1
|
Ielpo S, Barberini F, Dabbagh Moghaddam F, Pesce S, Cencioni C, Spallotta F, De Ninno A, Businaro L, Marcenaro E, Bei R, Cifaldi L, Barillari G, Melaiu O. Crosstalk and communication of cancer-associated fibroblasts with natural killer and dendritic cells: New frontiers and unveiled opportunities for cancer immunotherapy. Cancer Treat Rev 2024; 131:102843. [PMID: 39442289 DOI: 10.1016/j.ctrv.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) are critical mediators of anti-cancer immune responses. In addition to their individual roles, NK cells and DCs are involved in intercellular crosstalk which is essential for the initiation and coordination of adaptive immunity against cancer. However, NK cell and DC activity is often compromised in the tumor microenvironment (TME). Recently, much attention has been paid to one of the major components of the TME, the cancer-associated fibroblasts (CAFs), which not only contribute to extracellular matrix (ECM) deposition and tumor progression but also suppress immune cell functions. It is now well established that CAFs support T cell exclusion from tumor nests and regulate their cytotoxic activity. In contrast, little is currently known about their interaction with NK cells, and DCs. In this review, we describe the interaction of CAFs with NK cells and DCs, by secreting and expressing various mediators in the TME of adult solid tumors. We also provide a detailed overview of ongoing clinical studies evaluating the targeting of stromal factors alone or in combination with immunotherapy based on immune checkpoint inhibitors. Finally, we discuss currently available strategies for the selective depletion of detrimental CAFs and for a better understanding of their interaction with NK cells and DCs.
Collapse
Affiliation(s)
- Simone Ielpo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Barberini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy; Pasteur Institute Italy-Fondazione Cenci Bolognetti, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
2
|
Hansen FJ, David P, Weber GF. The Multifaceted Functionality of Plasmacytoid Dendritic Cells in Gastrointestinal Cancers: A Potential Therapeutic Target? Cancers (Basel) 2024; 16:2216. [PMID: 38927922 PMCID: PMC11201847 DOI: 10.3390/cancers16122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal (GI) tumors pose a significant global health burden, necessitating the exploration of novel therapeutic approaches. Plasmacytoid dendritic cells (pDCs) play a crucial role in tumor immunity, exhibiting both anti-tumor and pro-tumor effects. This review aims to summarize the role of pDCs in different types of GI tumors and assess their potential as therapeutic targets. In gastric cancer, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, increased infiltration of pDCs was associated with a worse outcome, whereas in esophageal cancer, pancreatic cancer, and colorectal cancer, pDC infiltration improved the outcome. Initial animal studies of gastric cancer and hepatocellular carcinoma showed that pDCs could be a successful therapeutic target. In conclusion, pDCs play a multifaceted role in GI tumors, influencing both anti-tumor immunity and tumor progression. Further research is needed to optimize their clinical application and explore combinatorial approaches.
Collapse
Affiliation(s)
| | - Paul David
- Department of General and Visceral Surgery, Medical Faculty of Friedrich-Alexander-University Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Georg F. Weber
- Department of General and Visceral Surgery, Medical Faculty of Friedrich-Alexander-University Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany;
| |
Collapse
|
3
|
Deng Z, Guo T, Bi J, Wang G, Hu Y, Du H, Zhou Y, Jia S, Xing X, Ji J. Transcriptome profiling of patient-derived tumor xenografts suggests novel extracellular matrix-related signatures for gastric cancer prognosis prediction. J Transl Med 2023; 21:638. [PMID: 37726803 PMCID: PMC10510236 DOI: 10.1186/s12967-023-04473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND A major obstacle to the development of personalized therapies for gastric cancer (GC) is the prevalent heterogeneity at the intra-tumor, intra-patient, and inter-patient levels. Although the pathological stage and histological subtype diagnosis can approximately predict prognosis, GC heterogeneity is rarely considered. The extracellular matrix (ECM), a major component of the tumor microenvironment (TME), extensively interacts with tumor and immune cells, providing a possible proxy to investigate GC heterogeneity. However, ECM consists of numerous protein components, and there are no suitable models to screen ECM-related genes contributing to tumor growth and prognosis. We constructed patient-derived tumor xenograft (PDTX) models to obtain robust ECM-related transcriptomic signatures to improve GC prognosis prediction and therapy design. METHODS One hundred twenty two primary GC tumor tissues were collected to construct PDTX models. The tumorigenesis rate and its relationship with GC prognosis were investigated. Transcriptome profiling was performed for PDTX-originating tumors, and least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to extract prognostic ECM signatures and establish PDTX tumorigenicity-related gene (PTG) scores. The predictive ability of the PTG score was validated using two independent cohorts. Finally, we combined PTG score, age, and pathological stage information to establish a robust nomogram for GC prognosis prediction. RESULTS We found that PDTX tumorigenicity indicated a poor prognosis in patients with GC, even at the same pathological stage. Transcriptome profiling of PDTX-originating GC tissues and corresponding normal controls identified 383 differentially expressed genes, with enrichment of ECM-related genes. A robust prognosis prediction model using the PTG score showed robust performance in two validation cohorts. A high PTG score was associated with elevated M2 polarized macrophage and cancer-associated fibroblast infiltration. Finally, combining the PTG score with age and TNM stage resulted in a more effective prognostic model than age or TNM stage alone. CONCLUSIONS We found that ECM-related signatures may contribute to PDTX tumorigenesis and indicate a poor prognosis in GC. A feasible survival prediction model was built based on the PTG score, which was associated with immune cell infiltration. Together with patient ages and pathological TNM stages, PTG score could be a new approach for GC prognosis prediction.
Collapse
Affiliation(s)
- Ziqian Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jiwang Bi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Gangjian Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| | - Shuqin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| |
Collapse
|
4
|
Mak TK, Li X, Huang H, Wu K, Huang Z, He Y, Zhang C. The cancer-associated fibroblast-related signature predicts prognosis and indicates immune microenvironment infiltration in gastric cancer. Front Immunol 2022; 13:951214. [PMID: 35967313 PMCID: PMC9372353 DOI: 10.3389/fimmu.2022.951214] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers, with a wide range of symptoms and outcomes. Cancer-associated fibroblasts (CAFs) are newly identified in the tumor microenvironment (TME) and associated with GC progression, prognosis, and treatment response. A novel CAF-associated prognostic model is urgently needed to improve treatment strategies. Methods The detailed data of GC samples were downloaded from The Cancer Genome Atlas (TCGA), GSE62254, GSE26253, and GSE84437 datasets, then obtained 18 unique CAF-related genes from the research papers. Eight hundred eight individuals with GC were classified as TCGA or GSE84437 using consensus clustering by the selected CAF-related genes. The difference between the two subtypes revealed in this study was utilized to create the “CAF-related signature score” (CAFS-score) prognostic model and validated with the Gene Expression Omnibus (GEO) database. Results We identified two CAF subtypes characterized by high and low CAFS-score in this study. GC patients in the low CAFS-score group had a better OS than those in the high CAFS-score group, and the cancer-related malignant pathways were more active in the high CAFS-score group, compared to the low CAFS-score group. We found that there was more early TNM stage in the low CAFS-score subgroup, while there was more advanced TNM stage in the high CAFS-score subgroup. The expression of TMB was significantly higher in the low CAFS-score subgroup than in the high CAFS-score subgroup. A low CAFS-score was linked to increased microsatellite instability-high (MSI-H), mutation load, and immunological activation. Furthermore, the CAFS-score was linked to the cancer stem cell (CSC) index as well as chemotherapeutic treatment sensitivity. The patients in the high CAFS-score subgroup had significantly higher proportions of monocytes, M2 macrophages, and resting mast cells, while plasma cells and follicular helper T cells were more abundant in the low-risk subgroup. The CAFS-score was also highly correlated with the sensitivity of chemotherapeutic drugs. The low CAFS-score group was more likely to have an immune response and respond to immunotherapy. We developed a nomogram to improve the CAFS-clinical score’s usefulness. Conclusion The CAFS-score may have a significant role in the TME, clinicopathological characteristics, prognosis, CSC, MSI, and drug sensitivity, according to our investigation of CAFs in GC. We also analyzed the value of the CAFS-score in immune response and immunotherapy. This work provides a foundation for improving prognosis and responding to immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huaping Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kaiming Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijian Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhijian Huang, ; Yulong He, ; Changhua Zhang,
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhijian Huang, ; Yulong He, ; Changhua Zhang,
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhijian Huang, ; Yulong He, ; Changhua Zhang,
| |
Collapse
|
5
|
COL8A1 Predicts the Clinical Prognosis of Gastric Cancer and Is Related to Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7567447. [PMID: 35774273 PMCID: PMC9239809 DOI: 10.1155/2022/7567447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Background Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths. Because GC has the characteristics of high heterogeneity, unclear mechanism, limited treatment methods, and low five-year survival rate, it is necessary to find the prognostic biomarkers of GC and explore the mechanism of GC. Methods We first identified differentially expressed genes (DEGs) between gastric cancer and normal gastric cells through expression analysis. A protein-protein interaction (PPI) network was constructed to find tightly connected modules. We performed survival analysis on the DEGs in the modules to identify genes with prognostic significance. Gene set enrichment analysis (GSEA) was used to identify gene enrichment pathways. Finally, we used our own collected clinical samples of 119 gastric adenocarcinoma (STAD) tissues and 40 normal gastric tissues to perform immunohistochemical (IHC) staining to verify the differential expression of COL8A1 in STAD tissues and normal gastric tissues and its correlation with epithelial-mesenchymal transition- (EMT-) related factors. Results We identified 356 DEGs through differential expression analysis. Through PPI analysis and survival analysis, we determined that the collagen type VII alpha-1 chain (COL8A1) gene has prognostic significance. GSEA analysis showed that COL8A1 was significantly enriched in the EMT. IHC results showed that COL8A1 was upregulated in STAD tissues and could be used as an independent prognostic factor and was related to EMT. Conclusion This study shows that COL8A1 is related to the prognosis of GC patients and might affect the progress of GC through the EMT pathway. Therefore, COL8A1 may be a biomarker for predicting the prognosis of GC.
Collapse
|
6
|
Yang J, Liu X, Cheng Y, Zhang J, Ji F, Ling Z. Roles of Plasmacytoid Dendritic Cells in Gastric Cancer. Front Oncol 2022; 12:818314. [PMID: 35311157 PMCID: PMC8927765 DOI: 10.3389/fonc.2022.818314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common neoplasm and the third most deadly cancer in humans worldwide. Helicobacter pylori infection is the most important causative factor of gastric carcinogenesis, and activates host innate and adaptive immune responses. As key constituents of the tumor immune microenvironment, plasmacytoid dendritic cells (pDCs) are increasingly attracting attention owing to their potential roles in immunosuppression. We recently reported that pDCs have vital roles in the development of immunosuppression in GC. Clarifying the contribution of pDCs to the development and progression of GC may lead to improvements in cancer therapy. In this review, we summarize current knowledge regarding immune modulation in GC, especially the roles of pDCs in GC carcinogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|