1
|
Tanushree, Sharma A, Monika, Singh RP, Jhawat V. Human immunodeficiency virus infection challenges: Current therapeutic limitations and strategies for improved management through long-acting injectable formulation. Rev Med Virol 2024; 34:e2563. [PMID: 38886179 DOI: 10.1002/rmv.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
HIV infection has been a severe global health burden, with millions living with the virus and continuing new infections each year. Antiretroviral therapy can effectively suppress HIV replication but requires strict lifelong adherence to daily oral medication regimens, which presents a significant challenge. Long-acting formulations of antiretroviral drugs administered infrequently have emerged as a promising strategy to improve treatment outcomes and adherence to HIV therapy and prevention. Long-acting injectable (LAI) formulations are designed to gradually release drugs over extended periods of weeks or months following a single injection. Critical advantages of LAIs over conventional oral dosage forms include less frequent dosing requirements, enhanced patient privacy, reduced stigma associated with daily pill regimens, and optimised pharmacokinetic/pharmacodynamic profiles. Several LAI antiretroviral products have recently gained regulatory approval, such as the integrase strand transfer inhibitor cabotegravir for HIV preexposure prophylaxis and the Cabotegravir/Rilpivirine combination for HIV treatment. A leading approach for developing long-acting antiretroviral depots involves encapsulating drug compounds in polymeric microspheres composed of biocompatible, biodegradable materials like poly (lactic-co-glycolic acid). These injectable depot formulations enable high drug loading with customisable extended-release kinetics controlled by the polymeric matrix. Compared to daily oral therapies, LAI antiretroviral formulations leveraging biodegradable polymeric microspheres offer notable benefits, including prolonged therapeutic effects, reduced dosing frequency for improved adherence, and the potential to kerb the initial HIV transmission event. The present manuscript aims to review the pathogenesis of the virus and its progression and propose therapeutic targets and long-acting drug delivery strategies that hold substantial promise for enhancing outcomes in HIV treatment and prevention.
Collapse
Affiliation(s)
- Tanushree
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
2
|
Cunha RF, Simões S, Carvalheiro M, Pereira JMA, Costa Q, Ascenso A. Novel Antiretroviral Therapeutic Strategies for HIV. Molecules 2021; 26:molecules26175305. [PMID: 34500737 PMCID: PMC8434305 DOI: 10.3390/molecules26175305] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
When the first cases of HIV infection appeared in the 1980s, AIDS was a deadly disease without any therapeutic alternatives. Currently, there is still no cure for most cases mainly due to the multiple tissues that act as a reservoir for this virus besides the high viral mutagenesis that leads to an antiretroviral drug resistance. Throughout the years, multiple drugs with specific mechanisms of action on distinct targets have been approved. In this review, the most recent phase III clinical studies and other research therapies as advanced antiretroviral nanodelivery systems will be here discussed. Although the combined antiretroviral therapy is effective in reducing viral loading to undetectable levels, it also presents some disadvantages, such as usual side effects, high frequency of administration, and the possibility of drug resistance. Therefore, several new drugs, delivery systems, and vaccines have been tested in pre-clinical and clinical trials. Regarding drug delivery, an attempt to change the route of administration of some conventional antiretrovirals has proven to be successful and surpassed some issues related to patient compliance. Nanotechnology has brought a new approach to overcoming certain obstacles of formulation design including drug solubility and biodistribution. Overall, the encapsulation of antiretroviral drugs into nanosystems has shown improved drug release and pharmacokinetic profile.
Collapse
Affiliation(s)
- Rita F. Cunha
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - Sandra Simões
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - Manuela Carvalheiro
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - José M. Azevedo Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.M.A.P.); (Q.C.)
| | - Quirina Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.M.A.P.); (Q.C.)
| | - Andreia Ascenso
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
- Correspondence:
| |
Collapse
|
3
|
Shin YH, Park CM, Yoon CH. An Overview of Human Immunodeficiency Virus-1 Antiretroviral Drugs: General Principles and Current Status. Infect Chemother 2021; 53:29-45. [PMID: 34409780 PMCID: PMC8032919 DOI: 10.3947/ic.2020.0100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Treatment with highly active antiretroviral therapy (HAART) can prolong a patient's life-span by disrupting pivotal steps in the replication cycle of the human immunodeficiency virus-1 (HIV-1). However, drug resistance is emerging as a major problem worldwide due to the prolonged period of treatment undergone by HIV-1 patients. Since the approval of zidovudine in 1987, over thirty antiretroviral drugs have been categorized into the following six distinct classes based on their biological function and resistance profiles: (1) nucleoside analog reverse-transcriptase inhibitors; (2) non–nucleoside reverse transcriptase inhibitors; (3) integrase strand transferase inhibitors; (4) protease inhibitors; (5) fusion inhibitors; and (6) co-receptor antagonists. Additionally, several antiretroviral drugs have been developed recently, such as a long active drug, humanized antibody and pro-drug metabolized into an active form in the patient's body. Although plenty of antiretroviral drugs are beneficially used to treat patients with HIV-1, the ongoing efforts to develop antiretroviral drugs have overcome the drug resistances, adverse effects, and limited adherence of drugs observed in previous drugs to some extent. Furthermore, studies focused on agents targeting latent HIV-1 reservoirs should be strengthened, as that may lead to eradication of HIV-1.
Collapse
Affiliation(s)
- Young Hyun Shin
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, Korea National Institute of Health, Chungbuk, Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Cheol Hee Yoon
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, Korea National Institute of Health, Chungbuk, Korea.
| |
Collapse
|
4
|
Li Y, Lin H, Chen L, Chen Z, Li W. Novel Therapies for Tongue Squamous Cell Carcinoma Patients with High-Grade Tumors. Life (Basel) 2021; 11:813. [PMID: 34440557 PMCID: PMC8398384 DOI: 10.3390/life11080813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) patients with high-grade tumors usually suffer from high occurrence and poor prognosis. The current study aimed at finding the biomarkers related to tumor grades and proposing potential therapies by these biomarkers. METHODS The mRNA expression matrix of TSCC samples from The Cancer Genome Atlas (TCGA) database was analyzed to identify hub proteins related to tumor grades. The mRNA expression patterns of these hub proteins between TSCC and adjacent control samples were validated in three independent TSCC data sets (i.e., GSE9844, GSE30784, and GSE13601). The correlation between cell cycle index and immunotherapy efficacy was tested on the IMvigor210 data set. Based on the structure of hub proteins, virtual screening was applied to compounds to find the potential inhibitors. RESULTS A total of six cell cycle biomarkers (i.e., BUB1, CCNB2, CDC6, CDC20, CDK1, and MCM2) were selected as hub proteins by protein-protein interaction (PPI) analysis. In the validation data sets, the mRNA expression levels of these hub proteins were higher in tumor samples versus normal controls. The cell cycle index was constructed by the mRNA expression levels of these hub proteins, and patients with a high cell cycle index demonstrated favorable drug response to the immunotherapy. Three small molecules (i.e., ZINC100052685, ZINC8214703, and ZINC85537014) were found to bind with hub proteins and selected as drug candidates. CONCLUSION The cell cycle index might provide a novel reference for selecting appropriate cancer patient candidates for immunotherapy. The current research might contribute to the development of precision medicine and improve the prognosis of TSCC.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Hao Lin
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Lu Chen
- School of Clinical Medicine, Baotou Medical College, Baotou 014040, China;
| | - Zihao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Weizhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
5
|
Ünlü B, Simsek R, Köse SBE, Yirün A, Erkekoglu P. Neurological Effects of Sars-Cov-2 And Neurotoxicity of Antiviral Drugs Against Covid-19. Mini Rev Med Chem 2021; 22:213-231. [PMID: 34191697 DOI: 10.2174/1389557521666210629100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is caused by different SARS viruses. In 2020, novel coronavirus (SARS-CoV-2) led to an ongoing pandemic, known as "Coronavirus Disease 2019 (COVID-19)". The disease can spread among individuals through direct (via saliva, respiratory secretions or secretion droplets) or indirect (through contaminated objects or surfaces) contact. The pandemic has spread rapidly from Asia to Europe and later to America. It continues to affect all parts of the world at an increasing rate. There have been over 92 million confirmed cases of COVID-19 by mid-January 2021. The similarity of homological sequences between SARS-CoV-2 and other SARS-CoVs is high. In addition, clinical symptoms of SARS-CoV-2 and other SARS viruses show similarities. However, some COVID-19 cases show neurologic signs like headache, loss of smell, hiccups and encephalopathy. The drugs used in the palliative treatment of the disease also have some neurotoxic effects. Currently, there are approved vaccines for COVID-19. However, there is a need for specific therapeutics against COVID-19. This review will describe the neurological effects of SARS-CoV-2 and the neurotoxicity of COVID-19 drugs used in clinics. Drugs used in the treatment of COVID-19 will be evaluated by their mechanism of action and their toxicological effects.
Collapse
Affiliation(s)
- Büşra Ünlü
- TOBB University, Bioengineering Department, Ankara, Turkey
| | - Rahime Simsek
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Sıhhiye 06100, Ankara, Turkey
| | - Selinay Başak Erdemli Köse
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Anıl Yirün
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| | - Pinar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Sıhhiye 06100, Ankara, Turkey
| |
Collapse
|
6
|
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 2021; 19:1998-2017. [PMID: 33841751 PMCID: PMC8025584 DOI: 10.1016/j.csbj.2021.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sugandh Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Bharati Singh
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Preethy V. Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Geetanjali Agnihotri
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Shaheerah Khan
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Tushar Kant Beuria
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Gulam Hussain Syed
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
7
|
Nicolas P, Kiuru C, Wagah MG, Muturi M, Duthaler U, Hammann F, Maia M, Chaccour C. Potential metabolic resistance mechanisms to ivermectin in Anopheles gambiae: a synergist bioassay study. Parasit Vectors 2021; 14:172. [PMID: 33743783 PMCID: PMC7981804 DOI: 10.1186/s13071-021-04675-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Despite remarkable success obtained with current malaria vector control strategies in the last 15 years, additional innovative measures will be needed to achieve the ambitious goals for malaria control set for 2030 by the World Health Organization (WHO). New tools will need to address insecticide resistance and residual transmission as key challenges. Endectocides such as ivermectin are drugs that kill mosquitoes which feed on treated subjects. Mass administration of ivermectin can effectively target outdoor and early biting vectors, complementing the still effective conventional tools. Although this approach has garnered attention, development of ivermectin resistance is a potential pitfall. Herein, we evaluate the potential role of xenobiotic pumps and cytochrome P450 enzymes in protecting mosquitoes against ivermectin by active efflux and metabolic detoxification, respectively. Methods We determined the lethal concentration 50 for ivermectin in colonized Anopheles gambiae; then we used chemical inhibitors and inducers of xenobiotic pumps and cytochrome P450 enzymes in combination with ivermectin to probe the mechanism of ivermectin detoxification. Results Dual inhibition of xenobiotic pumps and cytochromes was found to have a synergistic effect with ivermectin, greatly increasing mosquito mortality. Inhibition of xenobiotic pumps alone had no effect on ivermectin-induced mortality. Induction of xenobiotic pumps and cytochromes may confer partial protection from ivermectin. Conclusion There is a clear pathway for development of ivermectin resistance in malaria vectors. Detoxification mechanisms mediated by cytochrome P450 enzymes are more important than xenobiotic pumps in protecting mosquitoes against ivermectin.![]()
Collapse
Affiliation(s)
- Patricia Nicolas
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, 1929, Maputo, Mozambique
| | - Caroline Kiuru
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, 1929, Maputo, Mozambique
| | - Martin G Wagah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 91SA, UK.,Department of Biosciences, KEMRI Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Martha Muturi
- Department of Biosciences, KEMRI Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University and University Hospital Basel, 4056, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland
| | - Felix Hammann
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital Bern, 3010, Bern, Switzerland
| | - Marta Maia
- Department of Biosciences, KEMRI Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain. .,Ifakara Health Institute, Ifakara, 67501, United Republic of Tanzania. .,Facultad de Medicina, Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
8
|
Marin RC, Behl T, Negrut N, Bungau S. Management of Antiretroviral Therapy with Boosted Protease Inhibitors-Darunavir/Ritonavir or Darunavir/Cobicistat. Biomedicines 2021; 9:biomedicines9030313. [PMID: 33803812 PMCID: PMC8003312 DOI: 10.3390/biomedicines9030313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
A major challenge in the management of antiretroviral therapy (ART) is to improve the patient's adherence, reducing the burden caused by the high number of drugs that compose the treatment regimens for human immunodeficiency virus positive (HIV+) patients. Selection of the most appropriate treatment regimen is responsible for therapeutic success and aims to reduce viremia, increase the immune system response capacity, and reduce the incidence rate and intensity of adverse reactions. In general, protease inhibitor (PI) is one of the pillars of regimens, and darunavir (DRV), in particular, is frequently recommended, along with low doses of enzyme inhibitors as cobicistat (COBI) or ritonavir (RTV), by the international guidelines. The potential of clinically significant drug interactions in patients taking COBI or RTV is high due to the potent inhibitory effect on cytochrome CYP 450, which attracts significant changes in the pharmacokinetics of PIs. Regardless of the patient or type of virus, the combined regimens of DRV/COBI or DRV/RTV are available to clinicians, proving their effectiveness, with a major impact on HIV mortality/morbidity. This study presents current information on the pharmacokinetics, pharmacology, drug interactions, and adverse reactions of DRV; it not only compares the bioavailability, pharmacokinetic parameters, immunological and virological responses, but also the efficacy, advantages, and therapeutic disadvantages of DRV/COBI or DRV/RTV combinations.
Collapse
Affiliation(s)
- Ruxandra-Cristina Marin
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Nicoleta Negrut
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
9
|
Colalto C. Volatile molecules for COVID-19: A possible pharmacological strategy? Drug Dev Res 2020; 81:950-968. [PMID: 32779824 PMCID: PMC7404447 DOI: 10.1002/ddr.21716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
COVID-19 is a novel coronavirus disease with a higher incidence of bilateral pneumonia and pleural effusion. The high pulmonary tropism and contagiousness of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have stimulated new approaches to combat its widespread diffusion. In developing new pharmacological strategies, the chemical characteristic of volatility can add therapeutic value to the hypothetical drug candidate. Volatile molecules are characterized by a high vapor pressure and are consequently easily exhaled by the lungs after ingestion. This feature could be exploited from a pharmacological point of view, reaching the site of action in an uncommon way but allowing for drug delivery. In this way, a hypothetical molecule for COVID-19 should have a balance between its lung exhalation characteristics and both antiviral and anti-inflammatory pharmacological action. Here, the feasibility, advantages, and disadvantages of a therapy based on oral administration of possible volatile drugs for COVID-19 will be discussed. Both aerosolized antiviral therapy and oral intake of volatile molecules are briefly reviewed, and an evaluation of 1,8-cineole is provided in view of a possible clinical use and also for asymptomatic COVID-19.
Collapse
Affiliation(s)
- Cristiano Colalto
- Working Group “Pharmacognosy, Phytotherapy and Nutraceuticals”Italian Pharmacological SocietyMilanItaly
| |
Collapse
|
10
|
Laurence J, Elhadad S, Ahamed J. HIV-associated cardiovascular disease: importance of platelet activation and cardiac fibrosis in the setting of specific antiretroviral therapies. Open Heart 2018; 5:e000823. [PMID: 30018781 PMCID: PMC6045710 DOI: 10.1136/openhrt-2018-000823] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
HIV infection is a risk factor for cardiovascular disease (CVD). This risk is accentuated by certain combination antiretroviral therapies (cARTs), independent of their effects on lipid metabolism and insulin sensitivity. We sought to define potential mechanisms for this association through systematic review of clinical and preclinical studies of CVD in the setting of HIV/cART from the English language literature from 1989 to March 2018. We used PubMed, Web of Knowledge and Google Scholar, and conference abstracts for the years 2015-March 2018. We uncovered three themes: (1) a critical role for the HIV protease inhibitor (PI) ritonavir and certain other PI-based regimens. (2) The importance of platelet activation. Virtually all PIs, and one nucleoside reverse transcriptase inhibitor, abacavir, activate platelets, but a role for this phenomenon in clinical CVD risk may require additional postactivation processes, including: release of platelet transforming growth factor-β1; induction of oxidative stress with production of reactive oxygen species from vascular cells; suppression of extracellular matrix autophagy; and/or sustained proinflammatory signalling, leading to cardiac fibrosis and dysfunction. Cardiac fibrosis may underlie an apparent shift in the character of HIV-linked CVD over the past decade from primarily left ventricular systolic to diastolic dysfunction, possibly driven by cART. (3) Recognition of the need for novel interventions. Switching from cART regimens based on PIs to contemporary antiretroviral agents such as the integrase strand transfer inhibitors, which have not been linked to clinical CVD, may not mitigate CVD risk assumed under prior cART. In conclusion, attention to the effects of specific antiretroviral drugs on platelet activation and related profibrotic signalling pathways should help: guide selection of appropriate anti-HIV therapy; assist in evaluation of CVD risk related to novel antiretrovirals; and direct appropriate interventions.
Collapse
Affiliation(s)
- Jeffrey Laurence
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Sonia Elhadad
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|