1
|
Feng Q, Liu Q, Liu Z, Xu J, Yang Y, Zhu Y, Lu G, Xu G, Wu D, Wang F, Liu B, Wang W, Ding X. USP9X inhibits metastasis in pulmonary sarcomatoid carcinoma by regulating epithelial-mesenchymal transition, angiogenesis and immune infiltration. Transl Oncol 2024; 47:101950. [PMID: 38964032 PMCID: PMC11283126 DOI: 10.1016/j.tranon.2024.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Pulmonary sarcomatoid carcinoma (PSC) is a highly invasive pulmonary malignancy with an extremely poor prognosis. The results of previous studies suggest that ubiquitin-specific peptidase 9X (USP9X) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of USP9X in the metastasis of PSC. METHODS Immunohistochemistry and western blotting were used to detect USP9X expression levels in PSC tissues and cells. Wound healing, transwell, enzyme-linked immunosorbent assay (ELISA), tube formation, and aortic ring assays were used to examine the function and mechanism of USP9X in the metastasis of PSC. RESULTS Expression of USP9X was markedly decreased and significantly correlated with metastasis and prognosis of patients with PSC. Then we revealed that USP9X protein levels were negatively associated with the levels of epithelial-mesenchymal transition (EMT) markers and the migration of PSC cells. It was confirmed that USP9X in PSC cells reduced VEGF secretion and inhibited tubule formation of human umbilical vein endothelial cells (HUVEC) in vitro. USP9X was detected to downregulate MMP9. Meanwhile, MMP9 was positively related to EMT, angiogenesis and was negatively related to immune infiltration in the public databases. USP9X was significantly negatively associated with the expression of MMP9, EMT markers, CD31, and positively associated with CD4, and CD8 in PSC tissues. CONCLUSION The present study reveals the vital role of USP9X in regulating EMT, angiogenesis and immune infiltration and inhibiting metastasis of PSC via downregulating MMP9, which provides a new effective therapeutic target for PSC.
Collapse
Affiliation(s)
- Qin Feng
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Qian Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zi Liu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Jianyu Xu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Yang Yang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Zhu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Guangxian Lu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Guangjuan Xu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Dan Wu
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Feng Wang
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China
| | - Biao Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Wenjuan Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China.
| | - Xinyuan Ding
- Medical Science and Technology Innovation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Minicipal Hospital, Gusu School of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
2
|
Ponomarenko I, Pasenov K, Churnosova M, Sorokina I, Aristova I, Churnosov V, Ponomarenko M, Reshetnikova Y, Reshetnikov E, Churnosov M. Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer. Biomedicines 2024; 12:818. [PMID: 38672173 PMCID: PMC11048332 DOI: 10.3390/biomedicines12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence of obesity, were divided into two groups: obese (119 BC; 253 controls) and non-obese (239 BC; 887 controls). Genotyping of nine SHBG-associated single nucleotide polymorphisms (SNP)-rs17496332 PRMT6, rs780093 GCKR, rs10454142 PPP1R21, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2, and rs12150660 SHBG-was executed, and the BC-risk impact of these loci was analyzed by logistic regression separately in each group of obese/non-obese women. We found that the BC-risk effect correlated by GWAS with the SHBG-level polymorphism rs10454142 PPP1R21 depends on the presence/absence of obesity. The SHBG-lowering allele C rs10454142 PPP1R21 has a risk value for BC in obese women (allelic model: CvsT, OR = 1.52, 95%CI = 1.10-2.11, and pperm = 0.013; additive model: CCvsTCvsTT, OR = 1.71, 95%CI = 1.15-2.62, and pperm = 0.011; dominant model: CC + TCvsTT, OR = 1.95, 95%CI = 1.13-3.37, and pperm = 0.017) and is not associated with the disease in women without obesity. SNP rs10454142 PPP1R21 and 10 proxy SNPs have adipose-specific regulatory effects (epigenetic modifications of promoters/enhancers, DNA interaction with 51 transcription factors, eQTL/sQTL effects on five genes (PPP1R21, RP11-460M2.1, GTF2A1L, STON1-GTF2A1L, and STON1), etc.), can be "likely cancer driver" SNPs, and are involved in cancer-significant pathways. In conclusion, our study detected an obesity-dependent association of the rs10454142 PPP1R21 with BC in women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (I.P.); (K.P.); (M.C.); (I.S.); (I.A.); (V.C.); (M.P.); (Y.R.); (E.R.)
| |
Collapse
|
3
|
Wei Y, Wang L, Jin Z, Jia Q, Brcic L, Akaba T, Chu Q. Biological characteristics and clinical treatment of pulmonary sarcomatoid carcinoma: a narrative review. Transl Lung Cancer Res 2024; 13:635-653. [PMID: 38601447 PMCID: PMC11002509 DOI: 10.21037/tlcr-24-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Background and Objective Pulmonary sarcomatoid carcinoma (PSC) is a subset of non-small cell lung cancer (NSCLC) with highly malignant, aggressive, and heterogeneous features. Patients with this disease account for approximately 0.1-0.4% of lung cancer cases. The absence of comprehensive summaries on the basic biology and clinical treatments for PSC means there is limited systematic awareness and understanding of this rare disease. This paper provides an overview of the biological characteristics of PSC and systematically summarizes various treatment strategies available for patients with this disease. Methods For this narrative review, we have searched literature related to the basic biology and clinical treatment approaches of PSC by searching the PubMed database for articles published from July 16, 1990 to August 29, 2023. The following keywords were used: "pulmonary sarcomatoid carcinoma", "genetic mutations", "immune microenvironment", "hypoxia", "angiogenesis", "overall survival", "surgery", "radiotherapy", "chemotherapy", and "immune checkpoint inhibitors". Key Content and Findings Classical PSC comprises epithelial and sarcomatoid components, with most studies suggesting a common origin. PSC exhibits a higher tumor mutational burden (TMB) and mutation frequency than other types of NSCLC. The tumor microenvironment (TME) of PSC is characterized by hypoxia, hypermetabolism, elevated programmed cell death protein 1/programmed cell death-ligand 1 expression, and high immune cell infiltration. Treatment strategies for advanced PSC are mainly based on traditional NSCLC treatments, but PSC exhibits resistance to chemotherapy and radiotherapy. The advancement of genome sequencing has introduced targeted therapies as an option for mutation-positive PSC cases. Moreover, due to the characteristics of the immune microenvironment of PSC, many patients positively respond to immunotherapy, demonstrating its potential for the management of PSC. Conclusions Although several studies have examined and assessed the TME of PSC, these are limited in quantity and quality, presenting challenges for research into the clinical treatment strategies for PSC. With the emergence of new technologies and the advancement of clinical research, for example, savolitinib's clinical study for MET exon 14 skipping mutations positive PSC patients have shown promising outcomes, more in-depth studies on PSC are eagerly anticipated.
Collapse
Affiliation(s)
- Yuxuan Wei
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Jin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Tomohiro Akaba
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang C, Yuan X, Xue J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol Ther 2023; 31:1960-1978. [PMID: 37179456 PMCID: PMC10362419 DOI: 10.1016/j.ymthe.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer causes the most cancer-related deaths worldwide. In recent years, molecular and immunohistochemical techniques have rapidly developed, further inaugurating an era of personalized medicine for lung cancer. The rare subset of lung cancers accounts for approximately 10%, each displaying distinct clinical characteristics. Treatments for rare lung cancers are mainly based on evidence from common counterparts, which may lead to unsolid clinical benefits considering intertumoral heterogeneity. The increasing knowledge of molecular profiling of rare lung cancers has made targeting genetic alterations and immune checkpoints a powerful strategy. Additionally, cellular therapy has emerged as a promising way to target tumor cells. In this review, we first discuss the current status of targeted therapy and preclinical models for rare lung cancers, as well as provide mutational profiles by integrating the results of existing cohorts. Finally, we point out the challenges and future directions for developing targeted agents for rare lung cancer.
Collapse
Affiliation(s)
- Chunsen Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Yuan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
6
|
Ma Y, Li W, Li Z, Chen J, Wang H, Jiang T, Zhu J. Immunophenotyping of pulmonary sarcomatoid carcinoma. Front Immunol 2022; 13:976739. [PMID: 36341325 PMCID: PMC9633134 DOI: 10.3389/fimmu.2022.976739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies have suggested that patients with pulmonary sarcomatoid carcinoma (PSC)may benefit from immune checkpoint inhibitors (ICIs); however, relevant data are lacking. This study aimed to establish the immunophenotype of PSC by assessing PD-L1 and CD8+ T-cell infiltration. Methods A retrospective analysis of pathologically confirmed PSC cases from two centers was performed from January 2009 to May 2021. According to the infiltration of CD8+ T cells in different spatial regions, patients were classified into three types: immune-inflamed, immune-excluded, and immune desert. PD-L1 staining was also performed on the intratumoral region and the tumor proportion score (TPS) was used for scoring. Combined with CD8+ T-cell infiltration and PD-L1 expression in the intratumoral region, immunophenotyping can be divided into four types: type I (PD-L1+/CD8+, adaptive immune resistance), type II (PD-L1-/CD8-, immunologic ignorance), type III (PD-L1+/CD8-, intrinsic induction), and type IV (PD-L1-/CD8+, tolerance). Finally, correlation analysis was performed on the immunophenotype, clinicopathological characteristics, and outcomes of the patients. Results A total of 32 patients with PSC were included in the final analysis. Of these patients, 65.6% (21/32), 15.6% (5/32), and 18.8% (6/32) were classified as immune-inflamed, immune-excluded, and immune-desert, respectively. Notably, the immune-inflamed type is predominantly observed in pleomorphic carcinomas (PC, 66.7%). Moreover, among these participants, 19 (59.4%) were classified as PD-L1 positive according to the TPS score. In particular, 11 (34.4%) patients had PD-L1 TPS scores >50%. Next, we immunophenotyped patients with PSC based on CD8+ T cell infiltration and tumor cell PD-L1 expression (types I–IV). Type I (PD-L1+/CD8+, adaptive immune resistance) was the most prevalent subtype, accounting for 46.9% (15/32), followed by type II (PD-L1-/CD8-, immunological ignorance) (21.9%), type IV (PD-L1-/CD8+, tolerance) (18.7%), and type III (PD-L1+/CD8-, intrinsic induction) (12.5%). Finally, we performed a survival analysis and found that neither immunophenotype was a predictor of prognosis in patients with PSC. Multivariate analysis showed that pneumonectomy increased the risk of death by four times compared with lobectomy (RR: 4.1; 95% CI:1.3-12.4, P=0.014). Conclusion Patients with PSC are characterized by immune-inflamed type and type I (PD-L1+/CD8+, adaptive immune resistance), explaining the intrinsic reasons for their high response rate to immunotherapy.
Collapse
Affiliation(s)
- Yu Ma
- Department of Pathology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Wensheng Li
- Department of Pathology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhenzhen Li
- Department of Pathology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jie Chen
- Department of Pathology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Hongtao Wang
- Department of Thoracic Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jianfei Zhu, ; Tao Jiang,
| | - Jianfei Zhu
- Department of Thoracic Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Jianfei Zhu, ; Tao Jiang,
| |
Collapse
|