1
|
Farooqi AA, Turgambayeva A, Kamalbekova G, Suleimenova R, Latypova N, Ospanova S, Ospanova D, Abdikadyr Z, Zhussupov S. TRAIL as a Warrior in Nano-Sized Trojan Horse: Anticancer and Anti-Metastatic Effects of Nano-Formulations of TRAIL in Cell Culture and Animal Model Studies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1977. [PMID: 39768856 PMCID: PMC11677168 DOI: 10.3390/medicina60121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Cancer is a therapeutically challenging and genomically complicated disease. Pioneering studies have uncovered multifaceted aspects of cancer, ranging from intra- and inter-tumor heterogeneity, drug resistance, and genetic/epigenetic mutations. Loss of apoptosis is another critical aspect that makes cancer cells resistant to death. A substantial fraction of mechanistic information gleaned from cutting-edge studies has enabled researchers to develop near-to-complete resolution of the apoptotic pathway. Within the exciting frontiers of apoptosis, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) has garnered phenomenal appreciation by interdisciplinary researchers principally because of its unique capability to target cancer cells. TRAIL-based monotherapies and combinatorial therapies have reached phase II and phase III clinical trials. Rapidly upgrading the list of clinical trials substantiates the clinically valuable role of TRAIL-based therapeutics in cancer therapy. However, there is a growing concern about the poor bioavailability and rapid clearance of TRAIL-based therapeutics. Excitingly, the charismatic field of nanotechnology offers solutions for different problems, and we have witnessed remarkable breakthroughs in the efficacy of TRAIL-based therapeutics using nanotechnological approaches. In this review, we have attempted to provide a summary about different nanotechnologically assisted delivery methods for TRAIL-based therapeutics in cell culture studies and animal model studies for the inhibition/prevention of cancer.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44090, Pakistan
| | - Assiya Turgambayeva
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan; (A.T.); (S.O.)
| | - Gulnara Kamalbekova
- Department of Family Medicine, Astana Medical University, Astana 010000, Kazakhstan; (G.K.); (N.L.)
| | - Roza Suleimenova
- Department of Public Health and Hygiene, Astana Medical University, Astana 010000, Kazakhstan;
| | - Natalya Latypova
- Department of Family Medicine, Astana Medical University, Astana 010000, Kazakhstan; (G.K.); (N.L.)
| | - Sholpan Ospanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan; (A.T.); (S.O.)
| | - Dinara Ospanova
- Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan;
| | - Zhanat Abdikadyr
- Department of Biostatistics, Bioinformatics and Information Technologies, Astana Medical University, Astana 010000, Kazakhstan;
| | - Sabit Zhussupov
- Department of Surgery, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
2
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Smith R, Morgan K, McCarron A, Cmielewski P, Reyne N, Parsons D, Donnelley M. Ultra-fast in vivodirectional dark-field x-ray imaging for visualising magnetic control of particles for airway gene delivery. Phys Med Biol 2024; 69:105025. [PMID: 38640914 DOI: 10.1088/1361-6560/ad40f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.Magnetic nanoparticles can be used as a targeted delivery vehicle for genetic therapies. Understanding how they can be manipulated within the complex environment of live airways is key to their application to cystic fibrosis and other respiratory diseases.Approach.Dark-field x-ray imaging provides sensitivity to scattering information, and allows the presence of structures smaller than the detector pixel size to be detected. In this study, ultra-fast directional dark-field synchrotron x-ray imaging was utlilised to understand how magnetic nanoparticles move within a live, anaesthetised, rat airway under the influence of static and moving magnetic fields.Main results.Magnetic nanoparticles emerging from an indwelling tracheal cannula were detectable during delivery, with dark-field imaging increasing the signal-to-noise ratio of this event by 3.5 times compared to the x-ray transmission signal. Particle movement as well as particle retention was evident. Dynamic magnetic fields could manipulate the magnetic particlesin situ. Significance.This is the first evidence of the effectiveness ofin vivodark-field imaging operating at these spatial and temporal resolutions, used to detect magnetic nanoparticles. These findings provide the basis for further development toward the effective use of magnetic nanoparticles, and advance their potential as an effective delivery vehicle for genetic agents in the airways of live organisms.
Collapse
Affiliation(s)
- Ronan Smith
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Kaye Morgan
- Department of Physics, Monash University, Wellington Road, Melbourne, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Nicole Reyne
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, Australia
- Women's and Children's Hospital, King William Road, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, King William Road, Adelaide, Australia
| |
Collapse
|
4
|
Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review. Curr Med Chem 2024; 31:3488-3501. [PMID: 37202890 DOI: 10.2174/0929867330666230518143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients' 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Ranjbar H, Farajollahi A, Rostami M. Targeted drug delivery in pulmonary therapy based on adhesion and transmission of nanocarriers designed with a metal-organic framework. Biomech Model Mechanobiol 2023; 22:2153-2170. [PMID: 37624467 DOI: 10.1007/s10237-023-01756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
With the recent increase in lung diseases, especially with the onset of the coronavirus pandemic, the design of a highly efficient and optimal targeted drug delivery system for the lungs is crucial in inhaler-based delivery systems. This study aimed to design a magnetic field-assisted targeted drug delivery system to the lungs using three types of metal-organic frameworks (MOFs) and nanoliposomes. The optimization of the system was based on three main parameters: the surface density of the nanocarriers' (NCs) adherence to each of the lung branches, the amount of drug transferred to each branch, and the toxicity based on the rate of nanocarrier delivery to the branches. The study investigated the effect of increasing the diameter of the drug carriers and the amount of drug loaded onto the NCs in improving drug delivery to targeted areas of the lung. Results showed that the presence of a magnetic field significantly increased the adhesion of NCs to the targeted branches. The application of a magnetic field and the type of drug carrier had a significant effect on drug delivery downstream of the lung and reduced drug toxicity. The study found that Fe3O4@UiO-66 (iron-oxide nanoparticle attached to the surface of UiO-66, a type of MOF) and Fe3O4@PAA/AuNCs/ZIF-8 carriers, (iron-oxide nanoparticle attached to a hybrid structure composed of three different materials: poly (acrylic acid) (PAA), gold nanoclusters (AuNCs), and zeolitic imidazolate framework-8 (ZIF-8)), had the greatest drug delivery rate in diameters above 200 nm and less than 200 nm, respectively.
Collapse
Affiliation(s)
- Hamed Ranjbar
- School of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | | | - Mohsen Rostami
- Department of Engineering, University of Imam Ali, Tehran, Iran
| |
Collapse
|
6
|
Terrazas-Armendáriz LD, Alvizo-Báez CA, Luna-Cruz IE, Hernández-González BA, Uscanga-Palomeque AC, Ruiz-Robles MA, Pérez Tijerina EG, Rodríguez-Padilla C, Tamez-Guerra R, Alcocer-González JM. Systemic Delivery of Magnetogene Nanoparticle Vector for Gene Expression in Hypoxic Tumors. Pharmaceutics 2023; 15:2232. [PMID: 37765201 PMCID: PMC10536535 DOI: 10.3390/pharmaceutics15092232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a disease that causes millions of deaths per year worldwide because conventional treatments have disadvantages such as unspecific tumor selectivity and unwanted toxicity. Most human solid tumors present hypoxic microenvironments and this promotes multidrug resistance. In this study, we present "Magnetogene nanoparticle vector" which takes advantage of the hypoxic microenvironment of solid tumors to increase selective gene expression in tumor cells and reduce unwanted toxicity in healthy cells; this vector was guided by a magnet to the tumor tissue. Magnetic nanoparticles (MNPs), chitosan (CS), and the pHRE-Luc plasmid with a hypoxia-inducible promoter were used to synthesize the vector called "Magnetogene nanoparticles" by ionic gelation. The hypoxic functionality of Magnetogene vector nanoparticles was confirmed in the B16F10 cell line by measuring the expression of the luciferase reporter gene under hypoxic and normoxic conditions. Also, the efficiency of the Magnetogene vector was confirmed in vivo. Magnetogene was administered by intravenous injection (IV) in the tail vein and directed through an external magnetic field at the site of tumor growth in C57Bl/6 mice. A Magnetogene vector with a size of 50 to 70 nm was directed and retained at the tumor area and gene expression was higher at the tumor site than in the others tissues, confirming the selectivity of this vector towards hypoxic tumor areas. This nanosystem, that we called the "Magnetogene vector" for systemic delivery and specific gene expression in hypoxic tumors controlled by an external magnetic designed to target hypoxic regions of tumors, can be used for cancer-specific gene therapies.
Collapse
Affiliation(s)
- Luis Daniel Terrazas-Armendáriz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Cynthia Aracely Alvizo-Báez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Itza Eloisa Luna-Cruz
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Becky Annette Hernández-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Ashanti Concepción Uscanga-Palomeque
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Mitchel Abraham Ruiz-Robles
- Centro de Investigación en Ciencias Fisico Matematicas, Facultad de Ciencias Físico Matematicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66451, NL, Mexico; (M.A.R.-R.); (E.G.P.T.)
| | - Eduardo Gerardo Pérez Tijerina
- Centro de Investigación en Ciencias Fisico Matematicas, Facultad de Ciencias Físico Matematicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza 66451, NL, Mexico; (M.A.R.-R.); (E.G.P.T.)
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| | - Juan Manuel Alcocer-González
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, NL, Mexico; (L.D.T.-A.); (C.A.A.-B.); (I.E.L.-C.); (B.A.H.-G.); (A.C.U.-P.); (C.R.-P.); (R.T.-G.)
| |
Collapse
|
7
|
Gampa SC, Garimella SV, Pandrangi S. Nano-TRAIL: a promising path to cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:78-102. [PMID: 37065863 PMCID: PMC10099604 DOI: 10.20517/cdr.2022.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 04/18/2023]
Abstract
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, also called apo-2 ligand (TRAIL/Apo-2L), is a cytokine that triggers apoptosis by binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors. Apoptosis occurs through either the extrinsic or intrinsic pathway. The administration of recombinant human TRAIL (rhTRAIL) or TRAIL-receptor (TRAIL-R) agonists promotes apoptosis preferentially in cancerous cells over normal cells in vitro; this phenomenon has also been observed in clinical studies. The limited efficacy of rhTRAIL in clinical trials could be attributed to drug resistance, short half-life, targeted delivery issues, and off-target toxicities. Nanoparticles are excellent drug and gene delivery systems characterized by improved permeability and retention, increased stability and biocompatibility, and precision targeting. In this review, we discuss resistance mechanisms to TRAIL and methods to overcome TRAIL resistance by using nanoparticle-based formulations developed for the delivery of TRAIL peptides, TRAIL-R agonists, and TRAIL genes to cancer cells. We also discuss combinatorial approaches of chemotherapeutic drugs with TRAIL. These studies demonstrate TRAIL's potential as an anticancer agent.
Collapse
Affiliation(s)
- Siri Chandana Gampa
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - Sireesha V. Garimella
- Department of Biotechnology, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| | - SanthiLatha Pandrangi
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Andhra Pradesh 530045, India
| |
Collapse
|
8
|
Alizadeh Zeinabad H, Szegezdi E. TRAIL in the Treatment of Cancer: From Soluble Cytokine to Nanosystems. Cancers (Basel) 2022; 14:5125. [PMID: 36291908 PMCID: PMC9600485 DOI: 10.3390/cancers14205125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
The death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF cytokine superfamily, has long been recognized for its potential as a cancer therapeutic due to its low toxicity against normal cells. However, its translation into a therapeutic molecule has not been successful to date, due to its short in vivo half-life associated with insufficient tumor accumulation and resistance of tumor cells to TRAIL-induced killing. Nanotechnology has the capacity to offer solutions to these limitations. This review provides a perspective and a critical assessment of the most promising approaches to realize TRAIL's potential as an anticancer therapeutic, including the development of fusion constructs, encapsulation, nanoparticle functionalization and tumor-targeting, and discusses the current challenges and future perspectives.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Biomedical Sciences Building, School of Biological and Chemical Sciences, University of Galway, H91 W2TY Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Biomedical Sciences Building, School of Biological and Chemical Sciences, University of Galway, H91 W2TY Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
9
|
Donnelley M, Cmielewski P, Morgan K, Delhove J, Reyne N, McCarron A, Rout-Pitt N, Drysdale V, Carpentieri C, Spiers K, Takeuchi A, Uesugi K, Yagi N, Parsons D. Improved in-vivo airway gene transfer via magnetic-guidance, with protocol development informed by synchrotron imaging. Sci Rep 2022; 12:9000. [PMID: 35637239 PMCID: PMC9151774 DOI: 10.1038/s41598-022-12895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Gene vectors to treat cystic fibrosis lung disease should be targeted to the conducting airways, as peripheral lung transduction does not offer therapeutic benefit. Viral transduction efficiency is directly related to the vector residence time. However, delivered fluids such as gene vectors naturally spread to the alveoli during inspiration, and therapeutic particles of any form are rapidly cleared via mucociliary transit. Extending gene vector residence time within the conducting airways is important, but hard to achieve. Gene vector conjugated magnetic particles that can be guided to the conducting airway surfaces could improve regional targeting. Due to the challenges of in-vivo visualisation, the behaviour of such small magnetic particles on the airway surface in the presence of an applied magnetic field is poorly understood. The aim of this study was to use synchrotron imaging to visualise the in-vivo motion of a range of magnetic particles in the trachea of anaesthetised rats to examine the dynamics and patterns of individual and bulk particle behaviour in-vivo. We also then assessed whether lentiviral-magnetic particle delivery in the presence of a magnetic field increases transduction efficiency in the rat trachea. Synchrotron X-ray imaging revealed the behaviour of magnetic particles in stationary and moving magnetic fields, both in-vitro and in-vivo. Particles could not easily be dragged along the live airway surface with the magnet, but during delivery deposition was focussed within the field of view where the magnetic field was the strongest. Transduction efficiency was also improved six-fold when the lentiviral-magnetic particles were delivered in the presence of a magnetic field. Together these results show that lentiviral-magnetic particles and magnetic fields may be a valuable approach for improving gene vector targeting and increasing transduction levels in the conducting airways in-vivo.
Collapse
|
10
|
Kazemi-Ashtiyani M, Hajipour-Verdom B, Satari M, Abdolmaleki P, Hosseinkhani S, Shaki H. Estimating the two graph dextran-stearic acid-spermine polymers based on iron oxide nanoparticles as carrier for gene delivery. Biopolymers 2022; 113:e23491. [PMID: 35560028 DOI: 10.1002/bip.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Non-viral gene carriers have shown noticeable potential in gene delivery because of limited side effects, biocompatibility, simplicity, and the ability to take advantage of electrostatic interactions. However, the low transfection rate of non-viral vectors under physiological conditions is controversial. This study aimed to decrease the transfection time using a static magnetic field. We used self-assembled cationic polysaccharides based on dextran-stearic acid-spermine (DSASP) conjugates associated with Fe3 O4 superparamagnetic nanoparticles to investigate their potential as gene carriers to promote the target delivery. Our findings illustrate that the magnetic nanoparticles are spherical with a positive surface charge and exhibit superparamagnetic behavior. The DSASP-pDNA/Fe3 O4 complexes offered a strong pDNA condensation, protection against DNase degradation, and significant cell viability in HEK 293T cells. Our results demonstrated that although conjugation of stearic acid could play a role in transfection efficiency, DSASP magnetic carriers with more spermine derivatives showed better affinity between the amphiphilic polymer and the negatively charged cell membrane.
Collapse
Affiliation(s)
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Satari
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Shaki
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.,Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University Denmark, DTU Health Tech, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Ebrahimi S, Shamloo A, Alishiri M, Mofrad YM, Akherati F. Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion. Int J Pharm 2021; 609:121133. [PMID: 34563616 PMCID: PMC8459545 DOI: 10.1016/j.ijpharm.2021.121133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Since the beginning of the COVID-19 pandemic, nearly most confirmed cases develop respiratory syndromes. Using targeted drug delivery by microcarriers is one of the most important noteworthy methods for delivering drugs to the involved bronchi. This study aims to investigate the performance of a drug delivery that applies microcarriers to each branch of the lung under the influence of a magnetic field. The results show that by changing the inlet velocity from constant to pulsatile, the drug delivery performance to the lungs increases by ∼31%. For transferring the microcarriers to the right side branches (LUL and LLL), placing the magnet at zero height and ∼30° angle yields the best outcome. Also, the microcarriers' delivery to branch LUL improves by placing the magnet at LUL-LLL bifurcation and the angle of ∼30°. It was observed that dense (9300[kgm3]) microcarriers show the best performance for delivering drugs to LLL and RLL&RML branches. Also, low-density (1000[kgm3]) microcarriers are best for delivering drugs to LUL and RUL branches. The findings of this study can improve our understanding of different factors, such as inlet velocity, the magnet's position, and the choice of microcarrier - that affect drug delivery to the infected parts of the lung.
Collapse
Affiliation(s)
- Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mojgan Alishiri
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Fatemeh Akherati
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
13
|
Amin K, Moscalu R, Imere A, Murphy R, Barr S, Tan Y, Wong R, Sorooshian P, Zhang F, Stone J, Fildes J, Reid A, Wong J. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery. Nanomedicine (Lond) 2019; 14:2679-2696. [DOI: 10.2217/nnm-2019-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plastic surgery encompasses a broad spectrum of reconstructive challenges and prides itself upon developing and adopting new innovations. Practice has transitioned from microsurgery to supermicrosurgery with a possible future role in even smaller surgical frontiers. Exploiting materials on a nanoscale has enabled better visualization and enhancement of biological processes toward better wound healing, tumor identification and viability of tissues, all cornerstones of plastic surgery practice. Recent advances in nanomedicine and biomimicry herald further reconstructive progress facilitating soft and hard tissue, nerve and vascular engineering. These lay the foundation for improved biocompatibility and tissue integration by the optimization of engineered implants or tissues. This review will broadly examine each of these technologies, highlighting areas of progress that reconstructive surgeons may not be familiar with, which could see adoption into our armamentarium in the not-so-distant future.
Collapse
Affiliation(s)
- Kavit Amin
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Roxana Moscalu
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Angela Imere
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Materials, School of Natural Sciences, Faculty of Science & Engineering Research Institutes, The University of Manchester, MSS Tower, Manchester, UK
| | - Ralph Murphy
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Barr
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Youri Tan
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Parviz Sorooshian
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fei Zhang
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Materials, School of Natural Sciences, Faculty of Science & Engineering Research Institutes, The University of Manchester, MSS Tower, Manchester, UK
| | - John Stone
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James Fildes
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
14
|
Naimi A, Movassaghpour AA, Hagh MF, Talebi M, Entezari A, Jadidi-Niaragh F, Solali S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed Pharmacother 2018; 98:566-576. [DOI: 10.1016/j.biopha.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023] Open
|
15
|
Li J, Zou S, Gao J, Liang J, Zhou H, Liang L, Wu W. Block copolymer conjugated Au-coated Fe 3O 4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J Nanobiotechnology 2017; 15:56. [PMID: 28743275 PMCID: PMC5526242 DOI: 10.1186/s12951-017-0290-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB-Fe3O4@Au) were prepared for DNA loading and magnetofection assays. The Au outer shell of the NPs is an effective platform for maintaining the superparamagnetism of Fe3O4 and for PEG-b-PAMPImB binding via Au-S covalent bonds. By forming an electrostatic complex with DNA at the inner PAMPImB shell, the magnetic nanoplexes offer steric protection from the outer corona PEG, thereby promoting high colloidal stability. Transfection efficiency assays in human esophageal cancer cells (EC109) show that the nanoplexes have high transfection efficiency at a short incubation time in the presence of an external magnetic field, due to increased cellular internalization via magnetic acceleration. Finally, after transfection with the magnetic nanoplexes EC109 cells acquire magnetic properties, thus allowing for selective separation of transfected cells. CONCLUSION Precisely engineered architectures based on neutral-cationic block copolymer-conjugated heterogeneous NPs provide a valuable strategy for improving the applicability and efficacy of synthesized vectors.
Collapse
Affiliation(s)
- Junbo Li
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Sheng Zou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Jiayu Gao
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Ju Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Huiyun Zhou
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Lijuan Liang
- School of Chemical Engineering & Pharmaceutics, Henan University of Science & Technology, Luo Yang, 471023 China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luo Yang, 471023 China
| |
Collapse
|
16
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Trigger-Responsive Gene Transporters for Anticancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E120. [PMID: 28587119 PMCID: PMC5485767 DOI: 10.3390/nano7060120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
In the current era of gene delivery, trigger-responsive nanoparticles for the delivery of exogenous nucleic acids, such as plasmid DNA (pDNA), mRNA, siRNAs, and miRNAs, to cancer cells have attracted considerable interest. The cationic gene transporters commonly used are typically in the form of polyplexes, lipoplexes or mixtures of both, and their gene transfer efficiency in cancer cells depends on several factors, such as cell binding, intracellular trafficking, buffering capacity for endosomal escape, DNA unpacking, nuclear transportation, cell viability, and DNA protection against nucleases. Some of these factors influence other factors adversely, and therefore, it is of critical importance that these factors are balanced. Recently, with the advancements in contemporary tools and techniques, trigger-responsive nanoparticles with the potential to overcome their intrinsic drawbacks have been developed. This review summarizes the mechanisms and limitations of cationic gene transporters. In addition, it covers various triggers, such as light, enzymes, magnetic fields, and ultrasound (US), used to enhance the gene transfer efficiency of trigger-responsive gene transporters in cancer cells. Furthermore, the challenges associated with and future directions in developing trigger-responsive gene transporters for anticancer therapy are discussed briefly.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
17
|
Belkahla H, Herlem G, Picaud F, Gharbi T, Hémadi M, Ammar S, Micheau O. TRAIL-NP hybrids for cancer therapy: a review. NANOSCALE 2017; 9:5755-5768. [PMID: 28443893 DOI: 10.1039/c7nr01469d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a worldwide health problem. It is now considered as a leading cause of morbidity and mortality in developed countries. In the last few decades, considerable progress has been made in anti-cancer therapies, allowing the cure of patients suffering from this disease, or at least helping to prolong their lives. Several cancers, such as those of the lung and pancreas, are still devastating in the absence of therapeutic options. In the early 90s, TRAIL (Tumor Necrosis Factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF superfamily, attracted major interest in oncology owing to its selective anti-tumor properties. Clinical trials using soluble TRAIL or antibodies targeting the two main agonist receptors (TRAIL-R1 and TRAIL-R2) have, however, failed to demonstrate their efficacy in the clinic. TRAIL is expressed on the surface of natural killer or CD8+ T activated cells and contributes to tumor surveillance. Nanoparticles functionalized with TRAIL mimic membrane-TRAIL and exhibit stronger antitumoral properties than soluble TRAIL or TRAIL receptor agonist antibodies. This review provides an update on the association and the use of nanoparticles associated with TRAIL for cancer therapy.
Collapse
Affiliation(s)
- H Belkahla
- Nanomedicine Lab, EA 4662, Université de Bourgogne Franche-Comté, Besançon, France
| | | | | | | | | | | | | |
Collapse
|