1
|
García V, Lestón L, Parga A, García-Meniño I, Fernández J, Otero A, Olsen JE, Herrero-Fresno A, Mora A. Genomics, biofilm formation and infection of bladder epithelial cells in potentially uropathogenic Escherichia coli (UPEC) from animal sources and human urinary tract infections (UTIs) further support food-borne transmission. One Health 2023; 16:100558. [PMID: 37363240 PMCID: PMC10288081 DOI: 10.1016/j.onehlt.2023.100558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 06/28/2023] Open
Abstract
Escherichia coli is the main cause of urinary tract infections (UTI). While genomic comparison of specific clones recovered from animals, and human extraintestinal infections show high identity, studies demonstrating the uropathogenicity are lacking. In this study, comparative genomics combined with bladder-cell and biofilm formation assays, were performed for 31 E. coli of different origins: 7 from meat (poultry, beef, and pork); 2 from avian-farm environment; 12 from human uncomplicated UTI, uUTI; and 10 from human complicated UTI, cUTI. These isolates were selected based on their genetic uropathogenic (UPEC) status and phylogenetic background. In silico analysis revealed similar virulence-gene profiles, with flagella, type 1 and curli fimbriae, outer-membrane proteins (agn43, ompT, iha), and iron-uptake (iutA, entA, and fyuA) associated-traits as the most prevalent (>65%). In bladder-cell assays, moderate to strong values of association (83%, 60%, 77.8%) and invasion (0%, 70%, 55.5%) were exhibited by uUTI, cUTI, and animal-derived isolates, respectively. Of interest, uUTI isolates exhibited a significantly lower invasive capacity than cUTI isolates (p < 0.05). All isolates but one produced measurable biofilm. Notably, 1 turkey meat isolate O11:H6-F-ST457, and 2 cUTI isolates of the pandemic lineages O83:H42-F-ST1485-CC648 and O25b:H4-B2-ST131, showed strong association, invasion and biofilm formation. These isolates showed common carriage of type 1 fimbriae and csg operons, toxins (hlyF, tsh), iron uptake systems (iutA, entA, iroN), colicins, protectins (cvaC, iss, kpsM, traT), ompT, and malX. In summary, the similar in vitro behaviour found here for certain E. coli clones of animal origin would further reinforce the role of food-producing animals as a potential source of UPEC. Bladder-cell infection assays, combined with genomics, might be an alternative to in vivo virulence models to assess uropathogenicity.
Collapse
Affiliation(s)
- Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela (USC), Lugo 27002, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago 15706, Spain
| | - Luz Lestón
- Laboratorio de Referencia de Escherichia coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela (USC), Lugo 27002, Spain
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela (USC), Lugo 27002, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago 15706, Spain
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Javier Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo 33011, Spain
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Oviedo 33011, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela (USC), Lugo 27002, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago 15706, Spain
| |
Collapse
|
2
|
Xie Z, Huang J, Zhang S, Xu B, Zhang Q, Li B. Genomic and functional characterization of carbapenem-resistant Klebsiella pneumoniae from hospital wastewater. BMC Microbiol 2023; 23:115. [PMID: 37095431 PMCID: PMC10124015 DOI: 10.1186/s12866-023-02862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) attracted extensive attention. Information on CRKP from hospital wastewater (HWW) is limited. The aims of this study were to investigate the genomic characteristics and to evaluate the survivability characteristics of 11 CRKP from HWW in a Chinese teaching hospital in Fujian province. RESULTS A total of 11 CRKP from HWW were recovered in this study. All CRKP from HWW were resistant to most antibiotics. Comparative genetic analysis demonstrated that all CRKP isolates were clustered into the three distinct phylogenetic clades and clade 2 and clade 3 were mixtures of samples collected from both HWW and clinical settings. Varieties of resistance genes, virulence genes and plasmid replicon types were detected in CRKP from HWW. In vitro transfer of blaKPC-2 was successful for 3 blaKPC-2-positive CRKP from HWW with high conjugation frequency. Our study demonstrated that the genetic environments of blaKPC-2 shared core structure with ISKpn27-blaKPC-2-ISKpn6. Group analysis showed that CRKP from HWW had a lower survivability in serum compared to clinical CRKP (p < 005); and CRKP from HWW had no significant difference in survivability in HWW compared to clinical CRKP (p > 005). CONCLUSIONS We analyzed the genomic and survivability characteristics of CRKP from HWW in a Chinese teaching hospital. These genomes represent a significant addition of genomic data from the genus and could serve as a valuable resource for future genomic studies about CRKP from HWW.
Collapse
Affiliation(s)
- Zhiqiang Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - BinBin Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Rd, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
3
|
Nunes PHS, Valiatti TB, Santos ACDM, Nascimento JADS, Santos-Neto JF, Rocchetti TT, Yu MCZ, Hofling-Lima AL, Gomes TAT. Evaluation of the Pathogenic Potential of Escherichia coli Strains Isolated from Eye Infections. Microorganisms 2022; 10:microorganisms10061084. [PMID: 35744602 PMCID: PMC9229993 DOI: 10.3390/microorganisms10061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022] Open
Abstract
While primarily Gram-positive bacteria cause bacterial eye infections, several Gram-negative species also pose eye health risks. Currently, few studies have tried to understand the pathogenic mechanisms involved in E. coli eye infections. Therefore, this study aimed to establish the pathogenic potential of E. coli strains isolated from eye infections. Twenty-two strains isolated between 2005 and 2019 from patients with keratitis or conjunctivitis were included and submitted to traditional polymerase chain reactions (PCR) to define their virulence profile, phylogeny, clonal relationship, and sequence type (ST). Phenotypic assays were employed to determine hemolytic activity, antimicrobial susceptibility, and adhesion to human primary corneal epithelial cells (PCS-700-010). The phylogenetic results indicated that groups B2 and ST131 were the most frequent. Twenty-five virulence genes were found among our strains, with ecp, sitA, fimA, and fyuA being the most prevalent. Two strains presented a hemolytic phenotype, and resistance to ciprofloxacin and ertapenem was found in six strains and one strain, respectively. Regarding adherence, all but one strains adhered in vitro to corneal cells. Our results indicate significant genetic and virulence variation among ocular strains and point to an ocular pathogenic potential related to multiple virulence mechanisms.
Collapse
Affiliation(s)
- Pedro Henrique Soares Nunes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (P.H.S.N.); (T.B.V.); (A.C.d.M.S.); (J.A.d.S.N.); (J.F.S.-N.)
- Laboratório de Oftalmologia (LOFT), Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (T.T.R.); (M.C.Z.Y.); (A.L.H.-L.)
| | - Tiago Barcelos Valiatti
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (P.H.S.N.); (T.B.V.); (A.C.d.M.S.); (J.A.d.S.N.); (J.F.S.-N.)
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04039-032, Brazil
| | - Ana Carolina de Mello Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (P.H.S.N.); (T.B.V.); (A.C.d.M.S.); (J.A.d.S.N.); (J.F.S.-N.)
| | - Júllia Assis da Silva Nascimento
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (P.H.S.N.); (T.B.V.); (A.C.d.M.S.); (J.A.d.S.N.); (J.F.S.-N.)
| | - José Francisco Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (P.H.S.N.); (T.B.V.); (A.C.d.M.S.); (J.A.d.S.N.); (J.F.S.-N.)
| | - Talita Trevizani Rocchetti
- Laboratório de Oftalmologia (LOFT), Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (T.T.R.); (M.C.Z.Y.); (A.L.H.-L.)
| | - Maria Cecilia Zorat Yu
- Laboratório de Oftalmologia (LOFT), Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (T.T.R.); (M.C.Z.Y.); (A.L.H.-L.)
| | - Ana Luisa Hofling-Lima
- Laboratório de Oftalmologia (LOFT), Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (T.T.R.); (M.C.Z.Y.); (A.L.H.-L.)
| | - Tânia Aparecida Tardelli Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (P.H.S.N.); (T.B.V.); (A.C.d.M.S.); (J.A.d.S.N.); (J.F.S.-N.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
4
|
Xiao S, Tang C, Zeng Q, Xue Y, Chen Q, Chen E, Han L. Antimicrobial Resistance and Molecular Epidemiology of Escherichia coli From Bloodstream Infection in Shanghai, China, 2016-2019. Front Med (Lausanne) 2022; 8:803837. [PMID: 35083253 PMCID: PMC8784657 DOI: 10.3389/fmed.2021.803837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Bloodstream infections are recognized as important nosocomial infections. Escherichia coli (E. coli) is the most prevalent Gram-negative bacillary pathogen causing bloodstream infections (BSIs). This retrospective study investigated drug susceptibility and molecular epidemiology of E. coli isolated from patients with BSI in Shanghai, China. Methods: We collected E. coli isolated from the blood cultures of patients with BSI between January 2016 and December 2019. We randomly selected 20 strains each year to investigate antimicrobial resistance, resistance genes, and molecular epidemiological characteristics. Antimicrobial susceptibility testing was performed by the disk diffusion method. PCR was performed to detect extended-spectrum β-lactamases (ESBLs), carbapenemase genes, and housekeeping genes, and phyloviz was applied to analyze multilocus sequence typing (MLST). Results: Penicillins, first- and second-generation cephalosporins and fluoroquinolones have high resistance rates (>60%). Among the 80 randomly selected strains, 47 (58.8%) produced ESBLs, and one produced carbapenemase. Sequencing of resistance genes identified blaCTX−M−14 (34%, 16/47), blaCTX−M−15 (23.4%, 11/47) and blaCTX−M−27 (14.8%, 7/47) as the most prevalent genotypes of ESBLs. ST131 (14/80) was the most prevalent sequence type (ST), followed by ST1193 (10/80), ST648 (7/80). Conclusions: Our findings suggest that amikacin, carbapenems, and piperacillin-tazobactam have relatively low resistance rates and may be the preferred antibiotic regimens for empiric therapy. ST131 and blaCTX−M−14 are still the main prevalent in Shanghai with a rapid increase in the occurrence of ST1193 is rapidly increasing and more diverse blaCTX genes.
Collapse
Affiliation(s)
- Shuzhen Xiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyue Tang
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zeng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilun Xue
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Quan J, Dai H, Liao W, Zhao D, Shi Q, Zhang L, Shi K, Akova M, Yu Y. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: A prospective multicenter study. J Infect 2021; 83:175-181. [PMID: 34116075 DOI: 10.1016/j.jinf.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Community onset urinary tract infections (COUTIs) drew attention recently owing to their increased prevalence and associations with resistant pathogens. The study is aimed at investigating the etiology of COUTIs as well as prevalence and the related risk factors of extended-spectrum β-lactamase (ESBL) in COUTIs in China. METHODS The prospective study was performed in nineteen hospitals during November 1, 2017 and August 31, 2019. Non-duplicated isolates from COUTIs were included. The ESBL phenotypic confirmation test was performed and whole genomes were sequenced for all the ESBL-positive bacteria for further analysis. The risk factors for ESBL-producing bacterial infections were analyzed using binary logistic regression. RESULTS A total of 1760 COUTI cases were included in this study. Escherichia coli (1332, 75.7%), Klebsiella pneumoniae (110, 6.3%) and Enterococcus faecalis (52, 3.0%) were the top three common pathogens of COUTIs in China. The overall positive rate of ESBLs in Enterobacterales was 37.2% (562/1512). The age (OR=1.007, P = 0.041), solid malignant tumor (OR=1.668, P = 0.016), prostate diseases (OR=2.035, P = 0.010), history of lithotripsy for urinary calculi (OR=2.009, P = 0.030), history of urological surgery (OR=1.869, P = 0.009) and cephalosporin use within 3 months (OR=1.503, P = 0.025) were independent risk factors for ESBL-producing organisms causing COUTIs. The predominant ESBL types were CTX-Ms, among which CTX-M-14, CTX-M-55 and CTX-M-27 were the most common subtypes. ST131 and ST1193 were the predominant sequence types of ESBL-producing E. coli (ESBL-EC). Most of the tested antimicrobial agents showed significantly higher non-susceptible rates in the ESBL positive group as compared with ESBL-negative group (P < 0.05). CONCLUSIONS Enterobacterales, especially E. coli, is the most common pathogen in COUTIs in China and ESBL-producers are highly prevalent. Thus, early prediction depending on risk factors seems to be crucial to determine the appropriate empirical therapy for infections caused by ESBL-producing pathogens.
Collapse
Affiliation(s)
- Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglei Dai
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weichao Liao
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Murat Akova
- Department of Infectious Disease, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Snyman Y, Whitelaw AC, Reuter S, Maloba MRB, Newton-Foot M. Colistin Resistance Mechanisms in Clinical Escherichia coli and Klebsiella spp. Isolates from the Western Cape of South Africa. Microb Drug Resist 2021; 27:1249-1258. [PMID: 33571049 DOI: 10.1089/mdr.2020.0479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: Colistin is a last-resort antibiotic for the treatment of carbapenem-resistant Gram-negative infections. Colistin resistance thus poses a threat to human health. Colistin resistance is most commonly encoded by mutations in chromosomal pmrA, pmrB, phoP, phoQ, ccrB, and mgrB genes, and the presence of plasmid-mediated mcr genes. This study describes colistin resistance mechanisms in clinical Enterobacterales isolates from the Western Cape, South Africa. Results: Escherichia coli (n = 22) and Klebsiella spp. (n = 7) isolates, from nine health care facilities, were confirmed to be colistin resistant during 2016 and 2017. mcr-1 was present in 55% (12/22) of E. coli and 71% (5/7) of Klebsiella spp. isolates. Colistin resistance mutations in pmrB were identified in 8/10 mcr-negative E. coli isolates using whole-genome sequencing, with pmrB Pro-94→Gln being the most frequent with presence in 4 isolates. One mcr-negative Klebsiella spp. isolate had a complete deletion of the mgrB and one contained an insertion sequence (IS1) in mgrB. Conclusion: A reduction in the proportion of colistin-resistant isolates harboring mcr-1 from 2016 to 2017 was observed. Colistin-resistant E. coli attributed by chromosomal mutations in pmrB in 2017 were mostly clonal related, which contrasts with the 2016 unrelated mcr-1-positive isolates. The diverse strains, hospitals, and resistance mechanisms may suggest that selective pressure is the main driver of colistin resistance.
Collapse
Affiliation(s)
- Yolandi Snyman
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| | - Andrew Christopher Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Motlatji Reratilwe Bonnie Maloba
- Department of Medical Microbiology, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|