1
|
Bolignano D, Greco M, Presta P, Duni A, Zicarelli M, Mercuri S, Pappas E, Lakkas L, Musolino M, Naka KK, Misiti R, Foti DP, Andreucci M, Coppolino G, Dounousi E. The Mitochondrial-Derived Peptide MOTS-c May Refine Mortality and Cardiovascular Risk Prediction in Chronic Hemodialysis Patients: A Multicenter Cohort Study. Blood Purif 2024; 53:824-837. [PMID: 39111290 DOI: 10.1159/000540303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/07/2024] [Indexed: 09/03/2024]
Abstract
INTRODUCTION Uremic patients exhibit remarkably increased rates of mortality and cardiovascular (CV) events, but risk prediction in this setting remains difficult. Systemic mitochondrial dysfunction is pervasive in end-stage kidney disease and may contribute to CV complications. We tested the clinical significance of circulating MOTS-c, a small mitochondrial-derived peptide, as a biomarker for improving mortality and CV risk prediction in hemodialysis (HD) patients. METHODS We conducted a prospective, observational, multicenter study on 94 prevalent HD patients. The study endpoint was a composite of all-cause mortality and non-fatal CV events. The diagnostic and prognostic capacities of predictive models based on cohort-related risk factors were tested before and after the inclusion of MOTS-c. RESULTS MOTS-c levels were higher in HD patients than in controls (p < 0.001) and even more elevated (p = 0.01) in the 53 individuals experiencing the combined endpoint during follow-up (median duration: 26.5 months). MOTS-c was independently associated with the endpoint at either multivariate logistic (OR 1.020; 95% CI: 1.011-1.109; p = 0.03) or Cox regression analyses (HR 1.004; 95% CI: 1.000-1.025; p = 0.05) and the addition of this biomarker to prognostic models including the other cohort-related risk predictors (age, left ventricular mass, evidence of diastolic dysfunction, diabetes, pulse pressure) significantly improved the calibration, risk variability explanation, discrimination (receiver operating characteristic area under the curve from 0.727 to 0.743; C-index from 0.658 to 0.700), and particularly, the overall reclassification capacity (NRI 15.87%; p = 0.01). CONCLUSIONS In HD patients, the mitochondrial-derived peptide MOTS-c may impart significant information to refine CV risk prediction, beyond cohort-related risk factors. Future investigations are needed to generalize these findings in larger and more heterogeneous cohorts.
Collapse
Affiliation(s)
- Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
- Clinical Pathology Lab, Magna Graecia University, Catanzaro, Italy
| | - Pierangela Presta
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
| | - Anila Duni
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | - Simone Mercuri
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
| | - Efthymios Pappas
- Hemodialysis Unit, General Hospital of Filiates, Filiates, Greece
| | - Lampros Lakkas
- Second Department of Cardiology, University Hospital of Ioannina, Ioannina, Greece
| | - Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Katerina K Naka
- Second Department of Cardiology, University Hospital of Ioannina, Ioannina, Greece
| | - Roberta Misiti
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
- Clinical Pathology Lab, Magna Graecia University, Catanzaro, Italy
| | - Daniela Patrizia Foti
- Clinical Pathology Lab, Magna Graecia University, Catanzaro, Italy
- Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Evangelia Dounousi
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
2
|
Bień J, Pruszyńska-Oszmałek E, Kołodziejski P, Leciejewska N, Szczepankiewicz D, Sassek M. MOTS-c regulates pancreatic alpha and beta cell functions in vitro. Histochem Cell Biol 2024; 161:449-460. [PMID: 38430258 PMCID: PMC11162381 DOI: 10.1007/s00418-024-02274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
The aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent β and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.
Collapse
Affiliation(s)
- Jakub Bień
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Paweł Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poznan, Poland.
| |
Collapse
|