1
|
Akinola OT, Dahunsi SO. Whole genome sequencing reveals antibiotic resistance pattern and virulence factors in Klebsiella quasipneumoniae subsp. Similipneumoniae from Hospital wastewater in South-West, Nigeria. Microb Pathog 2024; 197:107040. [PMID: 39427715 DOI: 10.1016/j.micpath.2024.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/22/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Klebsiella quasipneumoniae is a distinct species from K. pneumoniae, even though it is sometimes mistaken phenotypically for the latter in clinical situations. K. quasipneumoniae is a pathogen and this study aims at understanding the genomic antibiotic resistance and virulence characteristics of Klebsiella quasipneumoniae subsp. similipneumoniae (B105 strain) isolated from tertiary hospital wastewater and the potential risks associated with its environmental spread. The Illumina platform was used for whole-genome sequencing (WGS), the generated raw reads (de novo) was assembled using RAPT NCBI, while other standardized bioinformatics tools were utilized to validate and examine the landscape of the genome's antibiotic resistance and virulence factors. The K. quasipneumoniae subsp. similipneumoniae (B105 strain), belonged to sequence type 1422 and was resistant to ampicillin, amoxicillin-clavulanic acid, ceftazidime, cefepime, meropenem, tetracycline, but susceptible to gentamicin. The annotated genome acknowledged the presence of blaOKP-B-2, ompK 36, fosA5, oqxAB, virulence genes responsible for capsule formation, lipopolysaccharide, iron uptake aerobactin (iutA), salmochelins (iroE, iroN), enterobactin siderophore, efllux pump (acrA, acrB) adherence, (mrkC, mrkD, and fimD) and two plasmids replicon IncFIB(K) and IncR. The study resonates the inadequacy of conventional microbiological identification methods to distinguish K. pneumoniae and K. quasipneumoniae and at the same time heightens the importance of using a genomic platform to extol the identity of K. quasipneumoniae subsp. similipneumoniae strain. Furthermore, the peculiarities of the acquired antimicrobial resistance and virulence genes, in this strain, are a potential risk to the environment.
Collapse
Affiliation(s)
- Omowumi T Akinola
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria.
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria; The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Martins LR, Pimentel MIS, de Oliveira ÉM, Jucá MB, Beltrão EMB, Lopes ACDS. Occurrence of blaNDM-1, blaNDM-5, blaNDM-7, and blaKPC-2 genes in clinical isolates of enterobacterales with high genetic variability, from colonization and infection in patients with or without COVID-19, from a hospital in Brazil. J Appl Microbiol 2024; 135:lxae212. [PMID: 39143035 DOI: 10.1093/jambio/lxae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
AIMS This study aimed to investigate the presence of beta-lactams resistance genes and the clonal relationship of clinical isolates of Enterobacterales obtained from patients with and without COVID-19, in a hospital in northeastern Brazil. METHODS AND RESULTS The study analyzed 45 carbapenem-resistant clinical isolates using enterobacterial repetitive intergenic consensus (ERIC-PCR), PCR, and amplicon sequencing to detect resistance genes (blaKPC, blaGES, blaNDM, blaVIM, and blaIMP). The main species were Klebsiella pneumoniae, Serratia marcescens, and Proteus mirabilis. Detected genes included blaNDM (46.66%), blaKPC (35.55%), and both (17.79%). ERIC-PCR showed multiclonal dissemination and high genetic variability. The main resistance gene was blaNDM, including blaNDM-5 and blaNDM-7. CONCLUSIONS The presence of Enterobacterales carrying blaKPC and blaNDM in this study, particularly K. pneumoniae, in infections and colonizations of patients with COVID-19 and non-COVID-19, highlights genetic variability and resistance to carbapenems observed in multiple species of this order.
Collapse
Affiliation(s)
- Lamartine Rodrigues Martins
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, 50670-901, Brasil
| | - Maria Izabely Silva Pimentel
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, 50670-901, Brasil
| | - Érica Maria de Oliveira
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, 50670-901, Brasil
| | | | | | - Ana Catarina de Souza Lopes
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Medicina Tropical, Recife, PE, 50670-901, Brasil
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Recife, PE, 50670-901, Brasil
| |
Collapse
|
3
|
Cai W, Kang J, Ma Y, Yin D, Song Y, Liu Y, Duan J. Molecular Epidemiology of Carbapenem Resistant Klebsiella Pneumoniae in Northern China: Clinical Characteristics, Antimicrobial Resistance, Virulence and Geographic Distribution. Infect Drug Resist 2023; 16:7289-7304. [PMID: 38023401 PMCID: PMC10676093 DOI: 10.2147/idr.s436284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose In this article, we studied in detail 74 Carbapenem Resistant Klebsiella pneumoniae (CRKP) in Shanxi to provide essential insight into development of effective strategies for control of CRKP. Patients and Methods From 2018 to 2021, we collected 74 clinical CRKP from 11 hospitals in Shanxi Province. Clinical data were obtained from medical records, and all isolates were subjected to antimicrobial susceptibility testing, multi locus sequence typing, capsular serotypes, resistant gene profiles and virulence gene profiles. The synergistic activity was performed by microdilution checkerboard method. Results Our study found differences in the clinical characteristics of CRKP between regions in Shanxi. Sequence type (ST) 11 was the dominant ST in Shanxi; however, the ST types in Shanxi had become more diverse over time and the proportion of STs showed a more balanced distribution with a significant decrease in ST11. NDM was the most common carbapenemase in Shanxi. In addition, the STs, carbapenemases, serotypes and virulence gene distribution varied by region in Shanxi. Moreover, tigecycline in combination with carbapenems and aztreonam had an excellent synergistic effect on CRKP in vitro. Conclusion The results of this study provide essential insight into development of effective strategies for control of CRKP in Shanxi.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jianbang Kang
- Department of Microbiology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanbin Ma
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yujie Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
4
|
Recombination Drives Evolution of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 KL47 to KL64 in China. Microbiol Spectr 2023; 11:e0110722. [PMID: 36622219 PMCID: PMC9927301 DOI: 10.1128/spectrum.01107-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae, especially carbapenemase-producing Klebsiella pneumoniae, is an urgent problem in health care facilities worldwide. K. pneumoniae isolates classified as sequence type 11 (ST11) are largely responsible for the spread of carbapenem-resistant K. pneumoniae (CRKP) in China. Our previous phylogenetic reconstruction suggested that CRKP ST11 capsular locus 64 (KL64) was derived from an ST11-KL47 ancestor through recombination. However, the molecular origin of KL64 remains largely unknown, and our understanding of the recombination is incomplete. Here, we screened a global sample of 22,600 K. pneumoniae genomes and searched for KL64-harboring STs, which were found to be ST1764, ST3685, ST1764-1LV, ST30, ST505, ST147, and ST11, wherein ST1764, ST3685, ST1764-1LV, and ST30 belonged to a clonal complex, CC1764. We compared the genetic structures of representative strains from ST11-KL47, ST11-KL64, CC1764-KL64, ST505-KL64, and ST147-KL64 and further performed phylogenetic analysis and single-nucleotide polymorphism analysis among 248 isolates from all these STs. The results suggested a recombination event has occurred in a homologous ~154-kb region covering KL and the lipopolysaccharide biosynthesis locus (OL) between a recipient ST11-KL47-OL101 and a donor CC1764 (except ST30), giving rise to ST11-KL64-O2v1 strains (recombination I). Furthermore, we also found an infrequent ST11-KL64-O2v1 subclone which was not produced by recombination I but was hybridized from ST11-KL47-OL101 and ST147-KL64-O2v1 strains through recombination of a homologous ~485-kb region covering KL and OL (recombination II). Our findings provide important insights into the role of recombination in the evolution of clinical strains and the diversity of capsule and lipopolysaccharide of widely distributed KPC-associated ST11 K. pneumoniae in China. IMPORTANCE Chromosomal recombination events are considered to contribute to the genetic diversification and ultimate success of many bacterial pathogens. A previous study unravelled the molecular evolution history of ST258 strains, which have been largely responsible for the spread of KPC in the United States. Here, we used comparative genomic analyses to discover two recombination events in ST11 CRKP strains, which is a predominant KPC-associated CRKP clone in China. Two new ST11-CRKP subclones with altered capsule and lipopolysaccharide, which are two primary determinants of antigenicity and antigenic diversity among K. pneumoniae, were produced through these two recombination events, respectively. Horizontal transfer of the KL and OL appears to be a crucial element driving the molecular evolution of K. pneumoniae strains. These findings not only extend our understanding of the molecular evolutionary history of ST11 but also are an important step toward the development of preventive, diagnostic, and therapeutic strategies for CRKP.
Collapse
|
5
|
Altayb HN, Hosawi S, Baothman O, Kazmi I, Chaieb K, Abu Zeid IM, Elbadawi HS, Lopes BS, Moglad E. Molecular insights into novel environmental strains of Klebsiella quasipneumoniae harboring different antimicrobial-resistance genes. Front Public Health 2023; 10:1068888. [PMID: 36711372 PMCID: PMC9878601 DOI: 10.3389/fpubh.2022.1068888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The emergence of bacterial pathogens in environmental hosts represents a major risk to public health. This study aimed at characterizing seven novel environmental strains of K. quasipneumoniae using a genomic approach which was misidentified by phenotypic methods in a previous batch of 27 species thought to be K. pneumoniae. Methods Whole-genome sequencing was performed using the Illumina platform, and the generated raw reads were de novo assembled. Comparative genomic, resistome, virulome, mobilome, and phylogeny were then investigated using dierent bioinformatics tools. Results Six strains were identified as K. quasipneumoniae subsp similipneumoniae and one as K. quasipneumoniae subsp. quasipneumoniae. All isolates were resistant to ampicillin, cephalexin, and amoxicillin-clavulanic acid and harbored the fosA, bla OKP types, oqxB, and oqxA genes. One isolate additionally harbored a gene cassettes consisting of bla SHV-1, bla OXA-1, aac(6')-Ib-cr, catB genes. The aminoglycoside-modifying enzyme gene aph(3")-Ia was bracketed by two insertion elements. Plasmid analyses showed that IncFIBK was the most prevalent plasmid, circulating in six isolates, while one isolate exhibited seven different plasmids. The isolates have virulence genes responsible for capsule formation, lipopolysaccharide, iron uptake aerobactin (iutA), salmochelins (iroE, iroN), enterobactin siderophore, adherence, and biofilm formation (mrkA, mrkB, mrkC, mrkD, mrkF, and mrkH). Conclusion Our study highlights the ecology and transmission of K. quasipneumoniae (which have the ability to disseminate to other environmental sources including animals) outside the clinical setting and the contribution of water, vegetables, and table surfaces as potential reservoirs of farm-to-fork transmission of disease via local markets in Khartoum, Sudan.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Hisham N. Altayb ✉
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M. Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom,National Horizons Centre, Teesside University, Darlington, United Kingdom,Bruno Silvester Lopes ✉
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
6
|
Liu X, Wang K, Chen J, Lyu J, Li J, Chen Q, Lin Y, Tian B, Song H, Li P, Gu B. Clonal Spread of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 in Chinese Pediatric Patients. Microbiol Spectr 2022; 10:e0191922. [PMID: 36453896 PMCID: PMC9769831 DOI: 10.1128/spectrum.01919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Klebsiella pneumoniae often causes life-threatening infections in patients globally. Despite its notability, little is known about potential nosocomial outbreak and spread of K. pneumoniae among pediatric patients in low- and middle-income countries. Ninety-eight K. pneumoniae strains isolated from pediatric patients in a large general hospital in China between February 2018 and May 2019 were subjected to nanopore and Illumina sequencing and genomic analysis to elucidate transmission and genetic diversity. The temporal distribution patterns of K. pneumoniae revealed a cluster of sequence type 11 (ST11) strains comprising two clades. Most inferred transmissions were of clade 1, which could be traced to a common ancestor dating to mid-2017. An infant in the coronary care unit played a central role, potentially seeding transmission clusters in other wards. Major genomic changes during the outbreak included chromosomal mutations associated with virulence and gains and losses of plasmids encoding resistance. In summary, we report a nosocomial outbreak among pediatric patients caused by clonal dissemination of KPC-2-producing ST11 K. pneumoniae. Our findings highlight the value of whole-genome sequencing during outbreak investigations and illustrate that transmission chains can be identified during hospital stays. IMPORTANCE We report a nosocomial outbreak among pediatric patients caused by clonal dissemination of blaKPC-2-carrying ST11 K. pneumoniae. Strains of various sequence types coexist in the complex hospital environment; the quick emergence and spread of ST11 strains were mainly due to the plasmid-mediated acquisition of resistance genes. The spread of hospital infection was highly associated with several specific wards, suggesting the importance of genomic surveillance on wards at high risk of infection.
Collapse
Affiliation(s)
- Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- China Medical University, Shenyang, China
| | - Jingwen Lyu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Qichao Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yanfeng Lin
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics (Basel) 2022; 11:antibiotics11050596. [PMID: 35625240 PMCID: PMC9137517 DOI: 10.3390/antibiotics11050596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +0096-6549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
8
|
Draft Genome Sequence of a Multi-drug Resistant Pseudomonas aeruginosa Producing blaSIM Metallo-β-lactamase: London, UK. J Glob Antimicrob Resist 2022; 29:222-224. [DOI: 10.1016/j.jgar.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
|
9
|
Prussing C, Canulla T, Singh N, McAuley P, Gosciminski M, King E, Bandy U, Machado MJ, Karlsson M, Musser KA, Huard RC, Nazarian EJ. Characterization of the First Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate Harboring blaSIM-1 from the United States. Antimicrob Agents Chemother 2021; 65:e0106621. [PMID: 34339276 PMCID: PMC8448160 DOI: 10.1128/aac.01066-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Catharine Prussing
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Theresa Canulla
- Center for Biological Sciences, Providence, Rhode Island, USA
- Rhode Island State Health Laboratory, Providence, Rhode Island, USA
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Patricia McAuley
- Rhode Island Department of Health, Providence, Rhode Island, USA
- Center for Acute Infectious Disease Epidemiology, Providence, Rhode Island, USA
| | - Michael Gosciminski
- Rhode Island Department of Health, Providence, Rhode Island, USA
- Center for Acute Infectious Disease Epidemiology, Providence, Rhode Island, USA
| | - Ewa King
- Rhode Island State Health Laboratory, Providence, Rhode Island, USA
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Utpala Bandy
- Rhode Island Department of Health, Providence, Rhode Island, USA
- Center for Acute Infectious Disease Epidemiology, Providence, Rhode Island, USA
| | - María-José Machado
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberlee A. Musser
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Richard C. Huard
- Center for Biological Sciences, Providence, Rhode Island, USA
- Rhode Island State Health Laboratory, Providence, Rhode Island, USA
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | | |
Collapse
|
10
|
Zhang Z, Song Y, Kang J, Duan S, Li Q, Feng F, Duan J. Epidemiology of patients with central nervous system infections, mainly neurosurgical patients: a retrospective study from 2012 to 2019 in a teaching hospital in China. BMC Infect Dis 2021; 21:826. [PMID: 34404351 PMCID: PMC8369693 DOI: 10.1186/s12879-021-06561-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infections are relatively rare but are associated with high mortality worldwide. Empirical antimicrobial therapy is crucial for the survival of patients with CNS infections, and should be based on the knowledge of the pathogen distribution and antibiotic sensitivities. The aim of this study was to investigate the features of pathogens in patients with CNS infections in North China and evaluate the risk factors for mortality and multi-drug-resistant (MDR) bacterial infections. METHODS A retrospective study was conducted with patients with positive cerebrospinal fluid (CSF) cultures in a teaching hospital from January 2012 to December 2019. The following data were collected: demographic characteristics, laboratory data, causative organisms and antimicrobial sensitivity results. Data were analyzed with SPSS 16.0. Univariate analysis and binary logistic regression analyses were performed to identify the risk factors for mortality and MDR bacterial infections. RESULTS A total of 72 patients were diagnosed with CNS infections, and 86 isolates were identified. The proportions of Gram-positive bacteria, Gram-negative bacteria and fungi were 59.3, 30.2 and 10.5%, respectively. The predominant Gram-positive bacteria was Coagulase-negative Staphylococci. Acinetobacter baumannii, Escherichia coli and Klebsiella spp. were the predominant Gram-negative bacteria. Compared to 2012-2015 years, the proportion of Gram-negative bacteria increased markedly during 2016-2019 years. Coagulase-negative Staphylococci, Streptococcus pneumoniae and Enterococcus faecium had 100% sensitivity to vancomycin, teicoplanin and linezolid. Acinetobacter baumannii and Klebsiella pneumoniae were 100% sensitive to tigecycline. Escherichia coli had 100% sensitivity to amikacin, meropenem and imipenem. The overall mortality rate in the 72 patients was 30.6%. In multivariate analysis, age > 50 years, pulmonary infections and CSF glucose level < the normal value were associated with poor outcomes. CSF adenosine deaminase level > the normal value and the presence of external ventricular drainage/lumbar cistern drainage were associated with MDR bacterial infections. CONCLUSIONS The mortality rate due to CNS infections reached 30.6% in our study. The proportion of Gram-negative bacteria has increased markedly in recent years. We should give particular attention to patients with risk factors for mortality and MDR bacterial infections mentioned above.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, No 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, People's Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, No 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, People's Republic of China
| | - Surong Duan
- Department of Information Management, Second Hospital of Shanxi Medical University, No 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, People's Republic of China
| | - Qi Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Fuqiang Feng
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, No 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, People's Republic of China.
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, No 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
11
|
Mukherjee S, Mitra S, Dutta S, Basu S. Neonatal Sepsis: The Impact of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae. Front Med (Lausanne) 2021; 8:634349. [PMID: 34179032 PMCID: PMC8225938 DOI: 10.3389/fmed.2021.634349] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The convergence of a vulnerable population and a notorious pathogen is devastating, as seen in the case of sepsis occurring during the first 28 days of life (neonatal period). Sepsis leads to mortality, particularly in low-income countries (LICs) and lower-middle-income countries (LMICs). Klebsiella pneumoniae, an opportunistic pathogen is a leading cause of neonatal sepsis. The success of K. pneumoniae as a pathogen can be attributed to its multidrug-resistance and hypervirulent-pathotype. Though the WHO still recommends ampicillin and gentamicin for the treatment of neonatal sepsis, K. pneumoniae is rapidly becoming untreatable in this susceptible population. With escalating rates of cephalosporin use in health-care settings, the increasing dependency on carbapenems, a "last resort antibiotic," has led to the emergence of carbapenem-resistant K. pneumoniae (CRKP). CRKP is reported from around the world causing outbreaks of neonatal infections. Carbapenem resistance in CRKP is largely mediated by highly transmissible plasmid-encoded carbapenemase enzymes, including KPC, NDM, and OXA-48-like enzymes. Further, the emergence of a more invasive and highly pathogenic hypervirulent K. pneumoniae (hvKP) pathotype in the clinical context poses an additional challenge to the clinicians. The deadly package of resistance and virulence has already limited therapeutic options in neonates with a compromised defense system. Although there are reports of CRKP infections, a review on neonatal sepsis due to CRKP/ hvKP is scarce. Here, we discuss the current understanding of neonatal sepsis with a focus on the global impact of the CRKP, provide a perspective regarding the possible acquisition and transmission of the CRKP and/or hvKP in neonates, and present strategies to effectively identify and combat these organisms.
Collapse
Affiliation(s)
- Subhankar Mukherjee
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shravani Mitra
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
12
|
Wang X, Li Q, Kang J, Zhang Z, Song Y, Yin D, Guo Q, Song J, Li X, Wang S, Duan J. Co-Production of NDM-1, CTX-M-9 Family and mcr-1 in a Klebsiella pneumoniae ST4564 Strain in China. Infect Drug Resist 2021; 14:449-457. [PMID: 33574684 PMCID: PMC7872938 DOI: 10.2147/idr.s292820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose To identify novel sequence types 4564 (ST4564) carbapenem-resistant Klebsiella pneumoniae (CRKP). Characterizing the feature of the clinic, resistance, and virulence of a co-producing NDM-1 and CTX-M-9 family and mcr-1 ST4564 strain. Methods A novel ST4564 CRKP was collected from June 2018 to July 2018. We investigated its antimicrobial susceptibility by the microdilution method. Using the modified carbapenem inactivation method (mCIM) to screen phenotype of carbapenemases. Resistance mechanisms, virulence-associated genes, multilocus sequence typing (MLST), and capsular serotypes were characterized by polymerase chain reaction (PCR) and DNA sequencing. Next-generation sequencing (NGS) was carried out to determine the genetic features of carbapenem resistance and virulence. Results ST4564, co-carrying NDM-1, CTX-M-9 and mcr-1, was resistant to carbapenems, cephamycin, third- or fourth-generation cephalosporins, β-lactam combination agents, quinolones and tigecycline but remained susceptible to amikacin (AMK) and colistin (COL). Through the NGS analysis with the G+C content of 56.65%, multiple resistance and virulence genomes were detected. The genes encoding the β-lactams, aminoglycosides, quinolones, macrolides, sulfonamide, polysaccharide capsule, type-I fimbriae cluster, siderophore genes, transporter and pumps, T6SS and pullulanase secretion protein. goeBURST analysis showed that ST4564 belonged to the CC1571 and it was not related to the prevalent high-risk clones. Conclusion We first identified the novel ST4564 CRKP. Our finding suggested that the urgent need for infection control of the new clone to prevent it from becoming a high-risk clone of CRKP.
Collapse
Affiliation(s)
- Xinchun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qi Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zheng Zhang
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qian Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Junli Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoxia Li
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
13
|
A multidrug-resistant Klebsiella pneumoniae outbreak in a Peruvian hospital: Another threat from the COVID-19 pandemic. Infect Control Hosp Epidemiol 2021; 43:267-268. [PMID: 33397537 PMCID: PMC7844176 DOI: 10.1017/ice.2020.1401] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|