTHFR rs1801133 polymorphism with blood glucose levels and GDM risk. Mediation analysis was applied to test the mediation effects of folate, vitamin B12 and Hcy on the association of MTHFR rs1801133 polymorphism with blood glucose concentrations and GDM. Pregnant women with MTHFR rs1801133 CC genotype had higher serum folate (10·75 v. 8·90 and 9·40 ng/ml) and lower serum Hcy (4·84 v. 4·93 and 5·20 μmol/l) than those with CT and TT genotypes. Folate concentrations were positively associated with fasting plasma glucose (FPG), 1-h plasma glucose (1-h PG), 2-h plasma glucose (2-h PG) and GDM risk. Vitamin B12 levels were negatively correlated with FPG and GDM. Although no direct association was found between MTHFR rs1801133 genotypes and GDM, there were significant indirect effects of MTHFR rs1801133 CC genotype on FPG (β: 0·005; 95 % CI: 0·001, 0·013), 1-h PG (β: 0·006; 95 % CI: 0·001, 0·014), 2-h PG (β: 0·007; 95 % CI: 0·001, 0·015) and GDM (β: 0·006; 95 % CI: 0·001, 0·014) via folate. In conclusion, serum folate mediates the effect of MTHFR rs1801133 on blood glucose levels and GDM. Our findings potentially provide a feasible GDM prevention strategy via individualised folate supplementation according to the MTHFR genotypes.
Collapse
Affiliation(s)
- Yunguo Wang
- Department of Orthopedics Surgery, Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin300211, People's Republic of China
| | - Yiyun Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Yao Sun
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Naijian Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Suhui Luo
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Lirong Dai
- Community Health Service Center of Yangliuqing Town, Tianjin300380, People's Republic of China
| | - Chao Sun
- Community Health Service Center of Yangliuqing Town, Tianjin300380, People's Republic of China
| | - Yungui Yang
- Community Health Service Center of Zhangjiawo Town, Tianjin300393, People's Republic of China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin300380, People's Republic of China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin300070, People's Republic of China
| |
Collapse
|
3
|
Liu HY, Qin S, Zhang Z, Qi J, Zhang W, Liu SM, Zhang Y. Associations of MTHFR Polymorphisms and Cytosine Modifications with Early-Gestational Diabetes Mellitus in Chinese Pregnant Women. Reprod Sci 2023; 30:2973-2982. [PMID: 37154866 DOI: 10.1007/s43032-023-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Early-Gestational Diabetes Mellitus (Early-GDM) is a complex condition that may cause complications in infants of affected mothers. The aim of this case-control study was to analyze the effects of genetic-epigenetic interaction on Early-GDM and fetal development with respect to cytosine modifications (i.e., 5mC, 5-methylcytosines; and 5hmC, 5-hydroxymethylcytosines) and single nucleotide polymorphisms (SNPs) of MTHFR, a key gene involving cytosine modifications. Peripheral blood samples were collected from 92 women in their first or second trimester of pregnancy (Early-GDM, n = 14; Controls, n = 78). Global DNA 5mC and 5hmC were quantified by HPLC-MS/MS, and MTHFR SNPs (rs1801133 C > T and rs1801131 A > C) were determined by TaqMan-qPCR. Association analysis suggested that MTHFR rs1801133 TT genotype was a risk factor of Early-GDM (OR [odds ratio] = 4.00; 95% CI [confidence interval]: 1.24, 12.86; p = 0.02). The C allele of rs1801131 appeared to be a protective factor for the 2-h OGTT (oral glucose tolerance test) (OR = -0.79; 95% CI: -1.48, -0.10; p = 0.03). Patients with Early-GDM had higher global 5mC and lower global 5hmC. The reduction of global 5hmC and the TT genotype of rs1801133 were associated with higher level of the 1st-FBG (fasting blood glucose in the first trimester) (p < 0.05). Additionally, global 5mC showed a positive correlation with birth weight, body length and head circumference of newborns, while global 5hmC showed a negative correlation with birth weight. The current study implicated MTHFR SNPs and cytosine modifications in the development of Early-GDM and potential complications in their newborns.
Collapse
Affiliation(s)
- Huan-Yu Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jiahui Qi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Song-Mei Liu
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
| |
Collapse
|
4
|
Alshammary AF, Ansar S, Farzan R, Alsobaie SF, Alageel AA, Al-Hakeem MM, Ali Khan I. Dissecting the Molecular Role of ADIPOQ SNPs in Saudi Women Diagnosed with Gestational Diabetes Mellitus. Biomedicines 2023; 11:biomedicines11051289. [PMID: 37238960 DOI: 10.3390/biomedicines11051289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The traditional definition of gestational diabetes mellitus (GDM) is the leading cause of carbohydrate intolerance in hyperglycemia of varying severity, with onset or initial detection during pregnancy. Previous studies have reported a relationship among obesity, adiponectin (ADIPOQ), and diabetes in Saudi Arabia. ADIPOQ is an adipokine that is produced and secreted by adipose tissue involved in the regulation of carbohydrate and fatty acid metabolism. This study investigated the molecular association between rs1501299, rs17846866, and rs2241766 single-nucleotide polymorphisms (SNPs) in ADIPOQ and GDM in Saudi Arabia. Patients with GDM and control patients were selected, and serum and molecular analyses were performed. Statistical analyses were performed on clinical data, Hardy Weinberg Equilibrium, genotype and allele frequencies, multiple logistic regression, ANOVA, haplotype, linkage disequilibrium, as well as MDR and GMDR analyses. The clinical data showed significant differences in various parameters between the GDM and non-GDM groups (p < 0.05). In GDM women with alleles, genotypes, and different genetic models, the rs1501299 and rs2241766 SNPs showed a strong association (p < 0.05). Multiple logistic regression analysis revealed a negative correlation (p > 0.05). This study concluded that rs1501299 and rs2241766 SNPs were strongly associated with GDM in women in Saudi Arabia.
Collapse
Affiliation(s)
- Amal F Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sarah F Alsobaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Arwa A Alageel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Malak Mohammed Al-Hakeem
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University Hospital, Riyadh 11451, Saudi Arabia
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
5
|
Wang Y, Li L, Li P. Novel single nucleotide polymorphisms in gestational diabetes mellitus. Clin Chim Acta 2023; 538:60-64. [PMID: 36375523 DOI: 10.1016/j.cca.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The association between gestational diabetes mellitus (GDM) and single nucleotide polymorphisms (SNPs) has attracted global research attention. Exploring SNPs can help us further understand the pathogenesis of GDM, predict the risk of GDM, and guide the management of GDM patients. In this review, we summarized the studies on the association between SNPs and GDM, focusing on novel SNPs published in the last 10 years. The SNPs identified to be associated with GDM included HMG20A (rs7178572), CDKAL1 (rs7756992, rs7754840, and rs7747752), ADIPOQ (rs266729 and rs17300539), MTHFR (rs1801133), IL10 (rs3021094), CDKN2B (rs1063192), and TRPM5 (rs35197079). However, the role of SNPs in the prediction, diagnosis, treatment, and prognosis of GDM, as a polygenic disease, needs to be further explored in multiple ethnic populations.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
6
|
Coetzee A, Hall DR, Conradie M. Hyperglycemia First Detected in Pregnancy in South Africa: Facts, Gaps, and Opportunities. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:895743. [PMID: 36992779 PMCID: PMC10012101 DOI: 10.3389/fcdhc.2022.895743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 06/19/2023]
Abstract
This review contextualizes hyperglycemia in pregnancy from a South-African perspective. It aims to create awareness of the importance of hyperglycemia in pregnancy in low-middle-income countries. We address unanswered questions to guide future research on sub-Saharan African women with hyperglycemia first detected in pregnancy (HFDP). South African women of childbearing age have the highest prevalence of obesity in sub-Saharan Africa. They are predisposed to Type 2 diabetes (T2DM), the leading cause of death in South African women. T2DM remains undiagnosed in many African countries, with two-thirds of people living with diabetes unaware. With the South African health policy's increased focus on improving antenatal care, women often gain access to screening for non-communicable diseases for the first time in pregnancy. While screening practices and diagnostic criteria for gestational diabetes mellitus (GDM) differ amongst geographical areas in South Africa (SA), hyperglycemia of varying degrees is often first detected in pregnancy. This is often erroneously ascribed to GDM, irrespective of the degree of hyperglycemia and not overt diabetes. T2DM and GDM convey a graded increased risk for the mother and fetus during and after pregnancy, with cardiometabolic risk accumulating across the lifespan. Resource limitations and high patient burden have hampered the opportunity to implement accessible preventative care in young women at increased risk of developing T2DM in the broader public health system in SA. All women with HFDP, including those with true GDM, should be followed and undergo glucose assessment postpartum. In SA, studies conducted early postpartum have noted persistent hyperglycemia in a third of women after GDM. Interpregnancy care is advantageous and may attain a favourable metabolic legacy in these young women, but the yield of return following delivery is suboptimal. We review the current best evidence regarding HFDP and contextualize the applicability in SA and other African or low-middle-income countries. The review identifies gaps and shares pragmatic solutions regarding clinical factors that may improve awareness, identification, diagnosis, and management of women with HFDP.
Collapse
Affiliation(s)
- Ankia Coetzee
- Department of Medicine, Division of Endocrinology Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - David R. Hall
- Department of Obstetrics and Gynecology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Magda Conradie
- Department of Medicine, Division of Endocrinology Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
7
|
Associations of Maternal rs1801131 Genotype in MTHFR and Serum Folate and Vitamin B12 with Gestational Diabetes Mellitus in Chinese Pregnant Women. Nutrients 2022; 14:nu14061169. [PMID: 35334827 PMCID: PMC8954918 DOI: 10.3390/nu14061169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Circumstantial evidence links one-carbon metabolism (OCM) related nutrients, such as folate and vitamin B12, with gestational diabetes mellitus (GDM). However, few studies have evaluated the combined effects of these nutrients with OCM related gene polymorphisms on GDM. This study investigated whether OCM related genetic variants modified the associations of folate and B12 with GDM. Logistic regression was used to estimate odds ratios (ORs) for OCM related nutrients and single nucleotide polymorphisms (SNPs) in genes encoding main OCM related enzymes (MTHFR, MTR, and MTRR) on GDM. Higher folate concentrations were associated with increased GDM risk (OR: 1.59; 95% CI: 1.22, 2.13). However, higher B12 concentrations were associated with reduced GDM risk (OR: 0.76; 95% CI: 0.65, 0.92). Pregnancies with MTHFR rs1801131 G alleles had a significantly lower risk of GDM than pregnancies with T alleles (OR: 0.65; 95% CI: 0.47, 0.91) under the dominant model. The genotype-stratified analysis revealed the association between folate and GDM (OR: 1.66, 95% CI: 1.20, 2.30) or B12 and GDM (OR: 0.80, 95% CI: 0.65, 0.98) was more evident in pregnancies with TT genotype. Higher folate and lower B12 are associated with GDM. Pregnancies with MTHFR rs1801131 TT genotype are more susceptible to OCM nutrient-related GDM.
Collapse
|
8
|
Chen Y, Lu M, Nie J, Liu J, Liu Y, Meng Y, Sun X, Ji C, Zhang J, Yang X. Increasing prevalence of gestational diabetes mellitus when carrying the T variant allele of the MTHFR gene C677T polymorphism: a systematic review and meta-analysis. Arch Gynecol Obstet 2021; 305:1193-1202. [DOI: 10.1007/s00404-021-06303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
|