1
|
Li C, Li G, Tu S, Bai X, Yuan H. Integrative bioinformatics analysis reveals STAT2 as a novel biomarker of inflammation-related cardiac dysfunction in atrial fibrillation. Open Med (Wars) 2023; 18:20230834. [PMID: 38025532 PMCID: PMC10655688 DOI: 10.1515/med-2023-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common critical cause of stroke and cardiac dysfunction worldwide with lifetime risks. Viral infection and inflammatory response with myocardial involvement may lead to an increase in AF-related mortality. To dissect the potential sequelae of viral infection in AF patients, especially the coronavirus disease 2019 (COVID-19), based on AF and COVID-19 databases from Gene Expression Omnibus, weighted gene co-expression network analysis was used to identify key genes in heart tissues and peripheral blood mononuclear cells. Here, HSCT, PSMB9, STAT2, and TNFSF13B were identified as common risk genes of AF and COVID-19 patients. Correlation analysis of these genes with AF and COVID-19 showed a positive disease relevance. silencing of STAT2 by small interfering RNA significantly rescued SARS-CoV-2 XBB1.5 pseudovirus-induced cardiac cell contraction dysfunction in vitro. In conclusion, we identified STAT2 may be a novel biomarker of inflammation-related cardiac dysfunction in AF.
Collapse
Affiliation(s)
- Cairong Li
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Guanhua Li
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Sijia Tu
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Xinghua Bai
- Department of Cardiology, First People’s Hospital of Linping District, Hangzhou311199, P.R. China
| | - Hong Yuan
- Department of Cardiology, First People’s Hospital of Linping District, 369 Yingbin Rd, Hangzhou311199, P.R. China
| |
Collapse
|
2
|
Martins ILF, Almeida FVDS, Souza KPD, Brito FCFD, Rodrigues GD, Scaramello CBV. Reviewing Atrial Fibrillation Pathophysiology from a Network Medicine Perspective: The Relevance of Structural Remodeling, Inflammation, and the Immune System. Life (Basel) 2023; 13:1364. [PMID: 37374146 DOI: 10.3390/life13061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia. The numerous gaps concerning the knowledge of its mechanism make improving clinical management difficult. As omics technologies allow more comprehensive insight into biology and disease at a molecular level, bioinformatics encompasses valuable tools for studying systems biology, as well as combining and modeling multi-omics data and networks. Network medicine is a subarea of network biology where disease traits are considered perturbations within the interactome. With this approach, potential disease drivers can be revealed, and the effect of drugs, novel or repurposed, used alone or in combination, may be studied. Thus, this work aims to review AF pathology from a network medicine perspective, helping researchers to comprehend the disease more deeply. Essential concepts involved in network medicine are highlighted, and specific research applying network medicine to study AF is discussed. Additionally, data integration through literature mining and bioinformatics tools, with network building, is exemplified. Together, all of the data show the substantial role of structural remodeling, the immune system, and inflammation in this disease etiology. Despite this, there are still gaps to be filled about AF.
Collapse
Affiliation(s)
- Ivis Levy Fernandes Martins
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| | - Flávia Valéria Dos Santos Almeida
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| | - Karyne Pollo de Souza
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| | | | - Gabriel Dias Rodrigues
- Experimental and Applied Physiology Lab (LAFEA), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, 20126 Milan, Milan, Italy
| | - Christianne Bretas Vieira Scaramello
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
- Experimental Pharmacology Lab (LAFE), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Liu X, Wu M, He Y, Gui C, Wen W, Jiang Z, Zhong G. Construction and integrated analysis of the ceRNA network hsa_circ_0000672/miR-516a-5p/TRAF6 and its potential function in atrial fibrillation. Sci Rep 2023; 13:7701. [PMID: 37169841 PMCID: PMC10175563 DOI: 10.1038/s41598-023-34851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Atrial fibrosis is a crucial contributor to initiation and perpetuation of atrial fibrillation (AF). This study aimed to identify a circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory network related to atrial fibrosis in AF, especially to validate hsa_circ_0000672/hsa_miR-516a-5p/TRAF6 ceRNA axis in AF preliminarily. The circRNA-miRNA-mRNA ceRNA network associated with AF fibrosis was constructed using bioinformatic tools and literature reviews. Left atrium (LA) low voltage was used to represent LA fibrosis by using LA voltage matrix mapping. Ten controls with sinus rhythm (SR), and 20 patients with persistent AF including 12 patients with LA low voltage and 8 patients with LA normal voltage were enrolled in this study. The ceRNA regulatory network associated with atrial fibrosis was successfully constructed, which included up-regulated hsa_circ_0000672 and hsa_circ_0003916, down-regulated miR-516a-5p and five up-regulated hub genes (KRAS, SMAD2, TRAF6, MAPK11 and SMURF1). In addition, according to the results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these hub genes were clustered in TGF-beta and MAPK signaling pathway. In the patients with persistent AF, hsa_circ_0000672 expression in peripheral blood monocytes was significantly higher than those in controls with SR by quantitative real-time polymerase chain reaction (p-value < 0.001). Furthermore, hsa_circ_0000672 expression was higher in peripheral blood monocytes of persistent AF patients with LA low voltage than those with LA normal voltage (p-value = 0.002). The dual-luciferase activity assay confirmed that hsa_circ_0000672 exerted biological functions as a sponge of miR-516a-5p to regulate expression of its target gene TRAF6. Hsa_circ_0000672 expression in peripheral blood monocytes may be associated with atrial fibrosis. The hsa_circ_0000672 may be involved in atrial fibrosis by indirectly regulating TRAF6 as a ceRNA by sponging miR-516a-5p.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, China
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, China
| | - Yan He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiming Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Ying K, Chen J, Fu Z, Ren B. FAS-mediated circRNA-miRNA-mRNA Crosstalk Network Regulates Immune Cell Infiltration in Cerebral Infarction. J Mol Neurosci 2023; 73:117-128. [PMID: 36656441 DOI: 10.1007/s12031-023-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
New data are accumulating on the involvement of interaction among circular RNAs (circRNAs), microRNAs (miRNAs/miRs), and messenger RNAs (mRNAs) in cerebral infarction (CI). This study aims to illustrate the GEO database-based identification of a circRNA-miRNA-mRNA crosstalk network underlying immune cell infiltration in CI. The differential analysis suggested that 1696 circRNAs, 1989 miRNAs, and 5550 mRNAs that were differentially expressed in CI samples were retrieved from GEO database. GO and KEGG functional enrichment analyses showed that the differentially expressed mRNAs were mainly associated with common risk factors of CI, such as immune and inflammatory response. Next, the circRNA-miRNA pairs and miRNA-mRNA pairs were predicted, and the circRNA-miRNA-mRNA network was constructed by Cytoscape software. Totally, 436 circRNA-miRNA pairs were obtained through the online database, and 2033 miRNA-mRNA pairs were used to construct the circRNA-miRNA-mRNA crosstalk network. A protein-protein interaction (PPI) network was constructed on the basis of the ceRNA network, followed by key gene identification in the GSE9877 dataset. FAS was identified as the key gene in CI. The constructed FAS-mediated circRNA-miRNA-mRNA crosstalk network included five upregulated circRNAs (hsa_circ_0075341, hsa_circ_0049637, hsa_circ_0001085, hsa_circ_0004808 and hsa_circ_0092337) and five downregulated miRNAs (hsa-miR-92a-2-5p, hsa-miR-1245b-3p, hsa-miR-592, hsa-miR-224-5p, and hsa-miR-30e-3p). Furthermore, the CIBERSORT algorithm indicated that FAS was associated with immune cell infiltration in CI. In conclusion, this study revealed a role for FAS-centered circRNA-miRNA-mRNA crosstalk network in regulating immune cell infiltration of CI, which may be a viable target for CI prevention.
Collapse
Affiliation(s)
- Ke Ying
- Department of Intensive Care Unit, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, 599 Jinshan West Road, Dongcheng Street, Yongkang, 321300, Zhejiang, China
| | - Juan Chen
- Department of Intensive Care Unit, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, 599 Jinshan West Road, Dongcheng Street, Yongkang, 321300, Zhejiang, China
| | - Zhenhui Fu
- Department of Intensive Care Unit, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, 599 Jinshan West Road, Dongcheng Street, Yongkang, 321300, Zhejiang, China
| | - Bo Ren
- Department of Intensive Care Unit, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College, 599 Jinshan West Road, Dongcheng Street, Yongkang, 321300, Zhejiang, China.
| |
Collapse
|
5
|
Bioinformatics Analysis of Competing Endogenous RNA Network and Immune Infiltration in Atrial Fibrillation. Genet Res (Camb) 2022; 2022:1415140. [PMID: 35919038 PMCID: PMC9308555 DOI: 10.1155/2022/1415140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background There is still no clear understanding of the pathogenesis of atrial fibrillation (AF). For this purpose, we used integrated analysis to uncover immune infiltration characteristics and investigated their relationship with competing endogenous RNA (ceRNA) network in AF. Methods Three AF mRNA data sets (GSE14975, GSE79768, and GSE41177) were integrated using the SVA method from Gene Expression Omnibus (GEO). Together with AF circRNA data set (GSE129409) and miRNA data set (GSE70887) from GEO database, we built a ceRNA network. Then hub genes were screened by the Cytoscape plug-in cytoHubba from a protein-protein interaction (PPI) network. As well, CIBERSORT was employed to investigate immune infiltration, followed by Pearson correlation coefficients to unravel the correlation between AF-related infiltrating immune cells and hub genes. Ulteriorly, circRNA-miRNA-mRNA regulatory axises that could be immunologically related to AF were obtained. Results Ten hub genes were identified from the constructing PPI network. The immune infiltration analysis revealed that the number of monocytes and neutrophils was higher, as well as the number of dendritic cells activated and T cells regulatory (Tregs) was lower in AF. Seven hub genes (C5AR1, CXCR4, HCK, LAPTM5, MPEG1, TLR8, and TNFSF13B) were associated with those 4 immune cells (P < 0.05). We found that the circ_0005299–miR-1246–C5AR1 and circRNA_0079284-miR-623-HCK/CXCR4 regulatory axises may be associated with the immune mechanism of AF. Conclusion The findings of our study provide insights into immuno-related ceRNA networks as potential molecular regulators of AF progression.
Collapse
|