1
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
2
|
Costa KMN, Barros LA, da Silva Soares IL, Oshiro-Junior JA. Potential of Nanomedicines as an Alternative for the Treatment of Colorectal Cancer - A Review. Anticancer Agents Med Chem 2024; 24:477-487. [PMID: 38265381 DOI: 10.2174/0118715206269415231128100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
Colorectal cancer is the third most common cancer and the second in cases of cancer-related death. Polytherapy generates many adverse effects, leading the patient to give up. Nanotechnology has been studied in recent years to circumvent limitations. Groups composed of polymeric, lipid, and inorganic nanoparticles are the most purpose. Thus, the objective of this work is to bring information on how nanosystems can improve the chemotherapeutic treatment for colorectal cancer. Therefore, a search in journals such as "LILACS", "SciELO" and "PubMed/Medline" was performed, resulting in 25,000 articles found when applied the search engines "nanoparticle," "colorectal cancer," "malignant neoplasms," and "chemotherapy." After inclusion and exclusion factors, 24 articles remained, which were used as the basis for this integrative review. The results reveal that, regardless of the choice of matrix, nanoparticles showed an increase in bioavailability of the active, increasing the half-life by up to 13 times, modified release, as well as a significant reduction in tumor size, with cell viability up to 20% lower than the free drug tested, in different colorectal cancer cell lines, such as HCT-116, HT-29, and CaCo-2. However, more in vivo and clinical studies need to be performed, regardless of the formulation of its matrix, aiming at a higher rate of safety for patients and stability of the formulations, as well as knowledge of detailed indices of its pharmacokinetics and pharmacodynamics, seeking to avoid further damage to the recipient organism.
Collapse
Affiliation(s)
- Kammila Martins Nicolau Costa
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | | | - João Augusto Oshiro-Junior
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
3
|
Rodrigues JA, Correia JH. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int J Mol Sci 2023; 24:12204. [PMID: 37569580 PMCID: PMC10418644 DOI: 10.3390/ijms241512204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This review provides an update on the current state of photodynamic therapy (PDT) for colorectal cancer (CRC) and explores potential future directions in this field. PDT has emerged as a promising minimally invasive treatment modality that utilizes photosensitizers and specific light wavelengths to induce cell death in targeted tumor tissues. In recent years, significant progress has been made in understanding the underlying mechanisms, optimizing treatment protocols, and improving the efficacy of PDT for CRC. This article highlights key advancements in PDT techniques, including novel photosensitizers, light sources, and delivery methods. Furthermore, it discusses ongoing research efforts and potential future directions, such as combination therapies and nanotechnology-based approaches. By elucidating the current landscape and providing insights into future directions, this review aims to guide researchers and clinicians in harnessing the full potential of PDT for the effective management of CRC.
Collapse
Affiliation(s)
- José A. Rodrigues
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| | - José H. Correia
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| |
Collapse
|
4
|
Fang Q, Yuan Z, Hu H, Zhang W, Wang G, Wang X. Genome-wide discovery of circulating cell-free DNA methylation biomarkers for colorectal cancer detection. Clin Epigenetics 2023; 15:119. [PMID: 37501075 PMCID: PMC10375686 DOI: 10.1186/s13148-023-01518-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Colorectal polyp is known a precursor of colorectal cancer (CRC) that holds an increased risk for progression to CRC. Circulating cell-free DNA (cfDNA) methylation has shown favorable performance in the detection and monitoring the malignant progression in a variety of cancers. RESULTS To discover cfDNA methylation markers for the diagnosis of CRC, we first performed a genome-wide analysis between eight CRC and eight polyp tissues using the Infinium HumanMethylationEPIC BeadChip. We identified 7008 DMCs, and after filtering, we validated 39 DMCs by MethylTarget sequencing in 62 CRC and 56 polyp tissues. A panel of four CpGs (cg04486886, cg06712559, cg13539460, and cg27541454) was selected as the methylation marker in tissue by LASSO and random forest models. A diagnosis prediction model was built based on the four CpGs, and the methylation diagnosis score (md-score) can effectively discriminate tissues with CRC from polyp patients (AUROC > 0.9). Finally, the cg27541454 was confirmed hypermethylated in CRC (AUC = 0.85) in the plasma validation cohort. CONCLUSIONS Our findings suggest that the md-score could robustly detect CRC from polyp tissues, and cg27541454 may be a promising candidate noninvasive biomarker for CRC early diagnosis.
Collapse
Affiliation(s)
- Qingxiao Fang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziming Yuan
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanqing Hu
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weiyuan Zhang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guiyu Wang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xishan Wang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Gogoi P, Kaur G, Singh NK. Nanotechnology for colorectal cancer detection and treatment. World J Gastroenterol 2022; 28:6497-6511. [PMID: 36569271 PMCID: PMC9782835 DOI: 10.3748/wjg.v28.i46.6497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related mortality in the United States. Across the globe, people in the age group older than 50 are at a higher risk of CRC. Genetic and environmental risk factors play a significant role in the development of CRC. If detected early, CRC is preventable and treatable. Currently, available screening methods and therapies for CRC treatment reduce the incidence rate among the population, but the micrometastasis of cancer may lead to recurrence. Therefore, the challenge is to develop an alternative therapy to overcome this complication. Nanotechnology plays a vital role in cancer treatment and offers targeted chemotherapies directly and selectively to cancer cells, with enhanced therapeutic efficacy. Additionally, nanotechnology elevates the chances of patient survival in comparison to traditional chemotherapies. The potential of nanoparticles includes that they may be used simultaneously for diagnosis and treatment. These exciting properties of nanoparticles have enticed researchers worldwide to unveil their use in early CRC detection and as effective treatment. This review discusses contemporary methods of CRC screening and therapies for CRC treatment, while the primary focus is on the theranostic approach of nanotechnology in CRC treatment and its prospects. In addition, this review aims to provide knowledge on the advancement of nanotechnology in CRC and as a starting point for researchers to think about new therapeutic approaches using nanotechnology.
Collapse
Affiliation(s)
- Purnima Gogoi
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Geetika Kaur
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | - Nikhlesh K Singh
- Integrative Biosciences Center, OVAS, Wayne State University School of Medicine, Detroit, MI 48202, United States
| |
Collapse
|
6
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
8
|
Nkune NW, Kruger CA, Abrahamse H. Synthesis of a novel nanobioconjugate for targeted photodynamic therapy of colon cancer enhanced with cannabidiol. Oncotarget 2022; 13:156-172. [PMID: 35070080 PMCID: PMC8768846 DOI: 10.18632/oncotarget.28171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising primary treatment option for colorectal cancer (CRC), however CRC is accelerated by resilient CRC stem-like cells, which decrease its efficacy. In recent years, researchers have shown an emerging interest in the anticancer stem cell effects of cannabidiol (CBD). This study developed a targeted nanobioconjugate for specific ZnPcS4 photosensitizer intracellular accumulation within in vitro cultured human CRC cells (CaCo-2) for enhanced PDT primary treatment, as well as limited its secondary spread by combining this treatment with CBD. The final nanobioconjugate (FNBC) was successfully synthesized and characterized using various methods. The cytotoxicity of the FNBC and CBD were tested on CRC cells using laser irradiation at 673 nm with a fluency of 10 J/cm2. 24 h post treatment, morphological changes were assessed via microscopy, cell viability was measured using Annexin V-FITC and cellular nuclear DNA was visualized under fluorescent microscopy, following Hoechst staining. FNBC and CBD combinative treatment induced the most significant photodamage, leaving a staggering 6%*** viable cells. Overall, through active targeting of CRC cells using the FNBC, the enhanced PDT primary treatment of CRC was achieved, and the combinative treatment with CBD noted significant limitations on its secondary spread.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
9
|
Zhu G, Wang Y, Wang W, Shang F, Pei B, Zhao Y, Kong D, Fan Z. Untargeted GC-MS-Based Metabolomics for Early Detection of Colorectal Cancer. Front Oncol 2021; 11:729512. [PMID: 34804922 PMCID: PMC8599589 DOI: 10.3389/fonc.2021.729512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers in the world with a 5-year survival rate of approximately 68%. Although researchers accumulated many scientific studies, its pathogenesis remains unclear yet. Detecting and removing these malignant polyps promptly is the most effective method in CRC prevention. Therefore, the analysis and disposal of malignant polyps is conducive to preventing CRC. METHODS In the study, metabolic profiling as well as diagnostic biomarkers for CRC was investigated using untargeted GC-MS-based metabolomics methods to explore the intervention approaches. In order to better characterize the variations of tissue and serum metabolic profiles, orthogonal partial least-square discriminant analysis was carried out to further identify significant features. The key differences in tR-m/z pairs were screened by the S-plot and VIP value from OPLS-DA. Identified potential biomarkers were leading in the KEGG in finding interactions, which show the relationships among these signal pathways. RESULTS Finally, 17 tissue and 13 serum candidate ions were selected based on their corresponding retention time, p-value, m/z, and VIP value. Simultaneously, the most influential pathways contributing to CRC were inositol phosphate metabolism, primary bile acid biosynthesis, phosphatidylinositol signaling system, and linoleic acid metabolism. CONCLUSIONS The preliminary results suggest that the GC-MS-based method coupled with the pattern recognition method and understanding these cancer-specific alterations could make it possible to detect CRC early and aid in the development of additional treatments for the disease, leading to improvements in CRC patients' quality of life.
Collapse
Affiliation(s)
- Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Shang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Pei
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Fan
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Yan B, Xu X, Cheung DST, Lin CC. Spiritual and religious interventions for adults with cancer and their carers: an overview of systematic reviews. Hippokratia 2020. [DOI: 10.1002/14651858.cd013675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bo Yan
- School of Nursing; The University of Hong Kong; Pokfulam Hong Kong
| | - Xinyi Xu
- School of Nursing; The University of Hong Kong; Pokfulam Hong Kong
| | | | - Chia-Chin Lin
- School of Nursing; The University of Hong Kong; Pokfulam Hong Kong
| |
Collapse
|
11
|
Cabeza L, Perazzoli G, Mesas C, Jiménez-Luna C, Prados J, Rama AR, Melguizo C. Nanoparticles in Colorectal Cancer Therapy: Latest In Vivo Assays, Clinical Trials, and Patents. AAPS PharmSciTech 2020; 21:178. [PMID: 32591920 DOI: 10.1208/s12249-020-01731-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Its poor response to current treatment options in advanced stages and the need for efficient diagnosis in early stages call for the development of new therapeutic and diagnostic strategies. Some of them are based on the use of nanometric materials as carriers and releasers of therapeutic agents and fluorescent molecules, or even on the utilization of magnetic materials that provide very interesting properties. These nanoformulations present several advantages compared with the free molecular cargo, including increased drug solubility, bioavailability, stability, and tumor specificity. Moreover, tumor multidrug resistance has been decreased in some cases, leading to improved treatment effectiveness by reducing drug dose and potential side effects. Here, we present an updated overview of the latest advances in clinical research, in vivo studies, and patents regarding the application of nanoformulations in the treatment of CRC. Based on the information gathered, a wide variety of nanomaterials are being investigated in clinical research, even in advanced phases, i.e., close to reaching the market. In sum, these novel materials can offer remarkable advantages with respect to current therapies, which could be complemented or even replaced by these nanosystems in the near future.
Collapse
|
12
|
Using the polymeric circulating tumor cell chip to capture circulating tumor cells in blood samples of patients with colorectal cancer. Oncol Lett 2020; 19:2286-2294. [PMID: 32194728 PMCID: PMC7041365 DOI: 10.3892/ol.2020.11335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The current study clarified the accuracy of a circulating tumor cell (CTC) detection system to diagnose colorectal cancer using blood samples. The system uses the 'polymeric CTC-chip,' (CTC-chip), which is a microfluidic device that is used for CTC isolation. CTCs are considered sensitive diagnostic biomarkers. However, their concentration in the peripheral blood is low and requires highly sensitive and specific capturing techniques. The capture efficiency of the polymeric CTC-chip was first assessed using cell suspensions of the colorectal cancer cell line HCT-116, which was reported as 90.9% in a phosphate-buffered saline suspension and 65.0% in the blood. The CTC-chip was then used to detect CTCs in blood samples obtained from 13 patients with stage II-IV colorectal cancer. On average, the CTCs/ml was lower in patients with stages II and III colorectal cancer (3.3±2.3) than in those with stage IV (7.0±6.2). In patients with stages II-IV, 92% had ≥1 CTC per ml, which was significantly higher than the positive rate (15%) detected using the carbohydrate antigen 19-9 test (CA19-9). Furthermore, CTCs were detected in all patients with stage II and III colorectal cancer, including a number of patients with negative results for the carcinoembryonic antigen (CEA) and CA19-9 tests. With the polymeric CTC-chip detection system, CTCs can be effective cancer markers, particularly for patients with stage II and III colorectal cancer who often exhibit negative conventional serum marker test results. The CTC-chip system may also facilitate the detection of cancer progression based on CTC concentration.
Collapse
|
13
|
Nompumelelo Simelane NW, Kruger CA, Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Adv 2020; 10:41560-41576. [PMID: 35516575 PMCID: PMC9058000 DOI: 10.1039/d0ra08617g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review highlights the various photo diagnostic and treatment methods utilized for CRC, over the last seven years.
Collapse
Affiliation(s)
| | - Cherie Ann Kruger
- Laser Research Centre
- Faculty of Health Sciences
- University of Johannesburg
- Johannesburg 2028
- South Africa
| | - Heidi Abrahamse
- Laser Research Centre
- Faculty of Health Sciences
- University of Johannesburg
- Johannesburg 2028
- South Africa
| |
Collapse
|
14
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed
the field of medical oncology; the introduction of patient-tailored therapies
has significantly improved all measurable outcomes. Liquid biopsy is a
revolutionary technique that is opening previously unexpected perspectives. It
consists of the detection and isolation of circulating tumor cells, circulating
tumor DNA and exosomes, as a source of genomic and proteomic information in
patients with cancer. Many technical hurdles have been resolved thanks to newly
developed techniques and next-generation sequencing analyses, allowing a broad
application of liquid biopsy in a wide range of settings. Initially correlated
to prognosis, liquid biopsy data are now being studied for cancer diagnosis,
hopefully including screenings, and most importantly for the prediction of
response or resistance to given treatments. In particular, the identification of
specific mutations in target genes can aid in therapeutic decisions, both in the
appropriateness of treatment and in the advanced identification of secondary
resistance, aiming to early diagnose disease progression. Still application is
far from reality but ongoing research is leading the way to a new era in
oncology. This review summarizes the main techniques and applications of liquid
biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
15
|
Pellino G, Gallo G, Pallante P, Capasso R, De Stefano A, Maretto I, Malapelle U, Qiu S, Nikolaou S, Barina A, Clerico G, Reginelli A, Giuliani A, Sciaudone G, Kontovounisios C, Brunese L, Trompetto M, Selvaggi F. Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives. Gastroenterol Res Pract 2018; 2018:2397863. [PMID: 30008744 PMCID: PMC6020538 DOI: 10.1155/2018/2397863] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. It has been estimated that more than one-third of patients are diagnosed when CRC has already spread to the lymph nodes. One out of five patients is diagnosed with metastatic CRC. The stage of diagnosis influences treatment outcome and survival. Notwithstanding the recent advances in multidisciplinary management and treatment of CRC, patients are still reluctant to undergo screening tests because of the associated invasiveness and discomfort (e.g., colonoscopy with biopsies). Moreover, the serological markers currently used for diagnosis are not reliable and, even if they were useful to detect disease recurrence after treatment, they are not always detected in patients with CRC (e.g., CEA). Recently, translational research in CRC has produced a wide spectrum of potential biomarkers that could be useful for diagnosis, treatment, and follow-up of these patients. The aim of this review is to provide an overview of the newer noninvasive or minimally invasive biomarkers of CRC. Here, we discuss imaging and biomolecular diagnostics ranging from their potential usefulness to obtain early and less-invasive diagnosis to their potential implementation in the development of a bespoke treatment of CRC.
Collapse
Affiliation(s)
- Gianluca Pellino
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
- Colorectal Surgery Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gaetano Gallo
- Department of Medical and Surgical Sciences, OU of General Surgery, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, Naples, Italy
| | - Raffaella Capasso
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Alfonso De Stefano
- Department of Abdominal Oncology, Division of Abdominal Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione G. Pascale, ” IRCCS, Naples, Italy
| | - Isacco Maretto
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Umberto Malapelle
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Shengyang Qiu
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Stella Nikolaou
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
| | - Andrea Barina
- 1st Surgical Clinic, Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Alfonso Reginelli
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Antonio Giuliani
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Guido Sciaudone
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
- Department of Surgery and Cancer, Chelsea and Westminster Hospital Campus, Imperial College London, London, UK
| | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, Via Francesco de Sanctis 1, 86100 Campobasso, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinic S. Rita, Vercelli, Italy
| | - Francesco Selvaggi
- Unit of General Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
16
|
Fiorica C, Mauro N, Pitarresi G, Scialabba C, Palumbo FS, Giammona G. Double-Network-Structured Graphene Oxide-Containing Nanogels as Photothermal Agents for the Treatment of Colorectal Cancer. Biomacromolecules 2017; 18:1010-1018. [PMID: 28192653 DOI: 10.1021/acs.biomac.6b01897] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we reported the production of hyaluronic acid/polyaspartamide-based double-network nanogels for the potential treatment of colorectal carcinoma. Graphene oxide, thanks to the huge aromatic surface area, allows to easily load high amount of irinotecan (33.0% w/w) and confers to the system hyperthermic properties when irradiated with a near-infrared (NIR) laser beam. We demonstrate that the release of antitumor drug is influenced both by the pH of the external medium and the NIR irradiation process. In vitro biological studies, conducted on human colon cancer cells (HCT 116), revealed that nanogels are uptaken by the cancer cells and, in the presence of the antitumor drug, can produce a synergistic hyperthermic/cytotoxic effect. Finally, 3D experiments demonstrate that it is possible to conduct thermal ablation of solid tumors after the intratumoral administration of nanogels.
Collapse
Affiliation(s)
- Calogero Fiorica
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Cinzia Scialabba
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Fabio S Palumbo
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo , Via Archirafi, 32 90123 Palermo, Italy.,Mediterranean Center for Human Advanced Biotechnologies (Med-Chab), Viale delle Scienze Ed.18, 90128 Palermo, Italy
| |
Collapse
|
17
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, Asghar K. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther 2017; 10:463-476. [PMID: 28176942 PMCID: PMC5268369 DOI: 10.2147/ott.s119362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Amnah Mahroo
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Kaenat Nasir
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Rai Khalid Farooq
- Department of Physiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nasir Jalal
- Department of Molecular and Cellular Pharmacology, Health Sciences Platform, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Kashif Asghar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad; Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
18
|
Lu HY, Lin RT, Zhou GX, Yu TM, Liu ZJ. Critical Role of p53 and K-ras in the Diagnosis of Early Colorectal Cancer: a One-year, Single-center Analysis. Int J Med Sci 2017; 14:1154-1162. [PMID: 29104470 PMCID: PMC5666547 DOI: 10.7150/ijms.20538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Colorectal cancer (CRC) is strongly associated with colorectal polyps, which has become the third most common cancer in China. In the present study, we revealed the susceptible population and risk factors of colorectal polyps, and analyzed the expression of Ki-67, p53 and K-ras in the intestinal mucosa of patients with colorectal polyps in order to explore their significance in the detection and prognosis of CRC at an early stage. Materials and Methods: Total 801 cases of colorectal polyps were collected during endoscopic resection including endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD). Expression of Ki-67, p53 and K-ras in the intestinal mucosa was detected by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Histological analysis was performed by Hematoxylin and eosin (HE) staining. Categorical variables were compared by one-way ANOVA, Pearson test, Spearman test, Kruskal-Wallis test and analysis of regression. Results: Of all patients with colorectal polyps, 90.76% of patients (n = 727) were ≥ 50 years old. 530 cases (66.17%) were males compared with 271 females (33.83%) in all 801 cases. More importantly, 1.03% patients (n = 7) underwent polypectomy and histological examination was confirmed to be the early stage of CRC. The expression of p53 was found to be significantly decreased, while K-ras was increased in tumor tissues of CRC compared with that in hyperplastic polyps and healthy controls. Conclusions: 1.03% patients (n = 7) underwent polypectomy was confirmed to be the early stage of CRC. Histological analysis for expression of p53 and K-ras can guarantee to screen the early stage of CRC.
Collapse
Affiliation(s)
- Hui-Ying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ri-Tian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Guang-Xi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Tian-Ming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Zhan-Ju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
19
|
Yao Y, Hu H, Yang Y, Zhou G, Shang Z, Yang X, Sun K, Zhan S, Yu Z, Li P, Pan G, Sun L, Zhu X, He S. Downregulation of Enhancer of Zeste Homolog 2 (EZH2) is essential for the Induction of Autophagy and Apoptosis in Colorectal Cancer Cells. Genes (Basel) 2016; 7:E83. [PMID: 27706111 PMCID: PMC5083922 DOI: 10.3390/genes7100083] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence indicates that elevated expression of enhancer of zeste homolog 2 gene (EZH2) in many human malignant tumors acts a significant role in the oncogenic process. However, the underlying molecular mechanism is still unclarified. It is evident that apoptosis and autophagy of tumor cells is crucial for the tumorigenesis and progression of cancer, however, the exact role of EZH2 plays in apoptosis and autophagy has not been fully elucidated in colorectal cancer (CRC). Our previous study found that the expression level of EZH2 was higher in CRC tumor tissues than in the paired normal tissues using immunohistochemical analysis. We also recently found that the autophagy-related gene-related protein Ambra1 plays an important role in the autophagy pathway in CRC cells. In this study, mRNA and protein expression of EZH2 in four CRC cell lines were tested at first and RKO and HCT116 cells showed the highest levels among them. Here we transfected with EZH2-shRNA, or added DZNep (an EZH2 inhibitor) to RKO and HCT116 cells in order to detect the effect of EZH2 on autophagy via determining the change of the protein expression of LC3 and Ambra1. The outcome indicated an obvious decrease of autophagy level in cells transfected with EZH2-shRNA or DZNep. We also found the apoptotic rate of cells was elevated significantly after downregulation of EZH2. In addition, compared to control group, CRC cells transfected with EZH2-shRNA or added DZNep revealed a significantly increased G1 cell cycle rate and an obvious decrease in the G2 cell cycle rate. Further analysis showed that knockdown of EZH2 induced cell-cycle arrest in CRC cells. Meanwhile, downregulation of EZH2 in CRC cells induces autophagy and apoptosis. Taken together, our results suggest that EZH2 plays a critical role in autophagy and apoptosis in the progression of CRC, which potentially facilitates the development of an ideal strategy for combating colorectal cancer.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Hao Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Changshu No.2 Hospital, Suzhou 215500, China.
| | - Zengfu Shang
- Department of Radiation Medicine, Medical College of Soochow University, Suzhou 215006, China.
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Kang Sun
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Peiyao Li
- Medical Engineering and Maintenance Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Guofeng Pan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|