1
|
Zhang Z, Liu T, Ming M, Shen M, Zhang Y, Chen H, Chen W, Tao J, Wang Y, Liu J, Zhou J, Lu G, Yan G. Metagenomic next-generation sequencing promotes diagnosis and treatment of Pneumocystis jirovecii pneumonia in non-HIV infected children: a retrospective study. BMC Pulm Med 2024; 24:338. [PMID: 38997717 PMCID: PMC11241876 DOI: 10.1186/s12890-024-03135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Metagenomic next-generation sequencing (mNGS) excels in diagnosis of infection pathogens. We aimed to evaluate the performance of mNGS for the diagnosis of Pneumocystis jirovecii pneumonia (PJP) in non-HIV infected children. METHODS Totally 36 PJP children and 61 non-PJP children admitted to the pediatric intensive care unit from March 2018 to December 2021 were retrospectively enrolled. Clinical features of PJP children were summarized. 1,3-β-D glucan (BDG) test and bronchoalveolar lavage fluid (BALF) mNGS were used for evaluation of PJP diagnostic performance. Antimicrobial management modifications for PJP children after the mNGS results were also reviewed. RESULTS Pneumocystis jirovecii was detected in all PJP children by mNGS (36/36), and the sensitivity of mNGS was 100% (95% confidence interval [CI]: 90.26-100%). The sensitivity of BDG was 57.58% (95% CI: 39.22-74.52%). Of the 26 (72.2%) PJP patients with mixed infection, twenty-four (66.7%) were detected by BALF-mNGS. Thirteen patients (36.1%) had their antimicrobial management adjusted according to the mNGS results. Thirty-six PJP children included 17 (47.2%) primary immunodeficiency and 19 (52.8%) secondary immunodeficiency, of whom 19 (52.8%) survived and 17 (47.2%) died. Compared to survival subgroup, non-survival subgroup had a higher rate of primary immunodeficiency (64.7% vs. 31.6%, P = 0.047), younger age (7 months vs. 39 months, P = 0.011), lower body weight (8.0 kg vs. 12.0 kg, P = 0.022), and lower T lymphocyte counts. CONCLUSIONS The mortality rate of PJP in immunosuppressed children without HIV infection is high and early diagnosis is challenging. BALF-mNGS could help identify PJP and guide clinical management.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Tingyan Liu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Meixiu Ming
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Yi Zhang
- Department of Clinical Epidemiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hanlin Chen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, China
| | - Weiming Chen
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Jinhao Tao
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Yixue Wang
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Jing Liu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Jihua Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China.
| | - Gangfeng Yan
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, No.399 Wanyuan Rd., Minhang Dist., Shanghai, 201102, China.
| |
Collapse
|
2
|
Liu W, Chu J, Xie Z, Yang L, Huang L, Tu S, Cai H, Wu Z, Wei A, Liu C, Cheng Y, Zhang K, Wang N. Mycobacterium abscessus pulmonary disease presenting with spontaneous pneumomediastinum and subcutaneous emphysema in childhood acute lymphoblastic leukemia: a case report and literature review. BMC Pediatr 2023; 23:431. [PMID: 37641081 PMCID: PMC10463631 DOI: 10.1186/s12887-023-04199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Mycobacterium abscessus is a rapidly growing mycobacterium commonly identified in adults with underlying pulmonary diseases but is rarely observed in children. A better understanding of this pathogen in children is essential. CASE PRESENTATION We report the case of a 49-month-old female child without previous underlying pulmonary diseases but with acute lymphoblastic leukemia (ALL). The patient was complicated with pneumonia during chemotherapy, which was primarily characterized by spontaneous pneumomediastinum and subcutaneous emphysema on chest computed tomography (CT). M. abscessus sequences were detected by metagenomic next-generation sequencing in bronchoalveolar lavage fluid. With mechanical ventilation, closed thoracic drainage, and anti-infective therapy for 6 months, the patient's infection was controlled. The patient completed 2.5 years of treatment for ALL, and the drugs were discontinued. The patient currently remains in complete hematologic remission. DISCUSSION We reviewed the literature on 33 children with M. abscessus pulmonary disease. These children mostly had underlying immunodeficiency. Chest CT most often showed nodular shadows, consolidation, and bronchiectasis. Spontaneous pneumomediastinum and subcutaneous emphysema were not reported as major manifestations. CONCLUSION Spontaneous pneumomediastinum and subcutaneous emphysema were our patient's main characteristics on chest CT, and this study enriches the knowledge regarding possible imaging changes in M. abscessus pulmonary disease in children. This case report reflects good clinical experience in maintaining the balance between chemotherapy and anti-infective therapy in childhood ALL.
Collapse
Affiliation(s)
- Wenyuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Jinhua Chu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Zhiwei Xie
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Linhai Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Lingling Huang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Songji Tu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Huaju Cai
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Zhengyu Wu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Anbang Wei
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Chengzhu Liu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China
| | - Yan Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China.
| | - Kunlong Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China.
| | - Ningling Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Anhui Province, No. 678 Furong Road, Hefei City, 230601, China.
| |
Collapse
|
3
|
Li M, Yan K, Jia P, Wei E, Wang H. Metagenomic next-generation sequencing may assist diagnosis of cat-scratch disease. Front Cell Infect Microbiol 2022; 12:946849. [PMID: 36189365 PMCID: PMC9524480 DOI: 10.3389/fcimb.2022.946849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Bartonella henselae, the pathogen that causes cat-scratch disease (CSD), is relatively rare in the clinic. CSD usually causes mild clinical manifestations, which self-heal in a matter of weeks. However, in immunocompromised patients, CSD may cause systemic disorders that can lead to critical illness. Due to the diversity of symptom signs and the lack of a golden standard for diagnosis, identifying atypical CSD in a timely manner presents a challenge. Metagenomic next-generation sequencing (mNGS), is a promising technology that has been widely used in the detection of pathogens in clinical infectious diseases in recent years. mNGS can detect multiple pathogens quickly and accurately from any given source. Here, we present a case of atypical CSD, which was diagnosed using mNGS. The patient manifested a fever of unknown infectious origin, and routine antibiotic treatment was ineffective. mNGS was employed to test the patient’s peripheral blood, which led to the detection of B. henselae. This was rarely seen in previous CSD reports. We surmised that the patient presented with atypical CSD and thus a targeted therapy was recommended. Crucially, the patient recovered rapidly. Based on this case study findings, we recommend that CSD should be included in the differential diagnosis for fever of unknown origin and that mNGS may be helpful in the diagnosis of CSD.
Collapse
|
4
|
Wei W, Cao J, Wu XC, Cheng LP, Shen XN, Sha W, Sun Q. Diagnostic performance of metagenomic next-generation sequencing in non-tuberculous mycobacterial pulmonary disease when applied to clinical practice. Infection 2022; 51:397-405. [PMID: 35913608 PMCID: PMC10042946 DOI: 10.1007/s15010-022-01890-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To compare non-tuberculous mycobacterial pulmonary disease (NTMPD) diagnosis by metagenomic next-generation sequencing (mNGS) with Bactec mycobacterial growth indicator tube (MGIT) 960. METHODS A total of 422 patients with suspected NTMPD in Shanghai Pulmonary Hospital between January 2020 and May 2021 were retrospectively analyzed; 194 were diagnosed with NTMPD. The diagnostic performance of mNGS and MGIT 960 for NTMPD was assessed. Receiver operating characteristic (ROC) curves and areas under curve (AUCs) were compared. RESULTS The sensitivity of mNGS in NTMPD diagnosis was 81.4% and higher than that of MGIT 960 (53.6%). The specificity of mNGS in NTMPD diagnosis was 97.8%, similar to that of MGIT 960 (100%). The sensitivity of combined mNGS and MGIT 960 in NTMPD diagnosis was 91.8%. The sensitivity of mNGS for bronchoalveolar lavage fluid (BALF), pulmonary puncture tissue fluid, and sputum was 84.8%, 80.6%, and 77.5%, respectively; all were higher than that of MGIT 960 (P < 0.05). The AUC of mNGS and MGIT 960 was 0.897 and 0.768, respectively. The AUC of mNGS were BALF (0.916), pulmonary puncture tissue fluid (0.903), and sputum (0.870). CONCLUSION The sensitivity of mNGS was superior to that of Bactec MGIT 960; the specificity in NTMPD diagnosis was similar. mNGS shows effective performance in NTMPD diagnosis.
Collapse
Affiliation(s)
- Wei Wei
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Cao
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiao-Cui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Cheng
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiao-Na Shen
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Wei Sha
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Qin Sun
- Shanghai Clinical Research Center for Infectious Disease (Tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Lyu J, Deng Q, Li R, Tian B, Zhao Y, Hu X, Zhou M, Gu B. Pneumonia Caused by Coinfection with Cytomegalovirus and Pneumocystis jirovecii in an HIV-Negative Infant Diagnosed by Metagenomic Next-Generation Sequencing. Infect Drug Resist 2022; 15:3417-3425. [PMID: 35800120 PMCID: PMC9253620 DOI: 10.2147/idr.s364241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pneumonia produced by coinfection with Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) in infants and young children without timely diagnosis and treatment is often fatal due to the limitations of traditional tests. More accurate and rapid diagnostic methods for multiple infections are urgently needed. Case Presentation Here, we report a case of a 2-month-old boy with pneumonia caused by Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) without HIV infection. Chest computed tomography (CT) showed massive exudative consolidation in both lungs. Microscopic examination of stained sputum and smear specimens and bacterial and fungal culture tests were all negative, and CMV nucleic acid and antibody tests were positive. After a period of antiviral and anti-infective therapy, pulmonary inflammation was not relieved. Subsequently, sputum and venous blood samples were analysed by metagenomic next-generation sequencing (mNGS), and the sequences of PJ and CMV were acquired. The patient was finally diagnosed with pneumonia caused by PJ and CMV coinfection. Anti-fungal combined with anti-viral therapy was given immediately. mNGS re-examination of bronchoalveolar lavage fluid (BALF) also revealed the same primary pathogen. Therapy was stopped due to the request of the patient’s guardian. Hence, the child was discharged from the hospital and eventually died. Conclusion This case emphasizes the combined use of mNGS and traditional tests in the clinical diagnosis of mixed lung infections in infants without HIV infection. mNGS is a new adjunctive diagnostic method that can rapidly discriminate multiple causes of pneumonia.
Collapse
Affiliation(s)
- Jingwen Lyu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Benshun Tian
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Xuejiao Hu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Maohua Zhou
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
6
|
Li Y, Jiao M, Liu Y, Ren Z, Li A. Application of Metagenomic Next-Generation Sequencing in Mycobacterium tuberculosis Infection. Front Med (Lausanne) 2022; 9:802719. [PMID: 35433724 PMCID: PMC9010669 DOI: 10.3389/fmed.2022.802719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against Mycobacterium tuberculosis (MTB) has been going on for thousands of years, while it still poses a threat to human health. In addition to routine detections, metagenomic next-generation sequencing (mNGS) has begun to show presence as a comprehensive and hypothesis-free test. It can not only detect MTB without isolating specific pathogens but also suggest the co-infection pathogens or underlying tumor simultaneously, which is of benefit to assist in comprehensive clinical diagnosis. It also shows the potential to detect multiple drug resistance sites for precise treatment. However, considering the cost performance compared with conventional assays (especially Xpert MTB/RIF), mNGS seems to be overqualified for patients with mild and typical symptoms. Technology optimization of sequencing and analyzing should be conducted to improve the positive rate and broaden the applicable fields.
Collapse
Affiliation(s)
- Yaoguang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengfan Jiao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhigang Ren,
| | - Ang Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Ang Li,
| |
Collapse
|