1
|
Sun Y, Lin X, Liu Z, Hu L, Sun P, Shen G, Fan F, Zhang Y, Li J. Association between plasma trimethylamine N-oxide and coronary heart disease: new insights on sex and age differences. Front Cardiovasc Med 2024; 11:1397023. [PMID: 39434851 PMCID: PMC11491342 DOI: 10.3389/fcvm.2024.1397023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Aim Elevated plasma trimethylamine N-oxide (TMAO) is related to atherosclerosis. Whether the relationship of TMAO and coronary heart disease (CHD) is influenced by sex or age is uncertain. We aim to explore the sex and age differences in the relationship between plasma TMAO and CHD risk and severity. Methods A case-control study was conducted in patients undergoing elective coronary angiography. Matched by sex, age (±2 years), and operation date (±180 days), a total of 429 CHD case-control pairs were included. Plasma TMAO was quantified using liquid chromatography-tandem mass spectrometry. Logistic regression analyses were performed to evaluate the association between plasma TMAO and CHD risk and severity. Results The overall median (interquartile range) plasma TMAO level was 0.11 (0.06-0.18) μg/ml. After stratification by sex and age, and adjustment for common CHD risk factors, the association between TMAO and CHD risk was significant in the older (≥65 years) male subgroup [odds ratios (OR) = 1.57, 95% confidence interval (CI): 1.09-2.28, P = 0.016], but not in other sex-age subgroups (all P > 0.05). The relationship of plasma TMAO and CHD risk was modified by age (adjusted P interaction = 0.001) in male individuals. Plasma TMAO was also associated with a higher risk of multi-vessel disease in male patients with CHD (OR = 1.65, 95% CI: 1.18-2.32, P = 0.004), but not in females. Conclusions Plasma TMAO is significantly positively associated with the risk and severity of CHD in Chinese men. Age has an interactive effect on the relationship between plasma TMAO and CHD risk in men. Our findings warrant further investigation.
Collapse
Affiliation(s)
- Yangyang Sun
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xipeng Lin
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhihao Liu
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Lihua Hu
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Pengfei Sun
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Geng Shen
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
3
|
Florek K, Kübler M, Górka M, Kübler P. New Modifiable Risk Factors Influencing Coronary Artery Disease Severity. Int J Mol Sci 2024; 25:7766. [PMID: 39063008 PMCID: PMC11276953 DOI: 10.3390/ijms25147766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide with coronary artery disease (CAD) being the first culprit in this group. In terms of CAD, not only its presence but also its severity plays a role in the patient's treatment and prognosis. CAD complexity can be assessed with the indicator named the SYNTAX score (SS). A higher SS is associated with major adverse cardiovascular event (MACE) occurrence in short- and long-term observations. Hence, the risk factors affecting CAD severity based on SS results may help lower the risk among patients with already developed CAD to reduce their impact on coronary atherosclerosis progression. The well-established risk factors of CAD are consistent with those associated with the coronary plaque burden. However, recently, it was shown that new indicators exist, which we present in this paper, that significantly contribute to CAD complexity such as inflammatory parameters, C-reactive protein (CRP), ratios based on blood smear results, and uric acid. Moreover, microbiota alteration, vitamin D deficiency, and obstructive sleep apnea (OSA) also predicted CAD severity. However, sometimes, certain indicators were revealed as significant only in terms of chronic coronary syndromes (CCSs) or specific acute coronary syndromes (ACSs). Importantly, there is a need to apply the interdisciplinary and translational approach to the novel CAD severity risk assessment to maximize the impact of secondary prevention among patients at risk of coronary atherosclerosis progression.
Collapse
Affiliation(s)
- Kamila Florek
- Student Scientific Group of Invasive Cardiology, Institute of Heart Diseases, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Maja Kübler
- Student Scientific Group of Invasive Cardiology, Institute of Heart Diseases, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Magdalena Górka
- Student Scientific Group of Invasive Cardiology, Institute of Heart Diseases, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Piotr Kübler
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
- Department of Cardiology, Faculty of Medicine, Institute of Heart Diseases, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
4
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients 2022; 14:nu14102093. [PMID: 35631234 PMCID: PMC9148165 DOI: 10.3390/nu14102093] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Animal and human studies have reported conflicting results on the relationship between circulating trimethylamine N-oxide (TMAO) levels and risk of Type 2 diabetes (T2D). This study aimed to compare plasma TMAO levels in people with or without T2D and explore the association of TMAO and T2D. A prospective case-control study of 297 participants, 164 healthy controls and 133 patients with T2D, was conducted. TMAO levels were quantified by UPLC-MS/MS. Comorbidities, dietary patterns, physical activity, and blood biomarkers were assessed. Median (IQR) plasma TMAO levels were significantly higher in diabetes cases (4.95 (2.84−8.35) µmol/L) compared to healthy controls (3.07 (2.05−4.82) µmol/L) (p < 0.001). The association between TMAO and T2D was significant in the non-adjusted Model 1 (p < 0.001) and after adjusting for confounders of diabetes including age, BMI, and level of education in Model 2 (p = 0.04). When the association was further adjusted for physical activity and diet in Model 3, plasma TMAO levels at only the highest quartile (>6.40 µmol/L) were associated with the risk of diabetes (OR = 3.36, 95% CI [1.26, 9.04], p = 0.02). The results presented suggest an association between plasma TMAO levels and T2D. A significant correlation was found between red meat consumption and increased levels of TMAO in T2D patients. A longitudinal study is warranted to further evaluate the correlation between TMAO and T2D.
Collapse
|