1
|
Chen YP, Lo TS, Chien YH, Kuo YH, Liu SJ. In Vitro and In Vivo Drug Release from a Nano-Hydroxyapatite Reinforced Resorbable Nanofibrous Scaffold for Treating Female Pelvic Organ Prolapse. Polymers (Basel) 2024; 16:1667. [PMID: 38932015 PMCID: PMC11207985 DOI: 10.3390/polym16121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Pelvic prolapse stands as a substantial medical concern, notably impacting a significant segment of the population, predominantly women. This condition, characterized by the descent of pelvic organs, such as the uterus, bladder, or rectum, from their normal positions, can lead to a range of distressing symptoms, including pelvic pressure, urinary incontinence, and discomfort during intercourse. Clinical challenges abound in the treatment landscape of pelvic prolapse, stemming from its multifactorial etiology and the diverse array of symptoms experienced by affected individuals. Current treatment options, while offering relief to some extent, often fall short in addressing the full spectrum of symptoms and may pose risks of complications or recurrence. Consequently, there exists a palpable need for innovative solutions that can provide more effective, durable, and patient-tailored interventions for pelvic prolapse. We manufactured an integrated polycaprolactone (PCL) mesh, reinforced with nano-hydroxyapatite (nHA), along with drug-eluting poly(lactic-co-glycolic acid) (PLGA) nanofibers for a prolapse scaffold. This aims to offer a promising avenue for enhanced treatment outcomes and improved quality of life for individuals grappling with pelvic prolapse. Solution extrusion additive manufacturing and electrospinning methods were utilized to prepare the nHA filled PCL mesh and drug-incorporated PLGA nanofibers, respectively. The pharmaceuticals employed included metronidazole, ketorolac, bleomycin, and estrone. Properties of fabricated resorbable scaffolds were assessed. The in vitro release characteristics of various pharmaceuticals from the meshes/nanofibers were evaluated. Furthermore, the in vivo drug elution pattern was also estimated on a rat model. The empirical data show that nHA reinforced PCL mesh exhibited superior mechanical strength to virgin PCL mesh. Electrospun resorbable nanofibers possessed diameters ranging from 85 to 540 nm, and released effective metronidazole, ketorolac, bleomycin, and estradiol, respectively, for 9, 30, 3, and over 30 days in vitro. Further, the mesh/nanofiber scaffolds also liberated high drug levels at the target site for more than 28 days in vivo, while the drug concentrations in blood remained low. This discovery suggests that resorbable scaffold can serve as a viable option for treating female pelvic organ prolapse.
Collapse
Affiliation(s)
- Yi-Pin Chen
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsia-Shu Lo
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
| | - Yu-Han Chien
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.C.); (Y.-H.K.)
| | - Yi-Hua Kuo
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.C.); (Y.-H.K.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-H.C.); (Y.-H.K.)
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
| |
Collapse
|
2
|
Chou YC, Hsu YH, Lee D, Yang JW, Yu YH, Chan EC, Liu SJ. Novel Bioresorbable Drug-Eluting Mesh Scaffold for Therapy of Muscle Injury. ACS Biomater Sci Eng 2024; 10:2595-2606. [PMID: 38480510 DOI: 10.1021/acsbiomaterials.3c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A novel bioresorbable drug-eluting polycaprolactone (PCL) mesh scaffold was developed, utilizing a solvent-cast additive manufacturing technique, to promote therapy of muscle injury. The degradation rate and mechanical properties strength of the PCL mesh were characterized after immersion in a buffer solution for different times. The in vitro release characteristics of vancomycin, ceftazidime, and lidocaine from the prepared mesh were evaluated using a high-performance liquid chromatography (HPLC) assay. In addition, the in vivo efficacy of PCL meshes for the repair of muscle injury was investigated on a rat model with histological examinations. It was found that the additively manufactured PCL meshes degraded by 13% after submission in buffered solution for four months. All PCL meshes with different pore sizes exhibited greater strength than rat muscle and survived through 10,000 cyclic loadings. Furthermore, the meshes could offer a sustained release of antibiotics and analgesics for more than 3 days in vitro. The results of this study suggest that drug-loaded PCL mesh exhibits superior ability to pure PCL mesh in terms of effectively promoting muscle repair in rat models. The histological assay also showed adequate biocompatibility of the resorbable meshes. The additively manufactured biodegradable drug-eluting meshes may be adopted in the future in humans for the therapy of muscle injuries.
Collapse
Affiliation(s)
- Ying-Chao Chou
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jheng-Wei Yang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsun Yu
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
3
|
Yu YH, Lee CH, Hsu YH, Chou YC, Yu PC, Huang CT, Liu SJ. Anti-Adhesive Resorbable Indomethacin/Bupivacaine-Eluting Nanofibers for Tendon Rupture Repair: In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:16235. [PMID: 38003425 PMCID: PMC10671766 DOI: 10.3390/ijms242216235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The treatment and surgical repair of torn Achilles tendons seldom return the wounded tendon to its original elasticity and stiffness. This study explored the in vitro and in vivo simultaneous release of indomethacin and bupivacaine from electrospun polylactide-polyglycolide composite membranes for their capacity to repair torn Achilles tendons. These membranes were fabricated by mixing polylactide-polyglycolide/indomethacin, polylactide-polyglycolide/collagen, and polylactide-polyglycolide/bupivacaine with 1,1,1,3,3,3-hexafluoro-2-propanol into sandwich-structured composites. Subsequently, the in vitro pharmaceutic release rates over 30 days were determined, and the in vivo release behavior and effectiveness of the loaded drugs were assessed using an animal surgical model. High concentrations of indomethacin and bupivacaine were released for over four weeks. The released pharmaceutics resulted in complete recovery of rat tendons, and the nanofibrous composite membranes exhibited exceptional mechanical strength. Additionally, the anti-adhesion capacity of the developed membrane was confirmed. Using the electrospinning technique developed in this study, we plan on manufacturing degradable composite membranes for tendon healing, which can deliver sustained pharmaceutical release and provide a collagenous habitat.
Collapse
Affiliation(s)
- Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Ping-Chun Yu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Tsai Huang
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan;
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
4
|
Agrawal G, Aswath S, Laha A, Ramakrishna S. Electrospun Nanofiber-Based Drug Carrier to Manage Inflammation. Adv Wound Care (New Rochelle) 2023; 12:529-543. [PMID: 36680757 DOI: 10.1089/wound.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most widely prescribed drugs to treat inflammation and related ailments. In recent years, loading these drugs onto nanodevices like nanoparticles, nanofibers, etc. as a drug delivery system has gained momentum due to its desirable properties and advantages. The purpose of this review is to examine the existing research on the potential and novel use of nanofiber-assisted delivery of NSAIDs. Recent Advances: Electrospun nanofibers have recently garnered considerable attention from researchers in a variety of sectors. They have proved to be promising vehicles for drug delivery systems because of their exceptional and favorable features like prolonged drug release, controllable porosity, and high surface area. In this article, various polymers and even combinations of polymers loaded with single or multiple drugs were analyzed to achieve the desired drug release rates (burst, sustained, and biphasic) from the electrospun nanofibers. Critical Issues: The administration of these medications can induce major adverse effects, causing patients discomfort. Thus, encapsulating these drugs within electrospun nanofibers helps to reduce the severity of side effects while also providing additional benefits such as targeted and controlled drug release, reduced toxicity, and long-lasting effects of the drug with lower amounts of administration. Future Directions: This review covers previous research on the delivery of NSAIDs using electrospun nanofibers as the matrix. Also, this study intends to aid in the development of enhanced drug delivery systems for the treatment of inflammation and related issues.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Surabhi Aswath
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Anindita Laha
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Udupi, India
- Department of Chemical Engineering, Calcutta Institute of Technology, Howrah, India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Efatpanah A, Rabbani S, Talimi R, Mortazavi SA, Haeri A. Indomethacin Sustained-Release Anti-adhesion Membrane Composed of a Phospholipid and Polycaprolactone Blend. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127353. [PMID: 36710990 PMCID: PMC9872549 DOI: 10.5812/ijpr-127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Background Postoperative peritoneal adhesions are among common challenging problems in surgery. The availability of limited efficient strategies to prevent intra-abdominal adhesion reinforces the need to explore new methods. Given the favorable prolonged drug release characteristics of polycaprolactone (PCL) films and their ability to act as a biodegradable physical barrier implant, along with the anti-inflammatory and anti-adhesion properties of indomethacin and phospholipids, this study hypothesized that indomethacin sustained-release membrane composed of phosphatidylcholine (PC) and PCL blend could efficiently prevent abdominal adhesion formation. Methods Different polymeric and polymeric/lipidic hybrid formulations with three feeding materials to drug weight ratios were prepared, and their physicochemical characteristics and drug release kinetics were evaluated and compared. Abdominal adhesions were induced in 48 rats by the abrasion of the cecum and excision of a section of the opposite abdominal wall. Adhesion formation was evaluated by macroscopic scoring, histological, scanning electron microscopy, and polymerase chain reaction analyses. Results Both PCL and PCL-PC films exhibited sustained indomethacin release profiles. The X-ray diffraction and Fourier-transform infrared spectroscopy studies confirmed indomethacin incorporation in formulations in molecular dispersion form without any interaction. The films showed smooth surfaces and good mechanical properties. The treatment with indomethacin PCL-PC membrane significantly reduced the expression levels of tumor necrosis factor-alpha, transforming growth factor-beta, interleukin-1, interleukin-6, and fibrinogen in the adhesion tissues. The separation of the injured peritoneum, very low adhesion scores, and complete mesothelial cell regeneration were also achieved. Conclusions This study suggests that indomethacin-eluting PCL-PC membrane acting through the combination of physical barrier, anti-inflammatory agents, and controlled drug delivery warrants an effective approach to prevent intra-abdominal adhesion.
Collapse
Affiliation(s)
- Adrina Efatpanah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozhin Talimi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box: 14155-6153, Tehran, Iran. Tel: +98-2188200212,
| |
Collapse
|
6
|
Caldera-Villalobos M, Cabrera-Munguía DA, Becerra-Rodríguez JJ, Claudio-Rizo JA. Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal-organic frameworks. RSC Adv 2022; 12:3672-3686. [PMID: 35425396 PMCID: PMC8979324 DOI: 10.1039/d1ra08824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-organic frameworks (MOFs) are microporous materials with high potential for biomedical applications. They are useful as drug delivery systems, antibacterials, and biosensors. Recently, composite materials comprised of polymer matrixes and MOFs have gained relevance in the biomedical field due to their high potential as materials to accelerate wound healing. In this work, we studied the potential applications of composite hydrogels containing MgMOF74, CaMOF74, and Zn(Atz)(Py). The composite hydrogels are biodegradable, being completely degraded after 15 days by the action of collagenase and papain. The composites showed high biocompatibility reaching cell viabilities up to 165.3 ± 8.6% and 112.3 ± 12.8% for porcine fibroblasts and human monocytes, respectively. The composites did not show hemolytic character and they showed antibacterial activity against Escherichia coli reaching up to 84 ± 5% of inhibition compared with amoxicillin (20 ppm). Further, the immunological assays revealed that the composites produce a favorable cell signaling stimulating the secretion of the TGF-β and MCP-1 cytokines and maintaining the secretion of TNF-α in normal levels. Finally, the composites showed potential to be used as controlled drug delivery systems reaching a release efficiency of 30.5 ± 2.5% for ketorolac. Finally, results revealed that ColGG-Zn(Atz)(Py) was the best formulation evaluated.
Collapse
Affiliation(s)
- Martín Caldera-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| | - Denis A Cabrera-Munguía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| | - Juan J Becerra-Rodríguez
- Universidad Politécnica de Pénjamo Carretera Irapuato - La Piedad Km 44 Pénjamo 36921 Guanajuato México
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| |
Collapse
|
7
|
Chen YP, Lo TS, Lin YT, Chien YH, Lu CJ, Liu SJ. Fabrication of Drug-Eluting Polycaprolactone/poly(lactic- co-glycolic Acid) Prolapse Mats Using Solution-Extrusion 3D Printing and Coaxial Electrospinning Techniques. Polymers (Basel) 2021; 13:polym13142295. [PMID: 34301052 PMCID: PMC8309226 DOI: 10.3390/polym13142295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
We developed biodegradable drug-eluting prolapse mats using solution-extrusion 3D printing and coaxial electrospinning techniques. The mats were composed of polycaprolactone (PCL) mesh and lidocaine-, estradiol-, metronidazole-, and connective tissue growth factor (CTGF)-incorporated poly(lactic-co-glycolic acid) (PLGA) nanofibers that mimic the structure of the natural extracellular matrix of most connective tissues. The mechanical properties of degradable prolapse membrane were assessed and compared to commercial non-degradable polypropylene knitted meshes clinically used for pelvic organ prolapse (POP) repair. The release behaviors of the drug-loaded hybrid degradable membranes were also characterized. The experimental results suggest that 3D-printed PCL meshes exhibited comparable strengths to commercial POP meshes and survived through 10,000 cycles of fatigue test without breakage. Hybrid PCL meshes/PLGA nanofibrous membranes provided a sustainable release of metronidazole, lidocaine, and estradiol for 4, 25, and 30 days, respectively, in vitro. The membranes further liberated high levels of CTGF for more than 30 days. The animal tests show that the mechanical property of PCL mesh decreased with time, mainly due to degradation of the polymers post-implantation. No adverse effect of the mesh/nanofibers was noted in the histological images. By adopting solution-extrusion 3D printing and coaxial electrospinning, degradable drug-eluting membranes can be fabricated for POP applications.
Collapse
Affiliation(s)
- Yi-Pin Chen
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Tsia-Shu Lo
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Linkou, School of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Yu-Ting Lin
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.L.); (Y.-H.C.); (C.-J.L.)
| | - Yu-Han Chien
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.L.); (Y.-H.C.); (C.-J.L.)
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.L.); (Y.-H.C.); (C.-J.L.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-T.L.); (Y.-H.C.); (C.-J.L.)
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-211-8166; Fax: +886-3-211-8558
| |
Collapse
|
8
|
Liu KS, Kao CW, Tseng YY, Chen SK, Lin YT, Lu CJ, Liu SJ. Assessment of Antimicrobial Agents, Analgesics, and Epidermal Growth Factors-Embedded Anti-Adhesive Poly(Lactic-Co-Glycolic Acid) Nanofibrous Membranes: In vitro and in vivo Studies. Int J Nanomedicine 2021; 16:4471-4480. [PMID: 34234437 PMCID: PMC8257070 DOI: 10.2147/ijn.s318083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 02/05/2023] Open
Abstract
Background Postoperative tissue adhesion is a major concern for most surgeons and is a nearly unpreventable complication after abdominal or pelvic surgeries. This study explored the use of sandwich-structured antimicrobial agents, analgesics, and human epidermal growth factor (hEGF)-incorporated anti-adhesive poly(lactic-co-glycolic acid) nanofibrous membranes for surgical wounds. Materials and Methods Electrospinning and co-axial electrospinning techniques were utilized in fabricating the membranes. After spinning, the properties of the prepared membranes were assessed. Additionally, high-performance liquid chromatography and enzyme-linked immunosorbent assays were utilized in assessing the in vitro and in vivo liberation profiles of the pharmaceuticals and the hEGF from the membranes. Results The measured data suggest that the degradable anti-adhesive membranes discharged high levels of vancomycin/ceftazidime, ketorolac, and hEGF in vitro for more than 30, 24, and 27 days, respectively. The in vivo assessment in a rat laparotomy model indicated no adhesion in the peritoneal cavity at 14 days post-operation, demonstrating the anti-adhesive capability of the sandwich-structured nanofibrous membranes. The nanofibers also released effective levels of vancomycin, ceftazidime, and ketorolac for more than 28 days in vivo. Histological examination revealed no adverse effects. Conclusion The outcomes of this study implied that the anti-adhesive nanofibers with sustained release of antimicrobial agents, analgesics, and growth factors might offer postoperative pain relief and infection control, as well as promote postoperative healing of surgical wounds.
Collapse
Affiliation(s)
- Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Wei Kao
- Department of Anesthesiology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Shih-Kuang Chen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ting Lin
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
10
|
Lu J, Tian W, Cui L, Cai B, Zhang T, Huang N, Lu L, Zhu T. Lidocaine-eluting endotracheal tube effectively attenuates intubation related airway response. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:871. [PMID: 34164505 PMCID: PMC8184491 DOI: 10.21037/atm-21-1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Lidocaine (LDC) is a local anesthetic widely used to relieve intubation-related airway responses. However, low drug concentration and short effective duration of LDC is inadequate to provide a satisfactory anesthetic effect on the surface of the airway. The present study sought to develop a LDC-delivery endotracheal tube (ETT) to achieve high local drug concentration and sustained drug release with the aim of attenuating an intubation-related airway response. Methods ETTs and polyvinyl chloride (PVC) discs were coated with different molecular weight (MW) poly lactic-co-glycolic acid (PLGA: 50/50; MW: 3,000, 6,000, and 10,000) loaded with LDC by airbrush spray. The morphology of LDC-eluting coatings was analyzed using scanning electron microscopy. In vitro drug release was determined by ultraviolet spectrophotometer. An in vivo study was performed to investigate the differences in plasma LDC concentration, intubation tolerance, and tracheal tissue injury in rabbits undergoing intubation of blank, LDC-spray, or LDC-coated ETTs. Results Approximate 5 mg/cm2 coatings (containing 2.5 mg/cm2 LDC) were deposited onto the PVC discs and ETTs. While even distribution and smooth surfaces were generated in PLGA3000 + LDC and PLGA6000 + LDC coatings, PLGA10000 + LDC formed uneven and gullied coatings. Burst release within the first 4 h and sustained release for at least 5 days was achieved in vitro in PLGA + LDC coatings and the in vivo study demonstrated higher plasma LDC concentration and longer drug release duration in LDC-coated ETTs compared with LDC-spray. LDC-coated ETTs significantly improved intubation tolerance in rabbits, as measured by less general anesthetic consumption and longer tube tolerance duration in contrast to blank ETTs with or without LDC spray. Histology assessment showed less mucosal edema area in the PLGA3000 + LDC and PLGA6000 + LDC groups compared to the control, LDC-spray, and PLGA10000 + LDC groups. Among the different MW PLGAs, PLGA6000 presented optimal morphological characteristics, drug release, and anesthetic effect. Conclusions ETTs coated with PLGA + LDC effectively attenuate an intubation-related airway response via increasing local drug concentration and extending drug action duration, which demonstrates a potential therapeutic benefit for patients undergoing intubation.
Collapse
Affiliation(s)
- Jing Lu
- Department of Anesthesiology, Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wenjie Tian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linxian Cui
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bing Cai
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Nan Huang
- Key Lab of Advanced Technology for Materials of Education Ministry, School of Materials, Southwest Jiaotong University, Chengdu, China
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Singh S, Kumar A, Mittal G. Ketamine-polymer based drug delivery system for prolonged analgesia: recent advances, challenges and future prospects. Expert Opin Drug Deliv 2021; 18:1117-1130. [PMID: 33599572 DOI: 10.1080/17425247.2021.1887134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: With a sharp increase in NSAIDs and opioid use for chronic pain conditions associated with traumatic injuries and diseases, there has been an escalated risk of life-threatening side effects (cardiac and respiratory malfunction), inadvertent overdose, and even death. Their short duration of action and toxicity induces the need to develop extended-release analgesic drug formulations based on safe drugs like ketamine.Areas covered: This review presents progressive breakthroughs in pain control strategies for augmenting patient's comfort and minimizing unnecessary adverse effects associated with NSAIDs and opioids. Advantages of using ketamine, a dissociative anesthetic and potent analgesic over opioids have been elaborated here for the development of advanced sustained-release analgesic drug formulations based on ketamine and polymers (hydrogels, microparticles, and nanoparticles) as mainstream systems. These systems can be very promising in the resource-constrained healthcare set-up where frequent drug dosing at short time intervals is extremely challenging. PubMed, Embase, Google Scholar electronic databases, and clinical websites were used for conducting extensive research.Expert opinion: Controlled drug release analgesic systems can significantly reduce the burden of repeated drug dosing and opioid drug dependency, maximizing the function of analgesic drugs for clinical translation, and improving the quality of life of those living with pain.
Collapse
Affiliation(s)
- Surabhi Singh
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi India
| | - Amit Kumar
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organisation, New Delhi India
| |
Collapse
|
12
|
Chobpenthai T, Ingviya T, Thanindratarn P, Jaiwithee R, Sutthivaiyakit K. Ketorolac plus Lidocaine vs Lidocaine for pain relief following core needle soft tissue biopsy: A CONSORT-compliant double-blind randomized controlled study. Medicine (Baltimore) 2021; 100:e24721. [PMID: 33607813 PMCID: PMC7899906 DOI: 10.1097/md.0000000000024721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUNDS The main objective of this study was to compare the pain control efficacy of local administration of Lidocaine with or without the nonsteroidal anti-inflammatory drug, Ketorolac, and local conventional Lidocaine injection in core needle biopsy of the musculoskeletal tumor. METHODS The current study was a randomized, double-blind controlled clinical trial that included 128 patients with suspected musculoskeletal tumors. Patients were randomly assigned to either the Ketorolac plus Lidocaine (n = 64) or Lidocaine group (n = 64). The Ketorolac - Lidocaine combination syringe contained 30 mg Ketorolac and 2% Lidocaine - adrenaline dosage, and the Lidocaine syringe contained 2% Lidocaine - adrenaline dosage. The level of pain after core needle biopsy was evaluated for each patient at 1, 6, 12, 24, 48, and >48 hours by a Visual Analog Scale (VAS). The mean VAS changes over time were compared between the Ketorolac plus Lidocaine and Lidocaine groups using a linear mixed model. RESULTS baseline information including mean age of patients in Lidocaine group (51.5 ± 19.4 years) and in Lidocaine - Ketorolac combination group (50.1 ± 18 years), diagnosis (malignant, benign, metastatic, infection), tumor location (upper and lower extremities, back), VAS score 1-hour post-operation (mild and moderate pain) were noted. The VAS score ratings were significantly lower in Lidocaine - Ketorolac combination group when compared to the Lidocaine group during the 1 to 24 hours post-operation time period. CONCLUSION Patients receiving Lidocaine - Ketorolac combination dosage had significantly lower VAS scores, and these results confirm that local injection of Lidocaine - Ketorolac combination had a superior pain-controlling effect during the first 24 hours after the biopsy procedure in comparison to Lidocaine injection alone, as measured by VAS score scale.
Collapse
Affiliation(s)
- Thanapon Chobpenthai
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy
- Department of Orthopedics, Chulabhorn Hospital, Bangkok
| | - Thammasin Ingviya
- Department of Family and Preventive Medicine
- Medical Data Center for Research and Innovation, Faculty of Medicine, Prince of Songkla University, Hat Yai
| | | | | | | |
Collapse
|
13
|
Sustained Release of Levobupivacaine, Lidocaine, and Acemetacin from Electrosprayed Microparticles: In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:ijms21031093. [PMID: 32041361 PMCID: PMC7037341 DOI: 10.3390/ijms21031093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, we explored the release characteristics of analgesics, namely levobupivacaine, lidocaine, and acemetacin, from electrosprayed poly(D,L-lactide-co-glycolide) (PLGA) microparticles. The drug-loaded particles were prepared using electrospraying techniques and evaluated for their morphology, drug release kinetics, and pain relief activity. The morphology of the produced microparticles elucidated by scanning electron microscopy revealed that the optimal parameters for electrospraying were 9 kV, 1 mL/h, and 10 cm for voltage, flow rate, and travel distance, respectively. Fourier-transform infrared spectrometry indicated that the analgesics had been successfully incorporated into the PLGA microparticles. The analgesic-loaded microparticles possessed low toxicity against human fibroblasts and were able to sustainably elute levobupivacaine, lidocaine, and acemetacin in vitro. Furthermore, electrosprayed microparticles were found to release high levels of lidocaine and acemetacin (well over the minimum therapeutic concentrations) and levobupivacaine at the fracture site of rats for more than 28 days and 12 days, respectively. Analgesic-loaded microparticles demonstrated their effectiveness and sustained performance for pain relief in fracture injuries.
Collapse
|
14
|
Kao CW, Tseng YY, Liu KS, Liu YW, Chen JC, He HL, Kau YC, Liu SJ. Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds. Int J Nanomedicine 2019; 14:4007-4016. [PMID: 31213812 PMCID: PMC6549740 DOI: 10.2147/ijn.s202402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background: This study exploited sheath-core-structured lidocaine/human EGF (hEGF)-loaded anti-adhesive poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibrous films for surgical wounds via a co-axial electrospinning technique. Materials and methods: After spinning, the properties of the co-axially spun membranes were characterized by scanning electron microscopy, laser-scanning confocal microscopy, Fourier Transform Infrared spectrometry, water contact angle measurements, and tensile tests. Furthermore, a HPLC analysis and an ELISA evaluated the in vitro and in vivo release curves of lidocaine and hEGF from the films. Results: PLGA anti-adhesion nanofibers eluted high levels of lidocaine and hEGF for over 32 and 27 days, respectively, in vitro. The in vivo evaluation of post-surgery recovery in a rat model demonstrated that no adhesion was noticed in tissues at 2 weeks after surgery illustrating the anti-adhesive performance of the sheath-core-structured nanofibers. Nanofibrous films effectively released lidocaine and hEGF for >2 weeks in vivo. In addition, rats implanted with the lidocaine/hEGF nanofibrous membranes exhibited greater activities than the control demonstrating the pain relief efficacy of the films. Conclusion: The empirical outcomes suggested that the anti-adhesive nanofibrous films with extended release of lidocaine and hEGF offer post-operative pain relief and wound healing.
Collapse
Affiliation(s)
- Ching-Wei Kao
- Department of Anesthesiology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Wei Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Science, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chuan Kau
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
15
|
Tsai HL, Chang TK, Su WC, Yeh YS, Huang CW, Ma CJ, Wang JY. Comparing efficacy and safety between Naldebain ® and intravenous patient-controlled analgesia with fentanyl for pain management post-laparotomy: study protocol for a randomized controlled, non-inferior trial. Trials 2019; 20:173. [PMID: 30885242 PMCID: PMC6423831 DOI: 10.1186/s13063-019-3260-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background A long-acting prodrug of nalbuphine, nalbuphine sebacate, has been developed for meeting the unmet medical need of long-acting analgesics. Naldebain® (nalbuphine sebacate) has been developed as a new premedication for postoperative pain management. The primary objective of this study is to determine the efficacy and safety of a single dose of intramuscular Naldebain® in patients scheduled to undergo elective laparotomy. Methods/design A total of 110 patients will be recruited and randomized into two treatment groups. Group 1 receives a single dose of Naldebain® intramuscularly 24 ± 12 h prior to surgery. Group 2 receives intravenous patient-controlled analgesia (PCA) with fentanyl through 48 h postsurgery. Both groups will have follow-up observations until the final visit (day of discharge, day 6–30). The primary efficacy endpoint is to assess time-specific pain intensity calculated as the area under the curve (AUC) of a visual analog scale at individual time points and by using total AUC. Safety endpoints—including incidence of treatment, emergent adverse events, and percentage of abnormality from baseline to final visit—in vital signs, laboratory tests, and injection site evaluations will also be analyzed. Statistical analyses will be performed on the data to compare the two groups. Discussion Post-laparotomy pain can have a harmful effect on patient recovery; therefore, a slow-release formulation that can cover at least 7 days of analgesic effect is required. This study will demonstrate whether a single use of Naldebain® is not less efficacious than PCA with fentanyl for pain management as a non-inferior trial. Trial registration NCT03296488. Electronic supplementary material The online version of this article (10.1186/s13063-019-3260-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan
| | - Yung-Sung Yeh
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Trauma and Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jen Ma
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan.,Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, San-Ming District, Kaohsiung, 807, Taiwan. .,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Chen YP, Liu YW, Lee D, Qiu JT, Lee TY, Liu SJ. Biodegradable andrographolide-eluting nanofibrous membranes for the treatment of cervical cancer. Int J Nanomedicine 2019; 14:421-429. [PMID: 30666104 PMCID: PMC6331077 DOI: 10.2147/ijn.s186714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In this study, we developed biodegradable andrographolide (AG)-eluting nanofibrous mats and evaluated their efficacy in treating cervical cancer. MATERIALS AND METHODS Membranes of two different poly[(d,l)-lactide-co-glycolide] (PLGA)-to-AG ratios (6:1 and 3:1) were prepared via electrospinning technology. The liberation behavior of AG was evaluated. A cervical cancer model with C57BL/6J mice was created and employed for an in vivo efficacy assessment of the drug-eluting nanofibers. Twelve mice with cervical cancer were stochastically divided into three different groups (four animals per group): group A received no treatment as the control, group B was treated with pure PLGA mats, and group C was treated with AG-loaded nanofibrous membranes. The changes in tumor sizes were recorded. RESULTS All membranes eluted high concentrations of AG at the target area for three weeks, while the systemic drug concentration in the blood remained low. Histological analysis showed no obvious tissue inflammation. Compared with the mice in groups A and B, the tumor size of the mice in group C decreased with time until day 25, when the daily drug concentration reduced to 3 µg/mL. CONCLUSION Biodegradable nanofibers with a sustainable release of AG exhibit adequate efficacy and durability for the treatment of mice with cervical cancer.
Collapse
Affiliation(s)
- Yi-Pin Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yen-Wei Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan,
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan,
| | - Jiantai Timothy Qiu
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Traditional Chinese Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan,
- Department of Orthopedic Surgery, Linkou Chang Gung Memorial Hospital, Tao-Yuan, Taiwan,
| |
Collapse
|
17
|
Hu B, Yan Y, Tong F, Xu L, Zhu J, Xu G, Shen R. Lumbrokinase/paclitaxel nanoparticle complex: potential therapeutic applications in bladder cancer. Int J Nanomedicine 2018; 13:3625-3640. [PMID: 29983558 PMCID: PMC6027826 DOI: 10.2147/ijn.s166438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Lumbrokinase (LK) is an enzyme complex with antithrombotic, antioxidant, antitumor, and immunomodulatory effects. It has been extensively studied and used in clinical anti-tumor therapy. However, its half-life is short, its bioavailability is low, and its toxicity and side effects are great, which greatly limit its clinical application. Therefore, LK is often combined with other drugs (such as immune agents, hormones, or Chinese herbal medicine) to reduce its dosage and side effects and to improve its anti-tumor effects. Methods and results Here, we described an LK/paclitaxel (PTX) nanocarrier based on poly(ethylene glycol)-b-(poly(ethylenediamine l-glutamate)-g-poly(ε-benzyoxycarbonyl-l-lysine)-r-poly(l-lysine)) (PEG-b-(PELG-g-(PZLL-r-PLL))). In the present study, LK and PTX were loaded by electrostatic and/or hydrophobic effects under mild conditions, thereby increasing the half-life and bioavailability of the drugs via the sustained release and enhancement of tumor site enrichment by the LK/PTX/PEG-b-(PELG-g-(PZLL-r-PLL)) complex through passive targeting. In this study, using bladder cancer cells (J82 cells) and rat bladder cancer model as the object, the structure of the nanocarrier, the relationship between drugs composition and antitumor properties were systematically studied. Conclusion We propose that the block copolymer PEG-b-(PELG-g-(PZLL-r-PLL)) may function as a potent nanocarrier for augmenting anti-bladder cancer pharmacotherapy, with unprecedented clinical benefits.
Collapse
Affiliation(s)
- Bo Hu
- Department of Oncopathology, Institute of Diabetes and Urological Disease, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, ;
| | - Ying Yan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fei Tong
- Department of Oncopathology, Institute of Diabetes and Urological Disease, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, ;
| | - Long Xu
- Department of Oncopathology, Institute of Diabetes and Urological Disease, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, ;
| | - Jia Zhu
- Department of Oncopathology, Institute of Diabetes and Urological Disease, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, ;
| | - Guangtao Xu
- Department of Oncopathology, Institute of Diabetes and Urological Disease, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, ;
| | - Ruilin Shen
- Department of Oncopathology, Institute of Diabetes and Urological Disease, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, ;
| |
Collapse
|