1
|
Kao CY, Zhang YZ, Bregente CJB, Kuo PY, Chen PK, Chao JY, Duong TTT, Wang MC, Thuy TTD, Hidrosollo JH, Tsai PF, Li YC, Lin WH. A 24-year longitudinal study of Klebsiella pneumoniae isolated from patients with bacteraemia and urinary tract infections reveals the association between capsular serotypes, antibiotic resistance, and virulence gene distribution. Epidemiol Infect 2023; 151:e155. [PMID: 37675569 PMCID: PMC10548544 DOI: 10.1017/s0950268823001486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Li
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Maleki NS, Babazadeh F, Arzanlou M, Teimourpour R, Dogaheh HP. Serotyping and molecular profiles of virulence-associated genes among Klebsiella pneumoniae isolates from teaching hospitals of Ardabil, Iran: A cross-sectional study. Health Sci Rep 2023; 6:e1557. [PMID: 37706015 PMCID: PMC10496611 DOI: 10.1002/hsr2.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Background and Aims Klebsiella pneumoniae is a Gram-negative bacterium that colonized various organs. This bacterium is associated with different community-acquired and hospital-acquired infections. The present study aims to assess the capsular serotypes and frequency of virulence-associated genes in K. pneumoniae isolates from teaching hospitals in Ardabil, Iran. Methods From October 1, 2019, to November 31, 2021, different clinical samples were collected and K. pneumoniae isolates were diagnosed using conventional biochemical tests. The final identification of K. pneumoniae was performed through the polymerase chain reaction (PCR) method using a specific primer targeting the khe gene. The PCR method was employed to confirm the presence of virulence-associated genes and aerobactin, and the main capsular serotypes based on the specific primers. Results Of all 100 K. pneumoniae isolates, 4% and 2% were typeable with K5 and K2 primers, respectively. In addition, entB (94%), fimH (91%), and wcaG (87%) had the highest frequency among the virulence-associated genes. 24% of K. pneumoniae isolates harbored the entB-wcaG-fimH genes simultaneously. Moreover, 50% of capsular serotype 5 harbored the ybts-mrkD-entB-wcaG-fimH genes simultaneously. Conclusion The findings revealed that 6% of all K. pneumoniae isolates were typeable, distributed in the two serotypes K5 and K2. Most K. pneumoniae isolates were positive for multiple types of virulence genes. Identifying bacterial virulence genes aids in molecular detection, assay development, and therapeutic pathways.
Collapse
Affiliation(s)
- Neda Same Maleki
- Department of Microbiology, School of MedicineArdabil University of Medical SciencesArdabilIran
| | - Forough Babazadeh
- Department of Microbiology, School of MedicineArdabil University of Medical SciencesArdabilIran
| | - Mohsen Arzanlou
- Department of Microbiology, School of MedicineArdabil University of Medical SciencesArdabilIran
| | - Roghayeh Teimourpour
- Department of Microbiology, School of MedicineArdabil University of Medical SciencesArdabilIran
| | - Hadi Peeri Dogaheh
- Department of Microbiology, School of MedicineArdabil University of Medical SciencesArdabilIran
| |
Collapse
|
3
|
Chen Y, Sha L, Li W, Zhou L, Pei B, Bian X, Ji Y, Liu Y, Wang L, Yang H. Rapid quantitative detection of Klebsiella pneumoniae in infants with severe infection disease by point-of-care immunochromatographic technique based on nanofluorescent microspheres. Front Bioeng Biotechnol 2023; 11:1144463. [PMID: 36845192 PMCID: PMC9945336 DOI: 10.3389/fbioe.2023.1144463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Klebsiella pneumoniae (KP, K. pneumoniae) is one of the most important nosocomial pathogens that cause severe respiratory infections. As evolutionary high-toxic strains with drug resistance genes increase year by year, the infections caused by it are often accompanied by high mortality, which may be fatal to infants and can cause invasive infections in healthy adults. At present, the traditional clinical methods for detecting K. pneumoniae are cumbersome and time-consuming, and the accuracy and sensitivity are not high. In this study, nanofluorescent microsphere (nFM)-based immunochromatographic test strip (ICTS) quantitative testing platform were developed for point-of-care testing (POCT) method of K. pneumoniae. Methods: 19 clinical samples of infants were collected, the genus-specific gene of mdh was screened from K. pneumoniae. Polymerase chain reaction (PCR) combined with nFM-ICTS based on magnetic purification assay (PCR-ICTS) and strand exchange amplification (SEA) combined with nFM-ICTS based on magnetic purification assay (SEA-ICTS) were developed for the quantitative detection of K. pneumoniae. The sensitivity and specificity of SEA-ICTS and PCR-ICTS were demonstrated by the existing used classical microbiological methods, the real-time fluorescent quantitative PCR (RTFQ-PCR) and PCR assay based on agarose gel electrophoresis (PCR-GE). Results: Under optimum working conditions, the detection limits of PCR-GE, RTFQ-PCR, PCR-ICTS and SEA-ICTS are 7.7 × 10-3, 2.5 × 10-6, 7.7 × 10-6, 2.82 × 10-7 ng/μL, respectively. The SEA-ICTS and PCR-ICTS assays can quickly identify K. pneumoniae, and could specifically distinguish K. pneumoniae samples from non-K. pneumoniae samples. Experiments have shown a diagnostic agreement of 100% between immunochromatographic test strip methods and the traditional clinical methods on the detection of clinical samples. During the purification process, the Silicon coated magnetic nanoparticles (Si-MNPs) were used to removed false positive results effectively from the products, which showed of great screening ability. The SEA-ICTS method was developed based on PCR-ICTS, which is a more rapid (20 min), low-costed method compared with PCR-ICTS assay for the detection of K. pneumoniae in infants. Only need a cheap thermostatic water bath and takes a short detection time, this new method can potentially serve as an efficient point-of-care testing method for on-site detection of pathogens and disease outbreaks without fluorescent polymerase chain reaction instruments and professional technicians operation.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lulu Sha
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenqing Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liuyan Zhou
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, Suqian First People’s Hospital, Suqian, China
| | - Xinyu Bian
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yongxin Ji
- Nanjing Nanoeast Biotech Co., Ltd., Nanjing, China
| | - Yiping Liu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Li Wang
- Department of Clinical Laboratory, Xuzhou First People’s Hospital, Xuzhou, China,*Correspondence: Li Wang, ; Huan Yang,
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China,*Correspondence: Li Wang, ; Huan Yang,
| |
Collapse
|
4
|
Jin M, Jia T, Liu X, Yang M, Zhang N, Chen J, Yang X, Qin S, Liu F, Tang Y, Wang Y, Guo J, Chen Y, Li B, Wang C. Clinical and genomic analysis of hypermucoviscous Klebsiella pneumoniae isolates: Identification of new hypermucoviscosity associated genes. Front Cell Infect Microbiol 2023; 12:1063406. [PMID: 36683676 PMCID: PMC9846069 DOI: 10.3389/fcimb.2022.1063406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Hypermucoviscous Klebsiella pneumoniae (HmKp) poses an emerging and highly pathogenic global health threat. This study aimed to investigate the clinical and genomic characteristics of HmKp isolates to better understand the virulence mechanisms of the hypermucoviscous (HMV) phenotype. Methods From May 2018 to August 2021, 203 non-repeat K. pneumoniae isolates causing invasive infections were collected from a hospital in Beijing, China. Isolates were divided into HmKp (n=90, 44.3%) and non-HmKp (n=113, 55.7%) groups according to string test results. Results Multivariate regression showed that diabetes mellitus (odds ratio [OR]=2.20, 95% confidence interval (CI): 1.20-4.05, p=0.010) and liver abscess (OR=2.93, CI 95%:1.29-7.03, p=0.012) were associated with HmKp infections. K. pneumoniae was highly diverse, comprising 87 sequence types (STs) and 54 serotypes. Among HmKp isolates, ST23 was the most frequent ST (25/90, 27.8%), and the most prevalent serotypes were KL2 (31/90, 34.4%) and KL1 (27/90, 30.0%). Thirteen virulence genes were located on the capsular polysaccharide synthesis region of KL1 strains. HmKp isolates were sensitive to multiple antibiotics but carried more SHV-type extended spectrum β-lactamase (ESBL) resistance genes (p<0.05), suggesting that the emergence of ESBL-mediated multidrug resistance in HmKp should be monitored carefully during treatment. Phylogenetic analysis disclosed that HmKp isolates were highly diverse. Comparative genomic analysis confirmed that the HMV phenotype is a plasmid-encoded virulence factor. Seventeen HmKp genes were highly associated with HmKp, and included rmpAC, 7 iron-acquisition-related genes, and pagO, which may promote liver abscess formation. Discussion This investigation provides insight into the mechanisms producing the HMV phenotype.
Collapse
Affiliation(s)
- Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Tianye Jia
- The Clinical Laboratory, Fifth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Xiong Liu
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
- Department of Information, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Meitao Yang
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Yue Tang
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Department of Emergency Response, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Boan Li
- The Clinical Laboratory, Fifth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Changjun Wang
- Department of Health Service, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Clinical and Molecular Characterizations of Carbapenem-Resistant Klebsiella pneumoniae Causing Bloodstream Infection in a Chinese Hospital. Microbiol Spectr 2022; 10:e0169022. [PMID: 36190403 PMCID: PMC9603270 DOI: 10.1128/spectrum.01690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bloodstream infection (BSI) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious and urgent threat for hospitalized patients. This study aims to describe the clinical and molecular characteristics of CRKP causing BSI in a tertiary-care hospital in Beijing, China. A total of 146 CRKP strains and 39 carbapenem-susceptible K. pneumoniae (CSKP) strains collected in the hospital from 2017 to 2020 were sent for whole-genome sequencing. Univariate and multivariate analyses were used to evaluate risk factors for in-hospital mortality of CRKP-BSI cases. Thirty (20.5%) of 146 CRKP-BSI patients and three (7.7%) of 39 CSKP-BSI patients died at discharge (χ2 = 3.471, P = 0.062). Multivariate logistic regression analysis indicated that age and use of urinary catheters were independent risk factors for the death of CRKP-BSI. The 146 CRKP isolates belonged to 9 sequence types (STs) and 11 serotypes, while the 39 CSKP isolates belonged to 23 STs and 27 serotypes. The mechanism of carbapenem resistance for all the CRKP strains was the acquisition of carbapenemase, mainly KPC-2 (n = 127). There were 2 predominant serotypes for ST11 CRKP, namely, KL47 (n = 82) and KL64 (n = 42). Some virulent genes, including rmpA2, iucABCD and iutA, and repB gene, which was involved in plasmid replication, were detected in all ST11-KL64 strains. Evolutionary transmission analysis suggested that ST11 CRKP strains might have evolved from KL47 into KL64 and were accompanied by multiple outbreak events. This study poses an urgent need for enhancing infection control measures in the hospital, especially in the intensive care unit where the patients are at high-risk for acquiring CRKP-BSI. IMPORTANCE CRKP-BSI is demonstrated to cause high mortality. In this study, we demonstrated that ST11 CRKP strains might carry many virulent genes. Meanwhile, outbreak events occurred several times in the strains collected. Carbapenemase acquisition (mainly KPC-2 carbapenemase) was responsible for carbapenem resistance of all the 146 CRKP strains. As 2 predominant strains, all ST11-KL64 strains, but not ST11-KL47 strains, carried rmpA2, iucABCD, iutA, as well as a plasmid replication initiator (repB). Our study suggested that the occurrence of region-specific recombination events manifested by the acquisition of some virulence genes might contribute to serotype switching from ST11-KL47 to ST11-KL64. The accumulation of virulent genes in epidemic resistant strains poses a great challenge for the prevention and treatment of BSI caused by K. pneumoniae in high-risk patients.
Collapse
|
6
|
Martins WMBS, Cino J, Lenzi MH, Sands K, Portal E, Hassan B, Dantas PP, Migliavacca R, Medeiros EA, Gales AC, Toleman MA. Diversity of lytic bacteriophages against XDR Klebsiella pneumoniae sequence type 16 recovered from sewage samples in different parts of the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156074. [PMID: 35623509 DOI: 10.1016/j.scitotenv.2022.156074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.
Collapse
Affiliation(s)
- Willames M B S Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Juliana Cino
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Michael H Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Zoology, University of Oxford, United Kingdom
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Brekhna Hassan
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Priscila P Dantas
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Eduardo A Medeiros
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Mark A Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
7
|
Han YL, Wen XH, Zhao W, Cao XS, Wen JX, Wang JR, Hu ZD, Zheng WQ. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2022; 13:1003783. [PMID: 36188002 PMCID: PMC9524375 DOI: 10.3389/fmicb.2022.1003783] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP), a type of Klebsiella pneumoniae (KP) that exhibits hypervirulence and carbapenem resistance phenotypes, can cause severe infections, both hospital- and community-acquired infections. CR-hvKP has brought great challenges to global public health and is associated with significant morbidity and mortality. There are many mechanisms responsible for the evolution of the hypervirulence and carbapenem resistance phenotypes, such as the horizontal transfer of the plasmid carrying the carbapenem resistance gene to hypervirulent Klebsiella pneumoniae (hvKP) or carbapenemase-producing Klebsiella pneumoniae (CRKP) acquiring a hypervirulence plasmid carrying a virulence-encoding gene. Notably, KP can evolve into CR-hvKP by acquiring a hybrid plasmid carrying both the carbapenem resistance and hypervirulence genes. In this review, we summarize the evolutionary mechanisms of resistance and plasmid-borne virulence as well as the prevalence of CR-hvKP.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jun-Rui Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Wen-Qi Zheng,
| |
Collapse
|
8
|
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection. Pharmaceutics 2022; 14:pharmaceutics14091916. [PMID: 36145665 PMCID: PMC9505181 DOI: 10.3390/pharmaceutics14091916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases.
Collapse
|
9
|
Li D, Zhang X, Wang Y, Xue J, Ji X, Shao X, Li Y. Epidemiology and Drug Resistance of Pathogens Isolated from Cerebrospinal Fluids at a Children's Medical Center in Eastern China During 2006-2020. Infect Drug Resist 2021; 14:5417-5428. [PMID: 34949927 PMCID: PMC8689011 DOI: 10.2147/idr.s344720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the epidemiology and drug resistance of pathogens isolated from cerebrospinal fluid samples at a children's medical center in eastern China and provide the basis for anti-infection treatments. Methods In all, 307 non-duplicated strains of pathogens were isolated from cerebrospinal fluid samples in the Children's Hospital of Soochow University from January 2006 to December 2020. Mass spectrometry was used for pathogen identification. The VITEK 2 Compact system and Kirby-Bauer method were applied to determine antimicrobial susceptibility. Results Among the 307 isolates, gram-positive bacteria, gram-negative bacteria and fungi accounted for 60.26%, 34.53%, and 5.21%, respectively. The most prevalent pathogens were Streptococcus pneumoniae (26.06%), Escherichia coli (20.20%) and Streptococcus agalactiae (17.26%). The number of isolates was highest in winter. The most prevalent gram-positive bacterium in children <6 months old was Streptococcus agalactiae, while Streptococcus pneumoniae was the most in children were >6 months old. The drug resistance of gram-positive bacteria, fungi and Haemophilus influenza were not high. In addition, 35 strains of gram-negative bacteria produced extended-spectrum β-lactamases (ESBLs) and 6 strains were identified as multidrug-resistant (MDR) bacteria. These strains showed much higher resistance to the antibiotics than other strains. Conclusion Cases of meningitis among children have increased in the past 15 years and MDR bacteria were also identified. The emergence of MDR bacteria is a cause for great concern and requires further investigation.
Collapse
Affiliation(s)
- Dan Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Xin Zhang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China
| | - Yunzhong Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China
| | - Jian Xue
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China
| | - Xueqiang Ji
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China.,Clinical Medical College of Pediatrics, Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China
| | - Yang Li
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China.,Clinical Medical College of Pediatrics, Soochow University, Suzhou, Jiangsu, 215025, People's Republic of China
| |
Collapse
|