1
|
Frączek W, Kotela A, Kotela I, Grodzik M. Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6162. [PMID: 39769763 PMCID: PMC11677186 DOI: 10.3390/ma17246162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Nanotechnology, delving into the realm of nanometric structures, stands as a transformative force in orthopedics, reshaping diagnostics, and numerous regenerative interventions. Commencing with diagnostics, this scientific discipline empowers accurate analyses of various diseases and implant stability, heralding an era of unparalleled precision. Acting as carriers for medications, nanomaterials introduce novel therapeutic possibilities, propelling the field towards more targeted and effective treatments. In arthroplasty, nanostructural modifications to implant surfaces not only enhance mechanical properties but also promote superior osteointegration and durability. Simultaneously, nanotechnology propels tissue regeneration, with nanostructured dressings emerging as pivotal elements in accelerating wound healing. As we navigate the frontiers of nanotechnology, ongoing research illuminates promising avenues for further advancements, assuring a future where orthopedic practices are not only personalized but also highly efficient, promising a captivating journey through groundbreaking innovations and tailored patient care.
Collapse
Affiliation(s)
- Wiktoria Frączek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Andrzej Kotela
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland
| | - Ireneusz Kotela
- National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
2
|
Hamilton A, Wongcharoenwatana J, Hoellwarth J, Fragomen A, Rozbruch S, Reif T. The immediate ex vivo covering and filling characteristics of antibiotic-loaded resorbable calcium sulfate paste around intramedullary nails. J Bone Jt Infect 2024; 9:261-270. [PMID: 40308333 PMCID: PMC12042201 DOI: 10.5194/jbji-9-261-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2025] Open
Abstract
Background: Antibiotic-laden polymethyl methacrylate (PMMA)-coated intramedullary nails (IMNs) are an effective treatment for osteomyelitis, but they pose multiple disadvantages. Antibiotic-loaded resorbable calcium sulfate (ARCS) paste is an alternative option to deliver a local antibiotic depot around IMNs, but such use has been minimally investigated. This study aimed to define the immediate covering and filling characteristics of ARCS around IMNs by using anatomic bone models. Method: Five tibia models (foam with cortical shell) were prepared by reaming a uniform 13 mm cylindrical path. Three 40 cc kits of ARCS (STIMULAN, Biocomposites Ltd, Keele, UK) were mixed with 3 g vancomycin and 1.2 g tobramycin powder and injected into the intramedullary canal while wet, completely filling the canal. A 10 mm × 345 mm tibial IMN was immediately inserted without interlocking screws and allowed to completely cure for 2 h. The models were then longitudinally cut without disrupting the dry ARCS covering on the nail. The ARCS was removed from the nail at five equidistant locations along the nail. The thickness of the ARCS was measured with a caliper. A repeated-measures ANOVA test was used to compare the mean width of each segment for each model. Results: In all five trials, the tibial canal volume surrounding the nail remained completely filled. The ARCS paste was confluent along the length of the IMN. There were no gaps or air pockets between the paste and reamed model bone. There was no statistically significant difference among the five samples at each location ( p = 0.913 ) or among the five locations along the bone ( p = 0.210 ). Conclusion: In a model setting, ARCS fully fills the intramedullary canal of a tibia and covers an IMN uniformly. Study of the in vivo material properties of ARCS may further elucidate the bone penetration as well as the clinical utility of this antibiotic depot technique.
Collapse
Affiliation(s)
- Amber A. Hamilton
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Orthopedic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Jidapa Wongcharoenwatana
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY 10021, USA
| | - Jason S. Hoellwarth
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Orthopedic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Austin T. Fragomen
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Orthopedic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - S. Robert Rozbruch
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Orthopedic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Taylor J. Reif
- Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Orthopedic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
3
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
4
|
Shen Z, Xu Y, Qian XN, Zhou YH, Zhou Y, Zhou JY, Liu Y, Zhang SM, Qiu J. Enhanced osteogenic and antibacterial properties of titanium implant surface modified with Zn-incorporated nanowires: Preclinical in vitro and in vivo investigations. Clin Oral Implants Res 2024; 35:427-442. [PMID: 38314615 DOI: 10.1111/clr.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE This study aimed to synthesize zinc-incorporated nanowires structure modified titanium implant surface (Zn-NW-Ti) and explore its superior osteogenic and antibacterial properties in vitro and in vivo. MATERIALS AND METHODS Zn-NW-Ti was synthesized via displacement reactions between zinc sulfate solutions and the titanium (Ti) surface, which was pretreated by hydrofluoric acid etching and hyperthermal alkalinization. The physicochemical properties of the Zn-NW-Ti surface were examined. Moreover, the biological effects of Zn-NW-Ti on MC3T3-E1 cells and its antibacterial property against oral pathogenic bacteria (Staphylococcus aureus, Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans) compared with sandblasted and acid-etched Ti (SLA-Ti) and nanowires modified Ti (NW-Ti) surface were assessed. Zn-NW-Ti and SLA-Ti modified implants were inserted into the anterior extraction socket of the rabbit mandible with or without exposure to the mixed bacterial solution (S. aureus, P. gingivalis, and A. actinomycetemcomitans) to investigate the osteointegration and antibacterial performance via radiographic and histomorphometric analysis. RESULTS The Zn-NW-Ti surface was successfully prepared. The resultant titanium surface appeared as a nanowires structure with hydrophilicity, from which zinc ions were released in an effective concentration range. The Zn-NW-Ti surface performed better in facilitating the adhesion, proliferation, and differentiation of MC3T3-E1 cells while inhibiting the colonization of bacteria compared with SLA-Ti and NW-Ti surface. The Zn-NW-Ti implant exhibited enhanced osseointegration in vivo, which was attributed to increased osteogenic activity and reduced bacterial-induced inflammation compared with the SLA-Ti implant. CONCLUSIONS The Zn-incorporated nanowires structure modified titanium implant surface exhibited improvements in osteogenic and antibacterial properties, which optimized osteointegration in comparison with SLA titanium implant surface.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xin-Na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yi-Heng Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - You Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jie-Yi Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yao Liu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Song-Mei Zhang
- Department of Comprehensive Care, Tufts University School of Dental Medicine Boston, Massachusetts, USA
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
5
|
Liang Z, Chen Z, Zhu Z, Zhang Y, Niu W, Tan S, Wong HM, Li X, Li Q, Qiu H. Colloidal Phenol-Amine Coating on Implants for Improved Anti-Inflammation and Osteogenesis. ACS Biomater Sci Eng 2024; 10:365-376. [PMID: 38118128 DOI: 10.1021/acsbiomaterials.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Phenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge. In this study, we use a macromolecular phenol-amine, Tanfloc, to form a stable colloid under neutral conditions, which was then rapidly adsorbed on the titanium surface by electrostatic action and then spread and fused to form a continuous coating within several minutes. This nonchemical preparation process was rapid, mild, and free of chemical additives. The in vitro and in vivo results showed that the Tanfloc colloid fusion coating inhibited destructive inflammation, promoted osteogenesis, and enhanced osteointegration. These remarkable advantages of the colloidal phenol-amine fusion coating highlight the suitability of its future application in clinical practice.
Collapse
Affiliation(s)
- ZhaoJia Liang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZiRui Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZhongQing Zhu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - YaBing Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - WeiRui Niu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shuang Tan
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - XiangYang Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - QuanLi Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Hua Qiu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
6
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
7
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
8
|
Suchý T, Vištejnová L, Šupová M, Klein P, Bartoš M, Kolinko Y, Blassová T, Tonar Z, Pokorný M, Sucharda Z, Žaloudková M, Denk F, Ballay R, Juhás Š, Juhásová J, Klapková E, Horný L, Sedláček R, Grus T, Čejka Z, Čejka Z, Chudějová K, Hrabák J. Vancomycin-Loaded Collagen/Hydroxyapatite Layers Electrospun on 3D Printed Titanium Implants Prevent Bone Destruction Associated with S. epidermidis Infection and Enhance Osseointegration. Biomedicines 2021; 9:biomedicines9050531. [PMID: 34068788 PMCID: PMC8151920 DOI: 10.3390/biomedicines9050531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of Staphylococcus epidermidis. The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth. Six weeks following implantation, the infected rat femurs treated with the implants without vancomycin (COLHA+S. epidermidis) exhibited the obvious destruction of cortical bone as evinced via a cortical bone porosity of up to 20% greater than that of the infected rat femurs treated with the implants containing vancomycin (COLHA+V+S. epidermidis) (3%) and the non-infected rat femurs (COLHA+V) (2%). The alteration of the bone structure of the infected COLHA+S. epidermidis group was further demonstrated by a 3% decrease in the average Ca/P molar ratio of the bone mineral. Finally, the determination of the concentration of vancomycin released into the blood stream indicated a negligible systemic load. Six months following implantation in the pigs, the quantified ratio of new bone indicated an improvement in osseointegration, with a two-fold bone ingrowth on the COLHA (47%) and COLHA+V (52%) compared to the control implants without a COLHA layer (27%). Therefore, it can be concluded that COLHA+V layers are able to significantly prevent the destruction of bone structure related to bacterial infection with a minimal systemic load and, simultaneously, enhance the rate of osseointegration.
Collapse
Affiliation(s)
- Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 18209 Prague 8, Czech Republic; (M.Š.); (Z.S.); (M.Ž.); (F.D.)
- Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague 6, Czech Republic; (L.H.); (R.S.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
- Correspondence: ; +420-777-608-280
| | - Lucie Vištejnová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 18209 Prague 8, Czech Republic; (M.Š.); (Z.S.); (M.Ž.); (F.D.)
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
| | - Martin Bartoš
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12000 Prague 2, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 12000 Prague 2, Czech Republic
| | - Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Tereza Blassová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Marek Pokorný
- R&D Department, Contipro Inc., 56102 Dolni Dobrouc, Czech Republic;
| | - Zbyněk Sucharda
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 18209 Prague 8, Czech Republic; (M.Š.); (Z.S.); (M.Ž.); (F.D.)
| | - Margit Žaloudková
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 18209 Prague 8, Czech Republic; (M.Š.); (Z.S.); (M.Ž.); (F.D.)
| | - František Denk
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 18209 Prague 8, Czech Republic; (M.Š.); (Z.S.); (M.Ž.); (F.D.)
- Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague 6, Czech Republic; (L.H.); (R.S.)
| | - Rastislav Ballay
- 1st Department of Orthopedics, First Faculty of Medicine, Charles University in Prague and Motol University Hospital, 150 06 Prague 5, Czech Republic;
| | - Štefan Juhás
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic; (Š.J.); (J.J.)
| | - Jana Juhásová
- PIGMOD Centre, Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic; (Š.J.); (J.J.)
| | - Eva Klapková
- Department of Medical Chemistry and Clinical Biochemistry, Charles University, 2nd Medical School and University Hospital Motol, 15006 Prague 5, Czech Republic;
| | - Lukáš Horný
- Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague 6, Czech Republic; (L.H.); (R.S.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
| | - Radek Sedláček
- Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague 6, Czech Republic; (L.H.); (R.S.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
| | - Tomáš Grus
- 2nd Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12000 Prague 2, Czech Republic;
| | - Zdeněk Čejka
- ProSpon Ltd., 27201 Kladno, Czech Republic; (Z.Č.J.); (Z.Č.)
| | - Zdeněk Čejka
- ProSpon Ltd., 27201 Kladno, Czech Republic; (Z.Č.J.); (Z.Č.)
| | - Kateřina Chudějová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
| | - Jaroslav Hrabák
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 30100 Pilsen, Czech Republic; (L.V.); (P.K.); (M.B.); (Y.K.); (T.B.); (Z.T.); (K.C.); (J.H.)
| |
Collapse
|
9
|
Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv Transl Res 2021; 11:1456-1474. [PMID: 33942245 DOI: 10.1007/s13346-021-00980-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Titanium implants have been widely used as one of the most effective treatments of bone defects. However, the lack of osteogenesis and bacteria-resistant activities result in high infection and loosening rates of titanium implants. Anodic oxidation could easily construct titanium dioxide nanotubes (TNTs) array on the surface of titanium, and the rough surface of TNTs is beneficial to the growth of osteoblast-related cells on the surface. And TNTs could be excellent drug carriers because of their single-entry tubular hollow structure. In this review, we aim at detailing the application of TNTs as drug carriers in the field of bone implants. Starting from the topography of TNTs, we illustrated the biological activity of the TNTs surface, the drugs for loading in TNTs, and the controlled and responsive release strategies of drug-loaded TNTs, respectively. At the end of this review, the shortcomings of TNTs as the drug carrier in the field of bone implants are discussed, and the development direction of this research field is also prospected.
Collapse
|
10
|
Tsikopoulos K, Sidiropoulos K, Kitridis D, Hassan A, Drago L, Mavrogenis A, McBride D. Is coating of titanium implants effective at preventing Staphylococcus aureus infections? A meta-analysis of animal model studies. INTERNATIONAL ORTHOPAEDICS 2021; 45:821-835. [PMID: 32761434 DOI: 10.1007/s00264-020-04660-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/11/2020] [Indexed: 12/25/2022]
Abstract
AIM OF THE STUDY To assess the effects of the available coating methods against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) biofilm development on titanium implants. METHODS We searched the MEDLINE, Embase, and CENTRAL databases until May 18, 2019, for studies that used animal models of infections to evaluate various titanium implant coating methods to prevent S. aureus infection. Twenty-seven studies were eligible for inclusion in qualitative synthesis. Of those, twenty-three were considered in pair-wise meta-analysis. In addition, subgroup analysis of implant protection strategies relative to uncoated controls was performed, and any adverse events stemming from the coating applications were reported. Quality assessment was performed using SYRCLE's risk of bias tool for animal studies. RESULTS Meta-analysis showed that active coating with antibiotics was favoured over uncoated controls (standardised mean differences [SMD] for MRSA and MSSA were - 2.71 [95% CI, - 4.24 to - 1.18], p = 0.0005, and - 2.5 [- 3.79 to - 1.22], p = 0.0001, respectively). Likewise, large effect sizes were demonstrated when a combination of active and conventional non-degradable passive coatings was compared with controls (SMDs for MRSA and MSSA were - 0.62 [95% CI, - 1.15 to - 0.08], p = 0.02, and - 1.93 [95% CI, - 2.87 to - 0.98], p < 0.001, respectively). DISCUSSION/CONCLUSION As a standalone prevention method, active titanium coating with antibiotics yielded promising results against both MSSA and MRSA. Combinations between active and non-degradable passive coatings, potentially allowing for sustained antimicrobial substance release, provided consistent hardware infection protection. Thus, we recommend that future research efforts focus on combined coating modalities against S. aureus biofilm infections in the presence of titanium implants. SYSTEMATIC REVIEW REGISTRATION CRD42019123462.
Collapse
Affiliation(s)
| | | | - Dimitrios Kitridis
- 1st Orthopaedic Department of Aristotle University, G. Papanikolaou General Hospital, Exohi, Thessaloniki, Greece
| | - Anas Hassan
- Orthopaedic Department, Lister Hospital, Stevenage, East and North Hertfordshire, UK
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biochemical Sciences for Health, University of Milan, Milan, Italy
| | - Andreas Mavrogenis
- Orthopaedic Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Donald McBride
- Orthopaedic Department, University Hospitals of North Midlands, Stoke-on-Trent, UK
| |
Collapse
|
11
|
Souza JGS, Bertolini MM, Costa RC, Nagay BE, Dongari-Bagtzoglou A, Barão VAR. Targeting implant-associated infections: titanium surface loaded with antimicrobial. iScience 2021; 24:102008. [PMID: 33490916 PMCID: PMC7811145 DOI: 10.1016/j.isci.2020.102008] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Implant devices have = proven a successful treatment modality in reconstructive surgeries. However, increasing rates of peri-implant diseases demand further examination of their pathogenesis. Polymicrobial biofilm formation on titanium surfaces has been considered the main risk factor for inflammatory processes on tissues surrounding implant devices, which often lead to implant failure. To overcome microbial accumulation on titanium surfaces biofilm targeting strategies have been developed to modify the surface and incorporate antimicrobial coatings. Because antibiotics are widely used to treat polymicrobial infections, these agents have recently started to be incorporated on titanium surface. This review discusses the biofilm formation on titanium dental implants and key factors to be considered in therapeutic and preventative strategies. Moreover, a systematic review was conducted on coatings developed for titanium surfaces using different antibiotics. This review will also shed light on potential alternative strategies aiming to reduce microbial loads and control polymicrobial infection on implanted devices.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
- Dental Research Division, Guarulhos University, Guarulhos, SP 07023-070, Brazil
- Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais, 39401-303, Brazil
| | - Martinna Mendonça Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
12
|
Vallet-Regí M, Lozano D, González B, Izquierdo-Barba I. Biomaterials against Bone Infection. Adv Healthc Mater 2020; 9:e2000310. [PMID: 32449317 PMCID: PMC7116285 DOI: 10.1002/adhm.202000310] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Chronic bone infection is considered as one of the most problematic biofilm-related infections. Its recurrent and resistant nature, high morbidity, prolonged hospitalization, and costly medical care expenses have driven the efforts of the scientific community to develop new therapies to improve the standards used today. There is great debate on the management of this kind of infection in order to establish consistent and agreed guidelines in national health systems. The scientific research is oriented toward the design of anti-infective biomaterials both for prevention and cure. The properties of these materials must be adapted to achieve better anti-infective performance and good compatibility, which allow a good integration of the implant with the surrounding tissue. The objective of this review is to study in-depth the antibacterial biomaterials and the strategies underlying them. In this sense, this manuscript focuses on antimicrobial coatings, including the new technological advances on surface modification; scaffolding design including multifunctional scaffolds with both antimicrobial and bone regeneration properties; and nanocarriers based on mesoporous silica nanoparticles with advanced properties (targeting and stimuli-response capabilities).
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas Facultad de Farmacia Universidad Complutense de Madrid Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN C/Monforte de Lemos, 3–5 Madrid 28029, Spain
| |
Collapse
|
13
|
Yang Y, Liu L, Luo H, Zhang D, Lei S, Zhou K. Dual-Purpose Magnesium-Incorporated Titanium Nanotubes for Combating Bacterial Infection and Ameliorating Osteolysis to Realize Better Osseointegration. ACS Biomater Sci Eng 2019; 5:5368-5383. [PMID: 33464078 DOI: 10.1021/acsbiomaterials.9b00938] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ying Yang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lihong Liu
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
- Department of Orthopedic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Li Y, Yang Y, Li R, Tang X, Guo D, Qing Y, Qin Y. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: a review of current techniques. Int J Nanomedicine 2019; 14:7217-7236. [PMID: 31564875 PMCID: PMC6733344 DOI: 10.2147/ijn.s216175] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
Prosthesis-associated infections are one of the main causes of implant failure; thus it is important to enhance the long-term antibacterial ability of orthopedic implants. Titanium dioxide nanotubes (TNTs) are biomaterials with good physicochemical properties and biocompatibility. Owing to their inherent antibacterial and drug-loading ability, the antibacterial application of TNTs has received increasing attention. In this review, the process of TNT anodizing fabrication is summarized. Also, the mechanism and the influencing factors of the antibacterial property of bare TNTs are explored. Furthermore, different antibacterial strategies for carrying drugs, as well as modifications to prolong the antibacterial effect and reduce drug-related toxicity are discussed. In addition, antibacterial systems based on TNTs that can automatically respond to infection are introduced. Finally, the currently faced problems are reviewed and potential solutions are proposed. This review provides new insight on TNT fabrication and summarizes the most advanced antibacterial strategies involving TNTs for the enhancement of long-term antibacterial ability and reduction of toxicity.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun'an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
15
|
Gunputh UF, Le H, Besinis A, Tredwin C, Handy RD. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus. Int J Nanomedicine 2019; 14:3583-3600. [PMID: 31190813 PMCID: PMC6529028 DOI: 10.2147/ijn.s199219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: This study aimed to decorate the surface of TiO2 nanotubes (TiO2 NTs) grown on medical grade Ti-6Al-4V alloy with an antimicrobial layer of nano zinc oxide particles (nZnO) and then determine if the antimicrobial properties were maintained with a final layer of nano-hydroxyapatite (HA) on the composite. Methods: The additions of nZnO were attempted at three different annealing temperatures: 350, 450 and 550 °C. Of these temperatures, 350°C provided the most uniform and nanoporous coating and was selected for antimicrobial testing. Results: The LIVE/DEAD assay showed that ZnCl2 and nZnO alone were >90% biocidal to the attached bacteria, and nZnO as a coating on the nanotubes resulted in around 70% biocidal activity. The lactate production assay agreed with the LIVE/DEAD assay. The concentrations of lactate produced by the attached bacteria on the surface of nZnO-coated TiO2 NTs and ZnO/HA-coated TiO2 NTs were 0.13±0.03 mM and 0.37±0.1 mM, respectively, which was significantly lower than that produced by the bacteria on TiO2 NTs alone, 1.09±0.30 mM (Kruskal–Wallis, P<0.05, n=6). These biochemical measurements were correlated with electron micrographs of cell morphology and cell coverage on the coatings. Conclusion: nZnO on TiO2 NTs was a stable and antimicrobial coating, and most of the biocidal properties remained in the presence of nano-HA on the coating.
Collapse
Affiliation(s)
- Urvashi F Gunputh
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK.,School of Engineering, Plymouth University, Plymouth PL4 8AA, UK
| | - Huirong Le
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK
| | | | - Christopher Tredwin
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK
| | - Richard D Handy
- School of Biological & Marine Sciences, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
16
|
Chu L, Li R, Liao Z, Yang Y, Dai J, Zhang K, Zhang F, Xie Y, Wei J, Zhao J, Yu Z, Tang T. Highly Effective Bone Fusion Induced by the Interbody Cage Made of Calcium Silicate/Polyetheretherketone in a Goat Model. ACS Biomater Sci Eng 2019; 5:2409-2416. [PMID: 33405749 DOI: 10.1021/acsbiomaterials.8b01193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interbody fusion surgery is often used to settle matters such as degenerative disc disease or disc herniation in clinical orthopedics. Considering the deficiencies of the current treatment methods, we developed an interbody fusion cage made of calcium silicate (CS)/polyetheretherketone (PEEK) and hoped that the bioactive cage could exhibit great fusion ability and maintain stable mechanical function. In the goat model of cervical interbody fusion, the CS/PEEK cage showed stronger interbody fusion at 12 and 26 weeks compared with pure PEEK cage based on the X-ray analysis. The micro-CT scanning and analysis indicated that the CS/PEEK cage induced more new bone ingrowth than the PEEK cage and led to nearly complete interbody fusion at 26 weeks. Moreover, the CS/PEEK group showed excellent mechanical stability and stiffness as evaluated by the spine kinematic assay at the time points. The histological assessment showed the rapid osseointegration and mineralized bone formation around the CS/PEEK cage. This study confirmed that the bioactive CS/PEEK cage is capable of inducing highly effective bone fusion and has high potential to be used in the clinics of spine surgery.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Rui Li
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Zhenhua Liao
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 200011, P. R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
17
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Li J, Wang J, Wang D, Guo G, Yeung KWK, Zhang X, Liu X. Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27475-27490. [PMID: 28748698 DOI: 10.1021/acsami.7b06867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomaterial-related bacterial infections cause patient suffering, mortality, and extended periods of hospitalization and impose a substantial burden on medical systems. In this context, understanding the interactions between nanomaterials and bacteria is clinically significant. Herein, TiO2-based heterojunctions, including Co-TiO2, CoO-TiO2, and Co3O4-TiO2, were first designed by optimizing magnetron sputtering to establish a platform to explore the interactions between nanomaterials and bacteria. We found that the energy band bending and band gap narrowing were effectively promoted at the contact interface of the heterojunctions, which have the ability to induce abiotic reactive oxygen species formation. Using methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, in vitro studies showed that the heterojunctions of Co-TiO2, CoO-TiO2, and especially Co3O4-TiO2 can effectively downregulate the expression levels of bacterial respiratory genes and cause oxidative damage to bacterial membrane respiration and viability. As a result, the surfaces of the heterojunctions possess a favorable antiadherent bacterial activity. Moreover, using an osteomyelitis model, the preclinical study on rats further confirmed the favorable anti-infection effect of the elaborately designed heterojunctions (especially Co3O4-TiO2). We hope this study can provide new insights into the surface antibacterial design of biomaterials using energy band engineering for both basic research and clinical needs. Meanwhile, this attempt may also contribute to expanding the biomedical applications of cobalt-based nanoparticles for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Donghui Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| |
Collapse
|
19
|
Li M, Yang Y. Nanoscale TiO 2 nanotubes as a basis for governing cell behaviors and application challenges. Int J Nanomedicine 2017; 12:575-576. [PMID: 28144139 PMCID: PMC5245973 DOI: 10.2147/ijn.s128749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Min Li
- Department of Oncology, Changsha Central Hospital, Changsha, People's Republic of China
| | - Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Yang Y, Ao H, Wang Y, Lin W, Yang S, Zhang S, Yu Z, Tang T. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Res 2016; 4:16027. [PMID: 27672479 PMCID: PMC5028847 DOI: 10.1038/boneres.2016.27] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/27/2023] Open
Abstract
Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methicillin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections.
Collapse
Affiliation(s)
- Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Haiyong Ao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Wentao Lin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|