1
|
Li S, Yang Y, Zhang Y, He F, Chen J, Fan Y, Zhang H, Guan X. Multi-omics joint analysis reveals the mechanism underlying Chinese herbal Yougui Pill in the treatment of knee osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119098. [PMID: 39557105 DOI: 10.1016/j.jep.2024.119098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yougui Pill (YGP), originating from Jingyue Quanshu, comprises 10 traditional Chinese medicines (TCMs). This classic prescription is renowned for its ability to tonify the kidney, warm the kidney, promote yang, warm the interior, and dispel cold. YGP has proven effective in treating degenerative knee arthritis, osteoporosis, delayed fracture healing, and other orthopedic conditions, making it a widely used clinical prescription for knee osteoarthritis (KOA). AIM OF THE STUDY Although YGP is commonly used in clinical practice, its pharmacodynamic material basis and anti-arthritis mechanisms remain unclear. This study aims to comprehensively analyze the chemical constituents of YGP and elucidate its anti-arthritis mechanisms. MATERIALS AND METHODS Ultra-high performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry(ESI-Q TRAP-MS/MS) was used to identify the chemical constituents of YGP. The Hulth method was utilized to establish KOA rat model, and pathological examinations were performed to assess the anti-arthritis effects of YGP. Integrated metabolomics and transcriptomics analyses were conducted to explore the anti-arthritis mechanisms of YGP. Key targets were confirmed via immunohistochemistry. RESULTS A total of 1981 chemical components were identified in YGP, predominantly phenolic acids and flavonoids. Compared with the model group, 422 differentially expressed metabolites and 214 differentially expressed genes were identified, primarily involving the MAPK signaling pathway, FoxO signaling pathway, and PI3K-Akt pathway. YGP exerted an anti-osteoarthritis effect by inhibiting the excessive activation of the EGFR/ERT/FOS signaling pathway. CONCLUSIONS TCM offers significant advantages in the treatment of KOA, addressing the shortcomings of current clinical medications. YGP displayed exceptional pharmacodynamic effects. This study elucidated its pharmacodynamic material basis and anti-osteoarthritis mechanisms, providing substantial support for its clinical application and the development of related drugs.
Collapse
Affiliation(s)
- Siyu Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Yongju Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Yu Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Fanyu He
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Jie Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Yuanhe Fan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Hui Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China.
| | - Xuefeng Guan
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| |
Collapse
|
2
|
Nikanjam M, Kato S, Allen T, Sicklick JK, Kurzrock R. Novel clinical trial designs emerging from the molecular reclassification of cancer. CA Cancer J Clin 2025. [PMID: 39841128 DOI: 10.3322/caac.21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Next-generation sequencing has revealed the disruptive reality that advanced/metastatic cancers have complex and individually distinct genomic landscapes, necessitating a rethinking of treatment strategies and clinical trial designs. Indeed, the molecular reclassification of cancer suggests that it is the molecular underpinnings of the disease, rather than the tissue of origin, that mostly drives outcomes. Consequently, oncology clinical trials have evolved from standard phase 1, 2, and 3 tissue-specific studies; to tissue-specific, biomarker-driven trials; to tissue-agnostic trials untethered from histology (all drug-centered designs); and, ultimately, to patient-centered, N-of-1 precision medicine studies in which each patient receives a personalized, biomarker-matched therapy/combination of drugs. Innovative technologies beyond genomics, including those that address transcriptomics, immunomics, proteomics, functional impact, epigenetic changes, and metabolomics, are enabling further refinement and customization of therapy. Decentralized studies have the potential to improve access to trials and precision medicine approaches for underserved minorities. Evaluation of real-world data, assessment of patient-reported outcomes, use of registry protocols, interrogation of exceptional responders, and exploitation of synthetic arms have all contributed to personalized therapeutic approaches. With greater than 1 × 1012 potential patterns of genomic alterations and greater than 4.5 million possible three-drug combinations, the deployment of artificial intelligence/machine learning may be necessary for the optimization of individual therapy and, in the near future, also may permit the discovery of new treatments in real time.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, California, USA
| | - Shumei Kato
- Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, California, USA
| | | | - Jason K Sicklick
- Moores Cancer Center, University of California San Diego Health, La Jolla, California, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, San Diego, California, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
- Worldwide Innovative Networking in Personalized Cancer Medicine Consortium, Paris, France
| |
Collapse
|
3
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025:S1529-9430(25)00008-7. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
4
|
Portelli C, Seria E, Attard R, Barzine M, Esquinas-Roman EM, Borg Carbott F, Cassar K, Vella M, Scicluna BP, Ebejer JP, Farrugia R, Bezzina Wettinger S. Isolating high-quality RNA for RNA-Seq from 10-year-old blood samples. Sci Rep 2024; 14:30716. [PMID: 39730418 DOI: 10.1038/s41598-024-80287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
There is much interest in analysing RNA, particularly with RNA Sequencing, across both research and diagnostic domains. However, its inherent instability renders it susceptible to degradation. Given the imperative for RNA integrity in such applications, proper storage and biobanking of blood samples and successful subsequent RNA isolation is essential to guarantee optimal integrity for downstream analyses. Especially for larger collections, it would be particularly beneficial if these methods would additionally offer affordability, minimal blood volume requirements and also long-term storage. In this study, RNA of high quality, suitable for transcriptomics, has been successfully isolated from 400 µL of EDTA and citrated whole blood samples in Boom's lysis buffer stored at -85 °C for 10 years. Isolation was carried out using a modified Zymo Research Quick-RNA kit protocol. This isolation method showed significant improvement in RNA integrity when compared to RNA extracted using the original Boom method. RNA Sequencing provided high-quality data comparable to that of other studies using recently frozen blood in RNA stabilisation tubes. Additionally, sequencing data from blood collected in citrate and EDTA anticoagulants also showed excellent correlation.
Collapse
Affiliation(s)
- Charlene Portelli
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Elisa Seria
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Ritienne Attard
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Mitra Barzine
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Eva M Esquinas-Roman
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Francesca Borg Carbott
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Karen Cassar
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, 2080, MSD, Malta
| | - Matthew Vella
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, 2080, MSD, Malta
| | - Jean-Paul Ebejer
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, 2080, MSD, Malta
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, 2080, MSD, Malta
| | - Stephanie Bezzina Wettinger
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta.
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, 2080, MSD, Malta.
| |
Collapse
|
5
|
Li Y, Dong T, Wan S, Xiong R, Jin S, Dai Y, Guan C. Application of multi-omics techniques to androgenetic alopecia: Current status and perspectives. Comput Struct Biotechnol J 2024; 23:2623-2636. [PMID: 39021583 PMCID: PMC11253216 DOI: 10.1016/j.csbj.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The rapid advancement of sequencing technologies has enabled the generation of vast datasets, allowing for the in-depth analysis of sequencing data. This analysis has facilitated the validation of novel pathogenesis hypotheses for understanding and treating diseases through ex vivo and in vivo experiments. Androgenetic alopecia (AGA), a common hair loss disorder, has been a key focus of investigators attempting to uncover its underlying mechanisms. Abnormal changes in mRNA, proteins, and metabolites have been identified in individuals with AGA, and future developments in sequencing technologies may reveal new biomarkers for AGA. By integrating multiple omics analysis datasets such as genomics, transcriptomics, proteomics, and metabolomics-along with clinical phenotype data-we can achieve a comprehensive understanding of the molecular underpinnings of AGA. This review summarizes the data-mining studies conducted on various omics analysis datasets as related to AGA that have been adopted to interpret the biological data obtained from different omics layers. We herein discuss the challenges of integrative omics analyses, and suggest that collaborative multi-omics studies can enhance the understanding of the complete pathomechanism(s) of AGA by focusing on the interaction networks comprising DNA, RNA, proteins, and metabolites.
Collapse
Affiliation(s)
- Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
| | - Yeqin Dai
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou 310009, China
| |
Collapse
|
6
|
Du S, Wang Z, Zhu H, Tang Z, Li Q. Flavonoids attenuate inflammation of HGF and HBMSC while modulating the osteogenic differentiation based on microfluidic chip. J Transl Med 2024; 22:992. [PMID: 39488714 PMCID: PMC11531701 DOI: 10.1186/s12967-024-05808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND When inflammation occurs in periodontal tissues, a dynamic cellular crosstalk interacts between gingival fibroblasts and bone marrow mesenchymal stem cells (BMSCs), which plays a crucial role in the biological behaviour and differentiation of the cells. Recently, flavonoids are increasingly recognized for their therapeutic potential in modulating inflammation and osteogenic differentiation. Owing to their varied molecular structures and mechanisms, there are more needs that flavonoid compounds should be identified by extensive screening. However, current drug research mostly relies on static, single-type cell cultures. In this study, an innovative bionic microfluidic chip system tailored for both soft and hard tissues was developed to screen for flavonoids suitable for treating periodontitis. METHODS This study developed a microfluidic system that bionically simulates the soft and hard structures of periodontal tissues. Live/dead staining, reactive oxygen species (ROS) staining, and RT-qPCR analysis were employed. These techniques evaluated the effects of flavonoid compounds on the levels of inflammatory factors and ROS contents in HGF and HBMSC under LPS stimulation. Additionally, the impact of these compounds on osteogenic induction in HBMSC and the exploration of the underlying mechanisms were assessed. RESULTS The microfluidic chip used in this study features dual chambers separated by a porous membrane, allowing cellular signal communication via bioactive factors secreted by cells in both layers under perfusion. The inflammatory response within the chip under LPS stimulation was lower compared to individual static cultures of HGF and HBMSC. The selected flavonoids-myricetin, catechin, and quercetin-significantly reduced cellular inflammation, decreased ROS levels, and enhanced osteogenic differentiation of BMSCs. Additionally, fisetin, silybin, and icariside II also demonstrated favorable outcomes in reducing inflammation, lowering ROS levels, and promoting osteogenic differentiation through the Wnt/β-catenin pathway. CONCLUSIONS The bionic microfluidic chip system provides enhanced capabilities for drug screening and evaluation, delivering a more precise assessment of drug efficacy and safety compared to traditional in vitro methods. This study demonstrates the efficacy of flavonoids in influencing osteogenic processes in BMSCs primarily through the Wnt/β-catenin pathway. These results uncover the potential of flavonoids as therapeutic medicine for treating periodontitis, meriting further research and development.
Collapse
Affiliation(s)
- Sa Du
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhongyu Wang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Huilin Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Qing Li
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
7
|
Liu J, Xia W, Xue F, Xu C. Exploring a new signature for lung adenocarcinoma: analyzing cuproptosis-related genes through Integrated single-cell and bulk RNA sequencing. Discov Oncol 2024; 15:508. [PMID: 39342548 PMCID: PMC11439862 DOI: 10.1007/s12672-024-01389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVES Lung adenocarcinoma (LUAD) continues to pose a significant global health challenge. This research investigates cuproptosis and its association with LUAD progression. Employing various bioinformatics techniques, the study explores the heterogeneity of LUAD cells, identifies prognostic cuproptosis-related genes (CRGs), examines cell-to-cell communication networks, and assesses their functional roles. METHODS We downloaded single-cell RNA sequencing data from TISCH2 and bulk RNA sequencing data from TCGA for exploring LUAD cell heterogeneity. Subsequently, "CellChat" package was employed for intercellular communication network analysis, while weighted correlation network analysis was applied for identification of hub CRGs. Further, A cuproptosis related prognostic signature was constructed via LASSO regression, validated through survival analysis, nomogram development, and ROC curves. We assessed immune infiltration, gene mutations, and GSEA of prognostic CRGs. Finally, in vitro experiments were applied to validate CDC25C's role in LUAD. RESULTS We identified 15 clusters and nine cell type in LUAD. Malignant cells showed active communication and pathway enrichment in "oxidative phosphorylation" and "glycolysis". Meanwhile, prognostic hub CRGs including PFKP, CDC25C, F12, SIGLEC6, and NLRP7 were identified, with a robust prognostic signature. Immune infiltration, gene mutations, and functional enrichment correlated with prognostic CRGs. In vitro cell experiments have shown that CDC25C-deficient LUAD cell lines exhibited reduced activity. CONCLUSION This research reveals the heterogeneity of LUAD cells, identifies key prognostic CRGs, and maps intercellular communication networks, providing insights into LUAD pathogenesis. These findings pave the way for developing targeted therapies and precision medicine approaches.
Collapse
Affiliation(s)
- Jiangtao Liu
- General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wei Xia
- General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feng Xue
- General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Chen Xu
- Department of Vasculocardiology, Yangzhou Friendship Hospital, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Cheng Y, Xu SM, Santucci K, Lindner G, Janitz M. Machine learning and related approaches in transcriptomics. Biochem Biophys Res Commun 2024; 724:150225. [PMID: 38852503 DOI: 10.1016/j.bbrc.2024.150225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Data acquisition for transcriptomic studies used to be the bottleneck in the transcriptomic analytical pipeline. However, recent developments in transcriptome profiling technologies have increased researchers' ability to obtain data, resulting in a shift in focus to data analysis. Incorporating machine learning to traditional analytical methods allows the possibility of handling larger volumes of complex data more efficiently. Many bioinformaticians, especially those unfamiliar with ML in the study of human transcriptomics and complex biological systems, face a significant barrier stemming from their limited awareness of the current landscape of ML utilisation in this field. To address this gap, this review endeavours to introduce those individuals to the general types of ML, followed by a comprehensive range of more specific techniques, demonstrated through examples of their incorporation into analytical pipelines for human transcriptome investigations. Important computational aspects such as data pre-processing, task formulation, results (performance of ML models), and validation methods are encompassed. In hope of better practical relevance, there is a strong focus on studies published within the last five years, almost exclusively examining human transcriptomes, with outcomes compared with standard non-ML tools.
Collapse
Affiliation(s)
- Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kristina Santucci
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Méar LO, Tseng IS, Lin KS, Hsu CL, Chen SH, Tsai PS. Transcriptomic Characterization of Male Formosan Pangolin ( Manis pentadactyla pentadactyla) Reproductive Tract and Evaluation of Domestic Cat ( Felis catus) as a Potential Model Species. Animals (Basel) 2024; 14:2592. [PMID: 39272377 PMCID: PMC11394312 DOI: 10.3390/ani14172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The Formosan pangolin (Manis pentadactyla pentadactyla) is an endemic animal of Taiwan. Due to their reduced population and behavior, very little is known about this enigmatic species. To unravel male pangolin reproduction, in the present study, we built a complete genomic database of the male Formosan pangolin reproductive tract and revealed highly expressing genes as well as critical signaling pathways and their associated biological processes in both the testis and the epididymis. Moreover, we evaluated the domestic cat (Felis catus) as a potential model species for male pangolin reproduction by comparing their testicular transcriptomes. We demonstrated a clear tissue-specific gene expression supporting the unique biological signature of each reproductive tissue and identified critical genes of the different reproductive organs. Pathway enrichment analysis revealed unique pathways in the testis as well as a clear epididymal transition. Furthermore, domestic cats, despite being the closest domestic species to pangolin, demonstrated their unfitness as a male reproduction model species as clear differences in spermatid differentiation and metabolism were observed. These results enable a better understanding of male pangolin reproduction characteristics and may inspire improvements in in Formosan pangolin conservation strategies.
Collapse
Affiliation(s)
- Laura Orama Méar
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Reproduction Biology, Leibniz Institute for Zoo & Wildlife Research, Alfred-Kowalke Rd., No. 17, 10315 Berlin, Germany
| | - IShin Tseng
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Kuei-Shien Lin
- Taiwan Biodiversity Research Institute, Nantou 552005, Taiwan
| | - Chia-Lin Hsu
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Hua Chen
- Taiwan Biodiversity Research Institute, Nantou 552005, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Siddique F, Shehata M, Ghazal M, Contractor S, El-Baz A. Lung Cancer Subtyping: A Short Review. Cancers (Basel) 2024; 16:2643. [PMID: 39123371 PMCID: PMC11312171 DOI: 10.3390/cancers16152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
As of 2022, lung cancer is the most commonly diagnosed cancer worldwide, with the highest mortality rate. There are three main histological types of lung cancer, and it is more important than ever to accurately identify the subtypes since the development of personalized, type-specific targeted therapies that have improved mortality rates. Traditionally, the gold standard for the confirmation of histological subtyping is tissue biopsy and histopathology. This, however, comes with its own challenges, which call for newer sampling techniques and adjunctive tools to assist in and improve upon the existing diagnostic workflow. This review aims to list and describe studies from the last decade (n = 47) that investigate three such potential omics techniques-namely (1) transcriptomics, (2) proteomics, and (3) metabolomics, as well as immunohistochemistry, a tool that has already been adopted as a diagnostic adjunct. The novelty of this review compared to similar comprehensive studies lies with its detailed description of each adjunctive technique exclusively in the context of lung cancer subtyping. Similarities between studies evaluating individual techniques and markers are drawn, and any discrepancies are addressed. The findings of this study indicate that there is promising evidence that supports the successful use of omics methods as adjuncts to the subtyping of lung cancer, thereby directing clinician practice in an economical and less invasive manner.
Collapse
Affiliation(s)
- Farzana Siddique
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| |
Collapse
|
11
|
Ratanabunyong S, Siriwaseree J, Wanaragthai P, Krobthong S, Yingchutrakul Y, Kuaprasert B, Choowongkomon K, Aramwit P. Exploring the apoptotic effects of sericin on HCT116 cells through comprehensive nanostring transcriptomics and proteomics analysis. Sci Rep 2024; 14:2366. [PMID: 38287097 PMCID: PMC10825148 DOI: 10.1038/s41598-024-52789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Sericin, a silk protein from Bombyx mori (silkworms), has many applications, including cosmetics, anti-inflammation, and anti-cancer. Sericin complexes with nanoparticles have shown promise for breast cancer cell lines. Apoptosis, a programmed cell death mechanism, stops cancer cell growth. This study found that Sericin urea extract significantly affected HCT116 cell viability (IC50 = 42.00 ± 0.002 µg/mL) and caused apoptosis in over 80% of treated cells. S-FTIR analysis showed significant changes in Sericin-treated cells' macromolecule composition, particularly in the lipid and nucleic acid areas, indicating major cellular modifications. A transcriptomics study found upregulation of the apoptotic signaling genes FASLG, TNFSF10, CASP3, CASP7, CASP8, and CASP10. Early apoptotic proteins also showed that BAD, AKT, CASP9, p53, and CASP8 were significantly upregulated. A proteomics study illuminated Sericin-treated cells' altered protein patterns. Our results show that Sericin activated the extrinsic apoptosis pathway via the caspase cascade (CASP8/10 and CASP3/7) and the death receptor pathway, involving TNFSF10 or FASLG, in HCT116 cells. Upregulation of p53 increases CASP8, which activates CASP3 and causes HCT116 cell death. This multi-omics study illuminates the molecular mechanisms of Sericin-induced apoptosis, sheds light on its potential cancer treatment applications, and helps us understand the complex relationship between silk-derived proteins and cellular processes.
Collapse
Affiliation(s)
- Siriluk Ratanabunyong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Panatda Wanaragthai
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sucheewin Krobthong
- Thailand Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, 12120, Thailand
| | - Buabarn Kuaprasert
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Phayathai Road, Phatumwan, Bangkok, 10330, Thailand.
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Jagirdhar GSK, Perez JA, Perez AB, Surani S. Integration and implementation of precision medicine in the multifaceted inflammatory bowel disease. World J Gastroenterol 2023; 29:5211-5225. [PMID: 37901450 PMCID: PMC10600960 DOI: 10.3748/wjg.v29.i36.5211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with variability in genetic, environmental, and lifestyle factors affecting disease presentation and course. Precision medicine has the potential to play a crucial role in managing IBD by tailoring treatment plans based on the heterogeneity of clinical and temporal variability of patients. Precision medicine is a population-based approach to managing IBD by integrating environmental, genomic, epigenomic, transcriptomic, proteomic, and metabolomic factors. It is a recent and rapidly developing medicine. The widespread adoption of precision medicine worldwide has the potential to result in the early detection of diseases, optimal utilization of healthcare resources, enhanced patient outcomes, and, ultimately, improved quality of life for individuals with IBD. Though precision medicine is promising in terms of better quality of patient care, inadequacies exist in the ongoing research. There is discordance in study conduct, and data collection, utilization, interpretation, and analysis. This review aims to describe the current literature on precision medicine, its multiomics approach, and future directions for its application in IBD.
Collapse
Affiliation(s)
| | - Jose Andres Perez
- Department of Medicine, Saint Francis Health Systems, Tulsa, OK 74133, United States
| | - Andrea Belen Perez
- Department of Research, Columbia University, New York, NY 10027, United States
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A&M University, College Station, TX 77413, United States
| |
Collapse
|
13
|
Issam Salah NEI, Marnissi F, Lakhdar A, Karkouri M, ElBelhadji M, Badou A. The immune checkpoint VISTA is associated with prognosis in patients with malignant uveal melanoma. Front Immunol 2023; 14:1225140. [PMID: 37662962 PMCID: PMC10471992 DOI: 10.3389/fimmu.2023.1225140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Uveal melanoma (UM) is a rare yet deadly tumor. It is known for its high metastatic potential, which makes it one of the most aggressive and lethal cancers. Recently, immune checkpoints such as Programmed cell Death protein-1 (PD1) and Cytotoxic T-Lymphocyte-Associated significantly increasing patient survival in multiple human cancers, especially cutaneous melanoma. However, patients with UMs were excluded from these studies because of their molecular characteristics, which tend to be widely different from those of cutaneous melanoma. This study aimed to analyze the expression of V domain Ig Suppressor T-cell Activation (VISTA), a novel immune checkpoint, to evaluate its prognosis significance and its correlation with PD1 and CTLA-4. Methods Evaluation of VISTA, CTLA-4, and PD1 expression was performed through TCGA database analysis and immunohistochemistry using two independent cohorts with primary malignant UM. Results and discussion Our results showed that VISTA expression was associated with tumor aggressiveness, T cell exhaustion, and the shortest median overall survival among patients. Surprisingly, PD1 protein expression was negative in all patients, whereas CTLA-4 expression was high in patients with advanced stages. Our findings suggest that VISTA may be a prognostic marker and an attractive treatment strategy for immunotherapy in patients with UM. Exploring its expression profile may predict response to immunotherapy and may lead to the improvement of precision therapy in malignant uveal melanoma patients.
Collapse
Affiliation(s)
- Nour el Imane Issam Salah
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Farida Marnissi
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Laboratory of Research on Neurologic, Neurosensorial Diseases and Handicap, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Mohamed ElBelhadji
- Department of Adults Ophthalmology, 20 August Hospital 1953, CHU Ibn Rochd, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco, Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
14
|
Costa A, van der Stelt I, Reynés B, Konieczna J, Fiol M, Keijer J, Palou A, Romaguera D, van Schothorst EM, Oliver P. Whole-Genome Transcriptomics of PBMC to Identify Biomarkers of Early Metabolic Risk in Apparently Healthy People with Overweight-Obesity and in Normal-Weight Subjects. Mol Nutr Food Res 2023; 67:e2200503. [PMID: 36564895 DOI: 10.1002/mnfr.202200503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SCOPE Peripheral blood mononuclear cells (PBMC) provide a useful and minimally invasive source of biomarkers. Here to identify PBMC transcriptomic biomarkers predictive of metabolic impairment related to increased adiposity is aimed. METHODS AND RESULTS The study analyzed the global PBMC transcriptome in metabolically healthy (normoglycemic) volunteers with overweight-obesity (OW-OB, n = 12), and in subjects with metabolically obese normal-weight (MONW, n = 5) phenotype, in comparison to normal-weight (NW, n = 12) controls. The study identifies 1072 differentially expressed genes (DEGs) in OW-OB versus NW and 992 in MONW versus NW. Hierarchical clustering of the top 100 DEGs clearly distinguishes OW-OB and MONW from NW. Remarkably, the OW-OB and MONW phenotypes share 257 DEGs regulated in the same direction. The top up-regulated gene CXCL8, coding for interleukin 8, with a role in obesity-related pathologies, is of special interest as a potential marker for predicting increased metabolic risk. CXCL8 expression is increased mainly in the MONW group and correlated directly with C-reactive protein levels. CONCLUSIONS PBMC gene expression analysis of CXCL8 or a pool of DEGs may be used to identify early metabolic risk in an apparently healthy population regardless of their BMI, i.e., subjects with OW-OB or MONW phenotype and to apply adequate and personalized nutritional preventive strategies.
Collapse
Affiliation(s)
- Andrea Costa
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) group, University of the Balearic Islands (UIB), Palma, Mallorca, 07122, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, 6708, The Netherlands
| | - Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) group, University of the Balearic Islands (UIB), Palma, Mallorca, 07122, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Jadwiga Konieczna
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Mallorca, 07120, Spain
| | - Miquel Fiol
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Mallorca, 07120, Spain
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, 6708, The Netherlands
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) group, University of the Balearic Islands (UIB), Palma, Mallorca, 07122, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Dora Romaguera
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), University Hospital Son Espases (HUSE), Palma, Mallorca, 07120, Spain
| | | | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) group, University of the Balearic Islands (UIB), Palma, Mallorca, 07122, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Mallorca, 07010, Spain.,CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
15
|
Tao YT, Chen LX, Jin J, Du ZK, Li JM. Genome-wide identification and analysis of bZIP gene family reveal their roles during development and drought stress in Wheel Wingnut (Cyclocarya paliurus). BMC Genomics 2022; 23:743. [DOI: 10.1186/s12864-022-08978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The bZIP gene family has important roles in various biological processes, including development and stress responses. However, little information about this gene family is available for Wheel Wingnut (Cyclocarya paliurus).
Results
In this study, we identified 58 bZIP genes in the C. paliurus genome and analyzed phylogenetic relationships, chromosomal locations, gene structure, collinearity, and gene expression profiles. The 58 bZIP genes could be divided into 11 groups and were unevenly distributed among 16 C. paliurus chromosomes. An analysis of cis-regulatory elements indicated that bZIP promoters were associated with phytohormones and stress responses. The expression patterns of bZIP genes in leaves differed among developmental stages. In addition, several bZIP members were differentially expressed under drought stress. These expression patterns were verified by RT-qPCR.
Conclusions
Our results provide insights into the evolutionary history of the bZIP gene family in C. paliurus and the function of these genes during leaf development and in the response to drought stress. In addition to basic genomic information, our results provide a theoretical basis for further studies aimed at improving growth and stress resistance in C. paliurus, an important medicinal plant.
Collapse
|
16
|
Rastogi D. Epigenetics of asthma-the field continues to evolve. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1190. [PMID: 36544648 PMCID: PMC9761183 DOI: 10.21037/atm-22-5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Deepa Rastogi
- Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
17
|
Mohd Isa IL, Mokhtar SA, Abbah SA, Fauzi MB, Devitt A, Pandit A. Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies toward Precision Medicine. Adv Healthc Mater 2022; 11:e2102530. [PMID: 35373924 PMCID: PMC11469247 DOI: 10.1002/adhm.202102530] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/01/2022] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration is a common cause of discogenic low back pain resulting in significant disability. Current conservative or surgical intervention treatments do not reverse the underlying disc degeneration or regenerate the disc. Biomaterial-based tissue engineering strategies exhibit the potential to regenerate the disc due to their capacity to modulate local tissue responses, maintain the disc phenotype, attain biochemical homeostasis, promote anatomical tissue repair, and provide functional mechanical support. Despite preliminary positive results in preclinical models, these approaches have limited success in clinical trials as they fail to address discogenic pain. This review gives insights into the understanding of intervertebral disc pathology, the emerging concept of precision medicine, and the rationale of personalized biomaterial-based tissue engineering tailored to the severity of the disease targeting early, mild, or severe degeneration, thereby enhancing the efficacy of the treatment for disc regeneration and ultimately to alleviate discogenic pain. Further research is required to assess the relationship between disc degeneration and lower back pain for developing future clinically relevant therapeutic interventions targeted towards the subgroup of degenerative disc disease patients.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of AnatomyFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and TraumatologyFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
| | - Sunny A. Abbah
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative MedicineFaculty of MedicineUniversiti Kebangsaan MalaysiaKuala Lumpur56000Malaysia
| | - Aiden Devitt
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
- Department of Orthopedic SurgeryUniversity Hospital GalwayGalwayH91YR71Ireland
| | - Abhay Pandit
- CÚRAMSFI Research Centre for Medical DevicesNational University of IrelandGalwayH91W2TYIreland
| |
Collapse
|
18
|
Dehau T, Ducatelle R, Immerseel FV, Goossens E. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathol 2022; 51:407-417. [PMID: 35675291 DOI: 10.1080/03079457.2022.2086447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Hasanzad M, Sarhangi N, Ehsani Chimeh S, Ayati N, Afzali M, Khatami F, Nikfar S, Aghaei Meybodi HR. Precision medicine journey through omics approach. J Diabetes Metab Disord 2022; 21:881-888. [PMID: 35673436 DOI: 10.1007/s40200-021-00913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/02/2021] [Indexed: 10/19/2022]
Abstract
It has been well established that understanding the underlying heterogeneity of numerous complex disease process needs new strategies that present in precision medicine for prediction, prevention and personalized treatment strategies. This approach must be tailored for each individual's unique omics that lead to personalized management of disease. The correlation between different omics data should be considered in precision medicine approach. The interaction provides a hypothesis which is called domino effect in the present minireview. Here we review the various potentials of omics data including genomics, transcriptomics, proteomics, metabolomics, pharmacogenomics. We comprehensively summarize the impact of omics data and its major role in precision medicine and provide a description about the domino effect on the pathophysiology of diseases. Each constituent of the omics data typically provides different information in associated with disease. Current research, although inadequate, clearly indicate that the information of omics data can be applicable in the concept of precision medicine. Integration of different omics data type in domino effect hypothesis can explain the causative changes of disease as it is discussed in the system biology too. While most existing studies investigate the omics data separately, data integration is needed on the horizon of precision medicine by using machine learning.
Collapse
Affiliation(s)
- Mandana Hasanzad
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nayereh Ayati
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Afzali
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerg Top Life Sci 2022; 6:215-225. [PMID: 35234253 DOI: 10.1042/etls20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Precision medicine is driven by the paradigm shift of empowering clinicians to predict the most appropriate course of action for patients with complex diseases and improve routine medical and public health practice. It promotes integrating collective and individualized clinical data with patient specific multi-omics data to develop therapeutic strategies, and knowledgebase for predictive and personalized medicine in diverse populations. This study is based on the hypothesis that understanding patient's metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic and predictive biomarkers and optimal paths providing personalized care for diverse and targeted chronic, acute, and infectious diseases. This study briefs emerging significant, and recently reported multi-omics and translational approaches aimed to facilitate implementation of precision medicine. Furthermore, it discusses current grand challenges, and the future need of Findable, Accessible, Intelligent, and Reproducible (FAIR) approach to accelerate diagnostic and preventive care delivery strategies beyond traditional symptom-driven, disease-causal medical practice.
Collapse
|
21
|
Ahmed Z. Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:101-125. [DOI: 10.1016/bs.pmbts.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Ielapi N, Andreucci M, Licastro N, Faga T, Grande R, Buffone G, Mellace S, Sapienza P, Serra R. Precision Medicine and Precision Nursing: The Era of Biomarkers and Precision Health. Int J Gen Med 2020; 13:1705-1711. [PMID: 33408508 PMCID: PMC7781105 DOI: 10.2147/ijgm.s285262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Precision health, by means of the support of precision medicine and precision nursing, is able to support clinical decision making in order to tailor optimal health-care decisions, around the individual characteristics of patients. The operational arm of precision health is represented by the use of biomarkers that can give useful information about disease susceptibility, exposure, evolution and response to treatment. Omics, imaging and clinical biomarkers are actually studied for their ability to positively impact health-care management. In this article, we try to address the role of biomarkers in the context of modern medicine and nursing with the view of improving patients care.
Collapse
Affiliation(s)
- Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Department of Public Health and Infectious Disease, "Sapienza" University of Rome, Rome, Italy
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Noemi Licastro
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Raffaele Grande
- Department of Surgery "P. Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Gianluca Buffone
- Department of Vascular Surgery, Health Agency of Trento, Trento, Italy
| | - Sabrina Mellace
- Department of Patient's Service, Civic Health Agency of Trento, Trento, Italy
| | - Paolo Sapienza
- Department of Surgery "P. Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
El Jaddaoui I, Allali I, Sehli S, Ouldim K, Hamdi S, Al Idrissi N, Nejjari C, Amzazi S, Bakri Y, Ghazal H. Cancer Omics in Africa: Present and Prospects. Front Oncol 2020; 10:606428. [PMID: 33425763 PMCID: PMC7793679 DOI: 10.3389/fonc.2020.606428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
During the last century, cancer biology has been arguably one of the most investigated research fields. To gain deeper insight into cancer mechanisms, scientists have been attempting to integrate multi omics data in cancer research. Cancer genomics, transcriptomics, metabolomics, proteomics, and metagenomics are the main multi omics strategies used currently in the diagnosis, prognosis, treatment, and biomarker discovery in cancer. In this review, we describe the use of different multi omics strategies in cancer research in the African continent and discuss the main challenges facing the implementation of these approaches in African countries such as the lack of training programs in bioinformatics in general and omics strategies in particular and suggest paths to address deficiencies. As a way forward, we advocate for the establishment of an "African Cancer Genomics Consortium" to promote intracontinental collaborative projects and enhance engagement in research activities that address indigenous aspects for cancer precision medicine.
Collapse
Affiliation(s)
- Islam El Jaddaoui
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Sofia Sehli
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | | | - Salsabil Hamdi
- Environmental Health Laboratory, Pasteur Institute, Casablanca, Morocco
| | - Najib Al Idrissi
- Department of Surgery, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Chakib Nejjari
- Department of Medicine, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Ghazal
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|