1
|
Tian M, Yan B, Jiang R, Liu C, Li Y, Xu B, Guo S, Li X. Activity of polymyxin B combined with cefepime-avibactam against the biofilms of polymyxin B-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae in in vitro and in vivo models. BMC Microbiol 2024; 24:409. [PMID: 39407114 PMCID: PMC11481319 DOI: 10.1186/s12866-024-03571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial biofilms, often forming on medical devices, can lead to treatment failure due to their increased antimicrobial resistance. Cefepime-avibactam (CFP-AVI) exhibits potent activities against Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) when used with polymyxin B (PMB). However, its efficacy in biofilm-related infections is unknown. The present study aimed to evaluate the activity of PMB combined with CFP-AVI against the biofilms of PMB-resistant Gram-negative bacteria. Five K. pneumoniae strains and three P. aeruginosa strains known to be PMB-resistant and prone to biofilm formation were selected and evaluated. Antimicrobial susceptibility assays demonstrated that the minimal biofilm inhibitory and eradication concentrations of PMB and CFP-AVI for biofilms formed by the eight strains were significantly higher than the minimal inhibitory concentrations of the antibiotics for planktonic cells. The biofilm formation inhibition and eradication assays showed that PMB combined with CFP-AVI cannot only suppress the formation of biofilm but also effectively eradicate the preformed mature biofilms. In a modified in vitro pharmacokinetic/pharmacodynamic biofilm model, CFP-AVI monotherapy exhibited a bacteriostatic or effective activity against the biofilms of seven strains, whereas PMB monotherapy did not have any activity at 72 h. However, PMB combined with CFP-AVI demonstrated bactericidal activity against the biofilms of all strains at 72 h. In an in vivo Galleria mellonella infection model, the 7-day survival rates of larvae infected with biofilm implants of K. pneumoniae or P. aeruginosa were 0-6.7%, 40.0-63.3%, and 46.7-90.0%, respectively, for PMB alone, CFP-AVI alone, and PMB combined with CFP-AVI; the combination therapy increased the rate by 6.7-33.3% (P < 0.05, n = 6), compared to CFP-AVI monotherapy. It is concluded that PMB combined with CFP-AVI exhibits effective anti-biofilm activities against PMB-resistant K. pneumoniae and P. aeruginosa both in vitro and in vivo, and thus may be a promising therapeutic strategy to treat biofilm-related infections.
Collapse
Affiliation(s)
- Miaomei Tian
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Bingqian Yan
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Rong Jiang
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Candi Liu
- Hunan Drug Inspection Center, Changsha, Hunan Province, People's Republic of China
| | - You Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Siwei Guo
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Liu H, Chen H, Ma Z, Zhang Y, Zhang S, Zhao D, Yao Z, Zhou T, Wang Z. Plumbagin enhances antimicrobial and anti-biofilm capacities of chlorhexidine against clinical Klebsiella pneumoniae while reducing resistance mutations. Microbiol Spectr 2024; 12:e0089624. [PMID: 39162533 PMCID: PMC11448042 DOI: 10.1128/spectrum.00896-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
With the widespread misuse of disinfectants, the clinical susceptibility of Klebsiella pneumoniae (K. pneumoniae) to chlorhexidine (CHX) has gradually diminished, posing significant challenges to clinical disinfection and infection control. K. pneumoniae employs overexpression of efflux pumps and the formation of thick biofilms to evade the lethal effects of CHX. Plumbagin (PLU) is a natural plant extract that enhances membrane permeability and reduces proton motive force. In this study, we elucidated the synergistic antimicrobial activity of PLU in combination with CHX, effectively reducing the MIC of CHX against K. pneumoniae to 1 µg/mL and below. Crucially, through crystal violet staining and confocal laser scanning microscopy live/dead staining, we discovered that PLU significantly enhances the anti-biofilm capability of CHX. Mechanistically, experiments involving membrane permeability, alkaline phosphatase leakage, reactive oxygen species, and RT-qPCR suggest that the combination of PLU and CHX improves the permeability of bacterial inner and outer membranes, promotes bacterial oxidative stress, and inhibits oqxA/B efflux pump expression. Furthermore, we conducted surface disinfection experiments on medical instruments to simulate clinical environments, demonstrating that the combination effectively reduces bacterial loads by more than 3 log10 CFU/mL. Additionally, results from resistance mutation frequency experiments indicate that combined treatment reduces the generation of resistant mutants within the bacterial population. In summary, PLU can serve as an adjuvant, enhancing the anti-biofilm capability of CHX and reducing the occurrence of resistance mutations, thereby extending the lifespan of CHX.IMPORTANCEAs disinfectants are extensively and excessively utilized worldwide, clinical pathogens are progressively acquiring resistance against these substances. However, high concentrations of disinfectants can lead to cross-resistance to antibiotics, and concurrent use of different disinfectants can promote bacterial resistance mutations and facilitate the horizontal transfer of resistance genes, which poses significant challenges for clinical treatment. Compared with the lengthy process of developing new disinfectants, enhancing the effectiveness of existing disinfectants with natural plant extracts is important and meaningful. CHX is particularly common and widely used compared with other disinfectants. Meanwhile, Klebsiella pneumoniae, as a clinically significant pathogen, exhibits high rates of resistance and pathogenicity. Previous studies and our data indicate a significant decrease in the sensitivity of clinical K. pneumoniae to CHX, highlighting the urgent need for novel strategies to address this issue. In light of this, our research is meaningful.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shihang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Liu H, Zhang Y, Zhong Z, Gong Y, Yu P, Yang Y, Zhang Y, Zhou T, Chen L. Immunomodulator AS101 restores colistin susceptibility of clinical colistin-resistant Escherichia coli and Klebsiella pneumoniae in vitro and in vivo. Int J Antimicrob Agents 2024; 64:107285. [PMID: 39111708 DOI: 10.1016/j.ijantimicag.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES Colistin (COL) was once considered to be the last line of defence against multidrug-resistant bacteria belonging to the family Enterobacteriaceae. Due to the misuse of COL, COL-resistant (COL-R) Enterobacteriaceae have emerged. To address this clinical issue and combat COL resistance, novel approaches are urgently needed. METHODS In this study, the in vitro and in vivo antimicrobial and antibiofilm effects of the immunomodulator AS101 were investigated in combination with COL against COL-R Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). RESULTS Checkerboard assay, time-kill assay, and scanning electron microscopy confirmed the in vitro antimicrobial phenotype, whereas, crystal violet staining and multidimensional confocal laser scanning microscopy with live/dead staining confirmed the antibiofilm capability of the combination therapy. Moreover, the Galleria mellonella infection model and the mouse infection model indicated the high in vivo efficacy of the combination therapy. Additionally, cytotoxicity experiments performed using human kidney-derived HK-2 cells and haemolysis assays performed using human erythrocytes collectively demonstrated safety at effective combination concentrations. Furthermore, quantification of the expression of inflammatory cytokines via enzyme-linked immunosorbent assay confirmed the anti-inflammatory advantage of combination therapy. At the mechanistic level, changes in outer and inner membrane permeability and accumulation of ROS levels, which might be potential mechanisms for synergistic antimicrobial effects. CONCLUSIONS This study found that AS101 can restore COL susceptibility in clinical COL-R E. coli and K. pneumoniae and also has synergistic antibiofilm and anti-inflammatory capabilities. This study provided a novel strategy to combat clinical infections caused by COL-R E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyong Zhong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yuhan Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yichi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Tyagi JL, Gupta P, Ghate MM, Kumar D, Poluri KM. Assessing the synergistic potential of bacteriophage endolysins and antimicrobial peptides for eradicating bacterial biofilms. Arch Microbiol 2024; 206:272. [PMID: 38772980 DOI: 10.1007/s00203-024-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.
Collapse
Affiliation(s)
- Jaya Lakshmi Tyagi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248001, India
| | - Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dinesh Kumar
- Centre of Bio-Medical Research, SGPGIMS, Lucknow, Uttar Pradesh, 226014, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Chen H, Hu P, Liu H, Liu S, Liu Y, Chen L, Feng L, Chen L, Zhou T. Combining with domiphen bromide restores colistin efficacy against colistin-resistant Gram-negative bacteria in vitro and in vivo. Int J Antimicrob Agents 2024; 63:107066. [PMID: 38135012 DOI: 10.1016/j.ijantimicag.2023.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Today, colistin is considered a last-resort antibiotic for treating multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, the increased and improper use of colistin has led to the emergence of colistin-resistant (Col-R) GNB. Thus, it is urgent to develop new drugs and therapies in response to the ongoing emergence of colistin resistance. In this study, we investigated the antibacterial and antibiofilm activities of the quaternary ammonium compound domiphen bromide (DB) in combination with colistin against clinical Col-R GNB both in vitro and in vivo. Checkerboard assay and time-kill analysis demonstrated significant synergistic antibacterial effects of the colistin/DB combination. The synergistic antibiofilm activity was confirmed through crystal violet staining and scanning electron microscopy (SEM). Furthermore, the colistin/DB combination exhibited increased survival rates in infected larvae and reduced bacterial loads in a mouse thigh infection model. The cytotoxicity measurement and hemolysis test showed that the combination did not adversely affect cell viability at synergistic concentrations. The alkaline phosphatase (ALP) leak test and propidium iodide (PI) staining analysis further revealed that the colistin/DB combination enhanced the therapeutic effect of colistin by altering bacterial membrane permeability. The ROS assays revealed that the combination induced the accumulation of bacterial ROS, leading to bacterial death. In conclusion, our study is the first to identify DB as a colistin potentiator, effectively restoring the sensitivity of bacteria to colistin. It provides a promising alternative approach for combating Col-R GNB infections.
Collapse
Affiliation(s)
- Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sichen Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luozhu Feng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Guan X, Jin L, Zhou H, Chen J, Wan H, Bao Y, Yang J, Yu D, Wan H. Polydatin prevent lung epithelial cell from Carbapenem-resistant Klebsiella pneumoniae injury by inhibiting biofilm formation and oxidative stress. Sci Rep 2023; 13:17736. [PMID: 37853059 PMCID: PMC10584862 DOI: 10.1038/s41598-023-44836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes severe inflammation in various infectious diseases, such as bloodstream infections, respiratory and urinary tract infections, which leads to high mortality. Polydatin (PD), an active ingredient of Yinhuapinggan granule, has attracted worldwide attention for its powerful antioxidant, anti-inflammatory, antitumor, and antibacterial capacity. However, very little is known about the effect of PD on CRKP. In this research, we evaluated the inhibitory effects of PD on both the bacterial level and the bacterial-cell co-culture level on anti-biofilm and efflux pumps and the other was the inhibitory effect on apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) after CRKP induction. Additionally, we validated the mechanism of action by qRT-PCR and western blot in human lung epithelial cells. Firstly, PD was observed to have an inhibitory effect on the biofilm of CRKP and the efflux pump AcrAB-TolC. Mechanically, CRKP not only inhibited the activation of Nuclear Factor erythroid 2-Related Factor 2 (Nrf-2) but also increased the level of ROS in cells. These results showed that PD could inhibit ROS and activate Nrf-2 production. Together, our research demonstrated that PD inhibited bacterial biofilm formation and efflux pump AcrAB-TolC expression and inhibited CRKP-induced cell damage by regulating ROS and Nrf-2-regulated antioxidant pathways.
Collapse
Affiliation(s)
- Xiaodan Guan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Liang Jin
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jing Chen
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haofang Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yida Bao
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Daojun Yu
- Hangzhou First People's Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Shi S, Xu M, Zhao Y, Feng L, Liu Q, Yao Z, Sun Y, Zhou T, Ye J. Tigecycline-Rifampicin Restrains Resistance Development in Carbapenem-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:1858-1866. [PMID: 37669401 DOI: 10.1021/acsinfecdis.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The goal of this study was to clarify the synergistic antibacterial activity of the combination of tigecycline (TGC) and rifampicin (RIF). Additionally, the study sought to investigate the impact of this combination on the development of mutational resistance and to assess its efficacy in an in vivo model using Galleria mellonella. Through a checkerboard test, we found that the combination of TGC and RIF showed synergistic antibacterial activity against carbapenem-resistant Klebsiella pneumoniae (CRKP). The fractional inhibition concentration index (FICI) was found to be ≤0.5, confirming the potency of the combination. Additionally, this synergistic effect was further validated in vivo using the G. mellonella infection model. TGC-RIF treatment had a lower mutant prevention concentration (MPC) than that of monotherapy, indicating its potential to reduce the development of mutational resistance. We observed a substantial variation in the MPCs of TGC and RIF when they were measured at different proportions in the combinations. Furthermore, during the resistant mutant selection window (MSW) test, we noticed a correlation between strains with low FICI and low MSW. The expression of efflux-pump-related genes, namely rarA and acrB, is significantly decreased in the combination therapy group. This indicates that altered expression levels of certain efflux pump regulator genes are associated with a combined decrease in bacterial mutation resistance. In conclusion, the combination of TGC and RIF effectively suppresses antibiotic resistance selection in CRKP. This study establishes a paradigm for evaluating drug-resistant mutant suppression in antimicrobial combination therapy.
Collapse
Affiliation(s)
- Shiyi Shi
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| |
Collapse
|
9
|
Guo W, Liu Y, Yao Z, Zhou H, Wang X, Huang Z, Zhang X, Wu Q, Zhou T. Bithionol Restores Sensitivity of Multidrug-Resistant Gram-Negative Bacteria to Colistin with Antimicrobial and Anti-biofilm Effects. ACS Infect Dis 2023; 9:1634-1646. [PMID: 37458689 DOI: 10.1021/acsinfecdis.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Being among the few last-resort antibiotics, colistin (COL) has been used to treat severe infectious diseases, such as those caused by multidrug-resistant Gram-negative bacteria (MDR GNB). However, the appearance of colistin-resistant (COL-R) GNB has been frequently reported. Therefore, novel antimicrobial strategies need to be urgently sought to address this resistance challenge. In the present study, antimicrobial drug screening conducted revealed that bithionol (BT), approved by the Food and Drug Administration and used as an anthelminthic drug for paragonimiasis, exhibited a synergistic antibacterial effect with COL. Clinically isolated COL-R GNB were used as candidates to evaluate the synergistic antibacterial activity. The results revealed that BT could significantly reverse the sensitivity of COL-R GNB to COL. Furthermore, the combined application of BT and COL can reduce bacterial biofilm formation and have a scavenging effect on the mature biofilm in vitro. The damage caused to the bacterial cell membrane integrity by the BT/COL combination was observed under a fluorescence microscope. The fluorescence intensity of reactive oxygen species also increased in the experimental group. The BT/COL combination also exhibited a synergistic antibacterial effect in vivo. Importantly, BT was confirmed to be safe at the highest concentrations that exerted synergistic effects on all tested strains. In conclusion, our findings demonstrated that BT exerted synergistic antimicrobial and anti-biofilm effects when combined with COL against MDR organisms, especially COL-R GNB, in vitro and in vivo. The findings thus provide a reference for the clinical response to the serious challenge of MDR GNB and the exploitation of the potential antibacterial activities of existing clinical non-antibacterial drugs.
Collapse
Affiliation(s)
- Wenhui Guo
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huijing Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiuxiu Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Wu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
10
|
Zhou H, Xu M, Guo W, Yao Z, Du X, Chen L, Sun Y, Shi S, Cao J, Zhou T. The Antibacterial Activity of Kaempferol Combined with Colistin against Colistin-Resistant Gram-Negative Bacteria. Microbiol Spectr 2022; 10:e0226522. [PMID: 36314964 PMCID: PMC9769984 DOI: 10.1128/spectrum.02265-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Social hygiene is seriously threatened by the rise in colistin (COL) resistance against Gram-negative bacteria (GNB). With resistance to last-line antibiotics such as COL becoming more common, it is imperative to identify alternative treatment options. In our work, we sought to determine if COL plus kaempferol (KP) present synergistic effects on the antibacterial and antibiofilm activities against colistin-resistant (Col-R) GNB in vivo and in vitro. Twenty-four Col-R GNB were collected as the experimental strains. The synergistic activity of COL and KP was evaluated by checkerboard method, time-killing assays, and the Galleria mellonella experiment. The antibiofilm effectiveness of the COL/KP combination against Col-R GNB was assessed using biofilm inhibition and eradication assays and scanning electron microscopy (SEM). Cytotoxicity tests were performed to detect the toxicity of KP monotherapy or combination therapy. There is synergistic antibacterial activity of COL and KP combination in vitro. KP combined with COL could inhibit the formation of bacterial biofilms. The amalgamation of COL and KP considerably reduced the amount of bacteria in the biofilm, according to the SEM findings. The COL/KP combination improved the survivorship of infected larvae in the G. mellonella in vivo infection model. In addition, the combination of KP and COL showed no cytotoxicity at synergistic combined concentrations according to cytotoxicity assays. This represents the first account of the antibacterial and antibiofilm activities of KP in combination with COL against Col-R GNB. Therefore, our results may provide an effective alternative route to combat Col-R GNB infections. IMPORTANCE COL is one of the few antibiotics effective against clinical isolates of GNB. However, in recent years, GNB resistance to colistin has been increasing. As a result, the combined application of colistin in conjunction with nonantibacterial medications has garnered considerable interest. In this work, the KP/COL combination showed effective antibacterial and antibiofilm activities in vitro and in vivo. The synergistic effect of combined application may be attributed to membrane permeability. Due to the low cytotoxicity of the combined concentration, the combination exhibits a promising future for use in clinical anti-infection treatments. This finding might broaden the potential applications for COL.
Collapse
Affiliation(s)
- Huijing Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengxin Xu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenhui Guo
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xin Du
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijiang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiyi Shi
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Summer K, Browne J, Hollanders M, Benkendorff K. Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO). Biofilm 2022; 4:100081. [PMID: 36060119 PMCID: PMC9428811 DOI: 10.1016/j.bioflm.2022.100081] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kate Summer
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
- Faculty of Health, Southern Cross University, Terminal Drive, Bilinga, Qld, 4225, Australia
- Corresponding author. Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia.
| | - Jessica Browne
- Faculty of Health, Southern Cross University, Terminal Drive, Bilinga, Qld, 4225, Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering, Southern Cross University, Military Road, Lismore, NSW, 2480, Australia
- QuantEcol, 53 Bentinck St, Ballina, NSW 2478, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
12
|
Xu M, Qian C, Jia H, Feng L, Shi S, Zhang Y, Wang L, Cao J, Zhou T, Zhou C. Emergence of Ceftazidime-Avibactam Resistance and Decreased Virulence in Carbapenem-Resistant ST11 Klebsiella pneumoniae During Antibiotics Treatment. Infect Drug Resist 2022; 15:6881-6891. [PMID: 36465808 PMCID: PMC9717589 DOI: 10.2147/idr.s387187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
Introduction Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a serious threat to human public health. Ceftazidime-avibactam (CZA) is currently one of the few effective antibiotics for carbapenem-resistant Enterobacteriaceae (CRE). Methods and Results Here, we analyzed two longitudinal Klebsiella pneumoniae clinical isolates (FK8578, FK8695) that were isolated from an ICU patient during antimicrobial treatment. Broth microdilution method, whole-genome sequencing (WGS) and comparative genomic analysis were used to elucidate the dynamics and mechanisms of antibiotic resistance. String test, quantification of capsule, biofilm inhibition test and Galleria mellonella (G. mellonella) infection model were used to explore the changes in virulence of the two clinical isolates. During antibiotic treatment, CRKP FK8578 underwent a series of drug resistance and virulence changes, including CZA resistance, carbapenem susceptibility and virulence attenuation. The results of WGS showed that mutation of bla KPC-2 to bla KPC-33 was responsible for the change of drug resistance phenotype between FK8578 and FK8695. pLVPK-like virulence plasmid without siderophore synthesis operon was identified in the two strains. On the other hand, the loss of hypermucoviscosity phenotype in the FK8695 strain may be related to a single nucleotide deletion of the rmpA gene, which would further lead to a decrease in virulence. Virulence results showed that compared with FK8578, FK8695 was negative in the string test, with decreased capsular production, smaller amounts of biofilm formation and higher survival rate of G. mellonella. Conclusion This is the first report of CZA resistance and decreased virulence in ST11 CRKP strains during antimicrobial treatment. It is urgent to monitor CZA resistance and timely adjust anti-infective treatment strategies.
Collapse
Affiliation(s)
- Mengxin Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shiyi Shi
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Ying Zhang
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| |
Collapse
|
13
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
14
|
Xu M, Yao Z, Zhao Y, Shi S, Sun Y, Feng L, Zhou C, Zhang X, Cao J, Zhou T. Naringenin restores colistin activation against colistin-resistant gram-negative bacteria in vitro and in vivo. Front Microbiol 2022; 13:916587. [PMID: 35992710 PMCID: PMC9382302 DOI: 10.3389/fmicb.2022.916587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
Colistin is used as the “last line of defense” against multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, improper use of colistin may further lead to an increasing number of colistin-resistant (Col-R) strains worldwide, which greatly limits antibiotic treatment options. In this study, we investigated the antibacterial and antibiofilm activities of naringenin (NG) combined with colistin against Col-R GNB in vitro and in vivo. The checkerboard method and time-kill test showed that NG combined with colistin has better antibacterial activity (FICI < 0.5) compared with NG and colistin alone. Biofilm formation inhibition tests demonstrated that combining the two drugs could inhibit biofilm formation; scanning electron microscopy (SEM) confirmed that the combination of the two significantly reduces the number of cells in the biofilm compared with the drug alone. The in vivo experiment showed that the combination of NG and colistin can improve the survival rate of the Galleria mellonella (G. mellonella) and reduce the microbial load in the mouse thigh infection model. Mechanistically, the combination of NG and colistin synergistically enhances the antibacterial activity and changes the permeability of the bacterial outer membrane. More importantly, cytotoxicity tests showed no cell cytotoxicity of NG in combination with colistin. In conclusion, our data revealed that NG combined with colistin exhibited good synergistic effects in vivo and in vitro, thus providing a new therapeutic option for clinical Col-R GNB infections.
Collapse
Affiliation(s)
- Mengxin Xu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yining Zhao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiyi Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianming Cao,
| | - Tieli Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianming Cao,
| |
Collapse
|
15
|
Antibiofilm Synergistic Activity of Streptomycin in Combination with Thymol-Loaded Poly (Lactic-co-glycolic Acid) Nanoparticles against Klebsiella pneumoniae Isolates. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1936165. [PMID: 35911151 PMCID: PMC9334066 DOI: 10.1155/2022/1936165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Background. Thymol is an important component of essential oils found in the oil of thyme, is extracted mainly from Thymus vulgaris, and was shown to act synergistically with streptomycin against Klebsiella pneumoniae biofilms. Additionally, thymol could be encapsulated into poly (lactic-co-glycolic acid) (PLGA) nanoparticles to overcome issues related to its low water solubility and high volatility. The present study aimed to investigate the antibiofilm activity of thymol-loaded PLGA nanoparticles (Thy-NPs) alone and in combination with streptomycin against biofilms of K. pneumoniae isolates. Methods. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibiofilm activities were determined by the safranin dye assay. The synergistic effect of Thy-NPs with streptomycin was assessed by the checkerboard method. The kinetic study of the biofilm biomass and time-kill assay were further performed. Results. Thy-NPs exhibited the highest antibacterial activity against K. pneumoniae isolates, with MIC values ranging from 1 to 8 µg/mL. Additionally, Thy-NPs showed the highest antibiofilm activity against K. pneumoniae isolates with minimal biofilm inhibitory concentration (MBIC) and minimal biofilm eradication concentration (MBEC) values ranging from 16 to 64 µg/mL and from 32 to 128 µg/Ml, respectively. The combination treatment combining Thy-NPs with streptomycin showed a synergistic effect against the inhibition of biofilm formation and eradication of biofilms of K. pneumoniae isolates with fractional inhibitory concentration index values ranging from 0.13 to 0.28. In addition, the MBIC and MBEC values of streptomycin against K. pneumoniae isolates were dramatically reduced (up to 128-fold) in combination with Thy-NPs, suggesting that Thy-NPs would enhance the antibiofilm activity of streptomycin. The biomass and time-kill kinetics analysis confirmed the observed synergistic interactions and showed the bactericidal activity of streptomycin in combination with Thy-NPs. Conclusions. Our results indicate that the synergistic bactericidal effect between streptomycin and Thy-NPs could be a promising approach in the control of biofilm-associated infections caused by K. pneumoniae.
Collapse
|
16
|
Liu Y, Bai J, Kang J, Song Y, Yin D, Wang J, Li H, Duan J. Three Novel Sequence Types Carbapenem-Resistant Klebsiella pneumoniae Strains ST5365, ST5587, ST5647 Isolated from Two Tertiary Teaching General Hospitals in Shanxi Province, in North China: Molecular Characteristics, Resistance and Virulence Factors. Infect Drug Resist 2022; 15:2551-2563. [PMID: 35614966 PMCID: PMC9124815 DOI: 10.2147/idr.s366480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a significant threat to public health and has already drawn worldwide attention. Hence, we aim to comprehensively analyze the case condition, as well as molecular epidemiology, resistance and virulence of three CRKP isolates with new sequence types (STs). Methods Three CRKP were collected from November 2019 to April 2021. The three patients’ clinical characteristics were analyzed through His system. In order to screen phenotype of metallo-carbapenemase, the modified Carbapenem Inactivation Method (mCIM) and EDTA-modified Carbapenem Inactivation Method (eCIM) were conducted. Three isolates were subjected to antimicrobial susceptibility testing (AST) using the agar dilution method or minimal broth dilution method. The string test, the sedimentation assay, biofilm formation and the serum resistance assay were performed as phenotypic experiments to assist in evaluating virulence. The presence of resistance and virulence genes were detected by Whole-Genome Sequencing (WGS). Serotypes and new STs were compared and determined by multi-locus sequence typing (MLST). Results Overall, all Klebsiella pneumoniae isolates were multi-resistant, but sensitive to tigecycline and colistin. Among them, all formed biofilms, strain 1 and strain 2 were classified as moderate-producers, while strain 3 as weak-producer. The results of the serum resistance assay indicated that only strain 2 was resistant. From WGS analysis, it showed that all isolates co-harbored multiple resistance genes, such as carbapenemase genes, sulfonamides, fluoroquinolones, aminoglycosides, and tetracyclines. Meanwhile, several virulence genes were also contained, including siderophores, fimbriae, capsule and lipopolysaccharides-associated genes. The serotypes of strain 1 and strain 2 manifested K35 and KL47, respectively. Conclusion Three novel ST5365, ST5587, ST5647 were first discovered in North China. Our study suggested that we should pay more attention to their resistance. And the results will help treat CRKP infections caused by these novel STs.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jing Bai
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jing Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Hao Li
- Department of Clinical Laboratory, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Correspondence: Hao Li, Department of Clinical Laboratory, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, Shanxi, People’s Republic of China, Tel +86 15340705830, Email
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Jinju Duan, Department of Pharmacy, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, People’s Republic of China, Tel +86 351 3365713, Email
| |
Collapse
|