1
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
2
|
Pires J, Costa SA, da Silva KP, da Conceição AGB, Reis ÉDM, Sinhorin AP, Branco CLB, Cruz L, Ferrarini SR, Andrade CMB. Artemether-loaded polymeric lipid-core nanocapsules reduce cell viability and alter the antioxidant status of U-87 MG cells. Pharm Dev Technol 2022; 27:892-903. [PMID: 36168940 DOI: 10.1080/10837450.2022.2128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Glioblastomas are tumors that present a high mortality rate. Artemether (ART) is a lactone with antitumor properties, demonstrating low bioavailability and water solubility. In the present study, we developed lipid-core nanocapsules (LNC) containing pequi oil (Caryocar brasiliense Cambess) as the oily core for ART-loaded LNCs (LNCART) and evaluated their effect on human glioblastoma cells (U-87 MG). LNCs were developed by interfacial deposition of a preformed polymer, followed by physicochemical characterization. LNCART revealed a diameter of 0.216 µm, polydispersity index of 0.161, zeta potential of -12.0 mV, and a pH of 5.53. Furthermore, mitochondrial viability, proliferation, total antioxidant status, and antioxidant enzyme activity were evaluated. ART reduced cell viability after 24 h and proliferation after 48 h of treatment at concentrations equal to or above 40 µg . mL-1. LNCART, at 1.25 µg . mL-1, reduced these parameters after 24 h of treatment. Furthermore, superoxide dismutase (SOD) activity was elevated, while glutathione reductase (GR) activity was reduced. These findings suggest that ART loaded into LNC may be a promising alternative to improve its pharmacological action and possible application as a therapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Jader Pires
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Suéllen Alves Costa
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Karoline Paiva da Silva
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | | | - Érica de Melo Reis
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Adilson Paulo Sinhorin
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Carmen Lucia Bassi Branco
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Letícia Cruz
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Stela Regina Ferrarini
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Cláudia Marlise Balbinotti Andrade
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil.,Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
3
|
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020; 15:8673-8696. [PMID: 33192061 PMCID: PMC7654520 DOI: 10.2147/ijn.s231477] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanomaterials have become a prominent area of research in the field of drug delivery. Their application in nanomedicine can improve bioavailability, pharmacokinetics, and, therefore, the effectiveness of various therapeutics or contrast agents. There are many studies for developing new polymeric nanocarriers; however, their clinical application is somewhat limited. In this review, we present new complex and multifunctional polymeric nanocarriers as promising and innovative diagnostic or therapeutic systems. Their multifunctionality, resulting from the unique chemical and biological properties of the polymers used, ensures better delivery, and a controlled, sequential release of many different therapeutics to the diseased tissue. We present a brief introduction of the classical formulation techniques and describe examples of multifunctional nanocarriers, whose biological assessment has been carried out at least in vitro. Most of them, however, also underwent evaluation in vivo on animal models. Selected polymeric nanocarriers were grouped depending on their medical application: anti-cancer drug nanocarriers, nanomaterials delivering compounds for cancer immunotherapy or regenerative medicine, components of vaccines nanomaterials used for topical application, and lifestyle diseases, ie, diabetes.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
4
|
Bruinsmann FA, Buss JH, Souto GD, Schultze E, de Cristo Soares Alves A, Seixas FK, Collares TV, Pohlmann AR, Guterres SS. Erlotinib-Loaded Poly(ε-Caprolactone) Nanocapsules Improve In Vitro Cytotoxicity and Anticlonogenic Effects on Human A549 Lung Cancer Cells. AAPS PharmSciTech 2020; 21:229. [PMID: 32778976 DOI: 10.1208/s12249-020-01723-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most frequent type of cancer and the leading cause of cancer-related mortality worldwide. This study aimed to develop erlotinib (ELB)-loaded poly(ε-caprolactone) nanocapsules (NCELB) and evaluated their in vitro cytotoxicity in A549 cells. The formulation was characterized in relation to hydrodynamic diameter (171 nm), polydispersity index (0.076), zeta potential (- 8 mV), drug content (0.5 mg.mL-1), encapsulation efficiency (99%), and pH (6.0). NCELB presented higher cytotoxicity than ELB in solution against A549 cells in the MTT and LIVE/DEAD cell viability assays after 24 h of treatment. The main mechanism of cytotoxicity of NCELB was the induction of apoptosis in A549 cells. Further, a significant decrease in A549 colony formation was verified after NCELB treatment in comparison with the unencapsulated drug treatment. The reduction in clonogenic capacity is very relevant as it can reduce the risk of tumor recurrence and metastasis. In conclusion, erlotinib-loaded PCL nanocapsules are promising nanoparticles carriers to increase the efficacy of ELB in lung cancer treatment.
Collapse
|
5
|
Ferreira LM, Sari MHM, Azambuja JH, da Silveira EF, Cervi VF, Marchiori MCL, Maria-Engler SS, Wink MR, Azevedo JG, Nogueira CW, Braganhol E, Cruz L. Xanthan gum-based hydrogel containing nanocapsules for cutaneous diphenyl diselenide delivery in melanoma therapy. Invest New Drugs 2019; 38:662-674. [DOI: 10.1007/s10637-019-00823-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
6
|
Bruinsmann FA, Pigana S, Aguirre T, Dadalt Souto G, Garrastazu Pereira G, Bianchera A, Tiozzo Fasiolo L, Colombo G, Marques M, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics 2019; 11:E86. [PMID: 30781722 PMCID: PMC6409859 DOI: 10.3390/pharmaceutics11020086] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
Drug delivery to the brain represents a challenge, especially in the therapy of central nervous system malignancies. Simvastatin (SVT), as with other statins, has shown potential anticancer properties that are difficult to exploit in the central nervous system (CNS). In the present work the physico⁻chemical, mucoadhesive, and permeability-enhancing properties of simvastatin-loaded poly-ε-caprolactone nanocapsules coated with chitosan for nose-to-brain administration were investigated. Lipid-core nanocapsules coated with chitosan (LNCchit) of different molecular weight (MW) were prepared by a novel one-pot technique, and characterized for particle size, surface charge, particle number density, morphology, drug encapsulation efficiency, interaction between surface nanocapsules with mucin, drug release, and permeability across two nasal mucosa models. Results show that all formulations presented adequate particle sizes (below 220 nm), positive surface charge, narrow droplet size distribution (PDI < 0.2), and high encapsulation efficiency. Nanocapsules presented controlled drug release and mucoadhesive properties that are dependent on the MW of the coating chitosan. The results of permeation across the RPMI 2650 human nasal cell line evidenced that LNCchit increased the permeation of SVT. In particular, the amount of SVT that permeated after 4 hr for nanocapsules coated with low-MW chitosan, high-MW chitosan, and control SVT was 13.9 ± 0.8 μg, 9.2 ± 1.2 µg, and 1.4 ± 0.2 µg, respectively. These results were confirmed by SVT ex vivo permeation across rabbit nasal mucosa. This study highlighted the suitability of LNCchit as a promising strategy for the administration of simvastatin for a nose-to-brain approach for the therapy of brain tumors.
Collapse
Affiliation(s)
- Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Stefania Pigana
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Tanira Aguirre
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 900500-170, Brazil.
| | - Gabriele Dadalt Souto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| | - Gabriela Garrastazu Pereira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Laura Tiozzo Fasiolo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Magno Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Rio Grande, RS 96203-000, Brazil.
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| |
Collapse
|
7
|
Mishra H, Mishra PK, Ekielski A, Jaggi M, Iqbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol 2018; 144:2283-2302. [DOI: 10.1007/s00432-018-2726-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
|
8
|
Antonow MB, Franco C, Prado W, Beckenkamp A, Silveira GP, Buffon A, Guterres SS, Pohlmann AR. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 8:E2. [PMID: 29271920 PMCID: PMC5791089 DOI: 10.3390/nano8010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/05/2023]
Abstract
Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL-1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL-1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL-1. RGD complexation was 7.73 × 10⁴ molecules per nanocapsule and Dox loading were 1.51 × 10⁴ and 7.64 × 10⁴ molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG.
Collapse
Affiliation(s)
- Michelli B Antonow
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
| | - Camila Franco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
| | - Willian Prado
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brazil.
| | - Aline Beckenkamp
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
| | - Gustavo P Silveira
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brazil.
| | - Andréia Buffon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
| | - Sílvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000 RS, Brazil.
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brazil.
| |
Collapse
|
9
|
Drewes CC, Alves ADCS, Hebeda CB, Copetti I, Sandri S, Uchiyama MK, Araki K, Guterres SS, Pohlmann AR, Farsky SH. Role of poly(ε-caprolactone) lipid-core nanocapsules on melanoma-neutrophil crosstalk. Int J Nanomedicine 2017; 12:7153-7163. [PMID: 29026308 PMCID: PMC5627757 DOI: 10.2147/ijn.s140557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is an aggressive cancer with increasing incidence and limited therapies in advanced stages. Systemic neutrophilia or abundant neutrophils in the tumor contribute toward its worst prognosis, and the interplay of cancer and the immune system has been shown in tumor development and metastasis. We recently showed the in vivo efficacy of poly(ε-caprolactone) lipid-core nanocapsule (LNC) or LNC loaded with acetyleugenol (AcE-LNC) to treat B16F10-induced melanoma in mice. In this study, we investigated whether LNC or AcE-LNC toxicity could involve modifications on crosstalk of melanoma cells and neutrophils. Therefore, melanoma cells (B16F10) were pretreated with vehicle, LNC, AcE or AcE-LNC for 24 h, washed and, further, cocultured for 18 h with peritoneal neutrophils obtained from C57Bl/6 mice. Melanoma cells were able to internalize the LNC or AcE-LNC after 2 h of incubation. LNC or AcE-LNC pretreatments did not cause melanoma cells death, but led melanoma cells to be more susceptible to death in serum deprivation or hypoxia or in the presence of neutrophils. Interestingly, the production of reactive oxygen species (ROS), which causes cell death, was increased by neutrophils in the presence of LNC- and AcE-LNC-pretreated melanoma cells. LNC or AcE-LNC treatments reduced the concentration of transforming growth factor-β (TGF-β) in the supernatant of melanoma cells, a known factor secreted by cancer cells to induce pro-tumoral actions of neutrophils in the tumor microenvironment. In addition, we found reduced levels of pro-tumoral chemical mediators VEGF, arginase-1, interleukin-10 (IL-10) and matrix metalloproteinase-9 (MMP-9) in the supernatant of LNC or AcE-LNC-pretreated melanoma cells and cocultured with neutrophils. Overall, our data show that the uptake of LNC or AcE-LNC by melanoma cells affects intracellular mechanisms leading to more susceptibility to death and also signals higher neutrophil antitumoral activity.
Collapse
Affiliation(s)
- Carine C Drewes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo
| | - Aline de CS Alves
- Postgraduate Program in Pharmaceutical Sciences
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre
| | - Cristina B Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo
| | - Isabela Copetti
- Postgraduate Program in Pharmaceutical Sciences
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo
| | - Mayara K Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Adriana R Pohlmann
- Postgraduate Program in Pharmaceutical Sciences
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre
| | - Sandra H Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo
| |
Collapse
|
10
|
Salerno A, Diéguez S, Diaz-Gomez L, Gómez-Amoza JL, Magariños B, Concheiro A, Domingo C, Alvarez-Lorenzo C, García-González CA. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers. Biofabrication 2017; 9:035002. [DOI: 10.1088/1758-5090/aa78c5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|