1
|
Wang C, Xiu Y, Zhang Y, Wang Y, Xu J, Yu W, Xing D. Recent advances in biotin-based therapeutic agents for cancer therapy. NANOSCALE 2025; 17:1812-1873. [PMID: 39676680 DOI: 10.1039/d4nr03729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biotin receptors, as biomarkers for cancer cells, are overexpressed in various tumor types. Compared to other vitamin receptors, such as folate receptors and vitamin B12 receptors, biotin receptor-based targeting strategies exhibit superior specificity and broader potential in treating aggressive cancers, including ovarian cancer, leukemia, colon cancer, breast cancer, kidney cancer, and lung cancer. These strategies promote biotin transport via receptor-mediated endocytosis, which is triggered upon ligand binding. Biotin, as the ligand of the biotin receptor, can be conjugated to anti-cancer drugs to form targeted therapies that bind to receptors overexpressed on tumor cells, thus increasing drug uptake. Despite these advantages, many candidate drugs have progressed slowly and remain in the preclinical stage, impeding clinical translation. This is mainly due to the effects of various conjugation methods and drug formulations on their functionality and efficacy. Therefore, developing novel biotin-based therapeutics is crucial. The innovation of this strategy lies in its multifunctionality-researchers can use different conjugation methods to design and synthesize these drugs, enabling precise targeting of various tumor types while minimizing toxicity to normal cells. These drugs include small-molecule-biotin conjugates (SMBCs) and nano-biotin conjugates (NBCs). This dual-platform approach represents a significant advancement in targeted therapy, offering unprecedented flexibility in drug design and delivery. Compared to chemotherapy drugs and traditional delivery systems, biotin-based drugs with tumor-specific targeting demonstrate enhanced targeting, improved efficacy, and reduced toxicity. This review examines strategies and applications for enhancing the delivery of chemotherapy drugs to cancer cells, highlighting the need for high-quality conjugates and strategies. It not only summarizes the latest progress but also provides key insights into how this emerging field could revolutionize personalized cancer treatment, especially in the context of precision medicine. Additionally, it offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Wang HX, Huang XH, Ma LQ, Yang ZJ, Wang HL, Xu B, Luo MQ. Association between lactate-to-albumin ratio and short-time mortality in patients with acute respiratory distress syndrome. J Clin Anesth 2024; 99:111632. [PMID: 39326299 DOI: 10.1016/j.jclinane.2024.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
STUDY OBJECTIVE The lactate-to-albumin ratio (LAR) has been confirmed to be an effective prognostic marker in sepsis, heart failure, and acute respiratory failure. However, the relationship between LAR and mortality in patients with acute respiratory distress syndrome (ARDS) remains unclear. We aim to evaluate the predictive value of LAR for ARDS patients. DESIGN A retrospective cohort study. SETTING Medical Information Mart for Intensive Care IV (v2.2) database. PATIENTS 769 patients with acute respiratory distress syndrome(ARDS). INTERVENTIONS We divided the patients into two subgroups according to the primary study endpoint (28-days all-cause mortality): the 28-day survivors and the 28-day non-survivors. MEASURES Multivariate Cox Regression, Receiver Operator Characteristic (ROC) and Kaplan-Meier survival analysis were used to investigate the relationship between LAR and short-time mortality in patients with ARDS. MAIN RESULTS The 28-day mortality was 38 % in this study. Multivariable Cox regression analysis showed that LAR was an independent predictive factor for 28-day mortality (HR 1.11, 95 %CI: 1.06-1.16, P < 0.001). The area under curve (AUC) of LAR in the ROC was 70.34 % (95 %CI: 66.53 % - 74.15 %) that provided significantly higher discrimination compared with lactate (AUC = 68.00 %, P = 0.0007) or albumin (AUC = 63.17 %, P = 0.002) alone. LAR was also not inferior to SAPSII with the AUC of 73.44 % (95 %CI: 69.84 % - 77.04 %, P = 0.21). Additionally, Kaplan-Meier survival analysis displayed that ARDS patients with high LAR (> the cut-off value 0.9055) had a significantly higher 28-day overall mortality rate (P < 0.001) and in-hospital mortality rate (P < 0.001). However, patients in high LAR group had shorter length of hospital stay (P < 0.001), which might be caused by higher in-hospital mortality. CONCLUSIONS We confirmed that there was a positive correlation between LAR and 28-day mortality. This could provide anesthesiologists and critical care physicians with a more convenient tool than SAPSII without being superior for detecting ARDS patients with poor prognosis timely.
Collapse
Affiliation(s)
- He-Xuan Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xue-Hua Huang
- Department of Pain, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200438, China
| | - Li-Qing Ma
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Zhou-Jing Yang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Hai-Lian Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Bo Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | - Meng-Qiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
3
|
Chamarthy S, Mekala JR. Functional importance of glucose transporters and chromatin epigenetic factors in Glioblastoma Multiforme (GBM): possible therapeutics. Metab Brain Dis 2023; 38:1441-1469. [PMID: 37093461 DOI: 10.1007/s11011-023-01207-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain cancer affecting glial cells and is chemo- and radio-resistant. Glucose is considered the most vital energy source for cancer cell proliferation. During metabolism, hexose molecules will be transported into the cells via transmembrane proteins known as glucose transporter (GLUT). Among them, GLUT-1 and GLUT-3 play pivotal roles in glucose transport in GBM. Knockdown studies have established the role of GLUT-1, and GLUT-3 mediated glucose transport in GBM cells, providing insight into GLUT-mediated cancer signaling and cancer aggressiveness. This review focussed on the vital role of GLUT-1 and GLUT-3 proteins, which regulate glucose transport. Recent studies have identified the role of GLUT inhibitors in effective cancer prevention. Several of them are in clinical trials. Understanding and functional approaches towards glucose-mediated cell metabolism and chromatin epigenetics will provide valuable insights into the mechanism of cancer aggressiveness, cancer stemness, and chemo-resistance in Glioblastoma Multiforme (GBM). This review summarizes the role of GLUT inhibitors, micro-RNAs, and long non-coding RNAs that aid in inhibiting glucose uptake by the GBM cells and other cancer cells leading to the identification of potential therapeutic, prognostic as well as diagnostic markers. Furthermore, the involvement of epigenetic factors, such as microRNAs, in regulating glycolytic genes was demonstrated.
Collapse
Affiliation(s)
- Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
4
|
Nicoud MB, Ospital IA, Táquez Delgado MA, Riedel J, Fuentes P, Bernabeu E, Rubinstein MR, Lauretta P, Martínez Vivot R, Aguilar MDLÁ, Salgueiro MJ, Speisky D, Moretton MA, Chiappetta DA, Medina VA. Nanomicellar Formulations Loaded with Histamine and Paclitaxel as a New Strategy to Improve Chemotherapy for Breast Cancer. Int J Mol Sci 2023; 24:ijms24043546. [PMID: 36834958 PMCID: PMC9959774 DOI: 10.3390/ijms24043546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, paclitaxel (PTX) represents the first-line therapy for TNBC; however it presents a hydrophobic behavior and produces severe adverse effects. The aim of this work is to improve the therapeutic index of PTX through the design and characterization of novel nanomicellar polymeric formulations composed of a biocompatible copolymer Soluplus® (S), surface-decorated with glucose (GS), and co-loaded either with histamine (HA, 5 mg/mL) and/or PTX (4 mg/mL). Their micellar size, evaluated by dynamic light scattering, showed a hydrodynamic diameter between 70 and 90 nm for loaded nanoformulations with a unimodal size distribution. Cytotoxicity and apoptosis assays were performed to assess their efficacy in vitro in human MDA-MB-231 and murine 4T1 TNBC cells rendering optimal antitumor efficacy in both cell lines for the nanoformulations with both drugs. In a model of TNBC developed in BALB/c mice with 4T1 cells, we found that all loaded micellar systems reduced tumor volume and that both HA and HA-PTX-loaded SG micelles reduced tumor weight and neovascularization compared with the empty micelles. We conclude that HA-PTX co-loaded micelles in addition to HA-loaded formulations present promising potential as nano-drug delivery systems for cancer chemotherapy.
Collapse
Affiliation(s)
- Melisa B. Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Ignacio A. Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A. Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Jennifer Riedel
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pedro Fuentes
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Ezequiel Bernabeu
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mara R. Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunología, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María de los Ángeles Aguilar
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María J. Salgueiro
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Daniela Speisky
- Servicio de Patología, Hospital Británico de Buenos Aires, Buenos Aires 1280, Argentina
| | - Marcela A. Moretton
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Diego A. Chiappetta
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Vanina A. Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Correspondence: ; Tel.: +54-0810-220-0822 (ext. 6091)
| |
Collapse
|
5
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
6
|
Glycosylated paclitaxel mixed nanomicelles: Increasing drug brain accumulation and enhancing its in vitro antitumoral activity in glioblastoma cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Boussadia Z, Gambardella AR, Mattei F, Parolini I. Acidic and Hypoxic Microenvironment in Melanoma: Impact of Tumour Exosomes on Disease Progression. Cells 2021; 10:3311. [PMID: 34943819 PMCID: PMC8699343 DOI: 10.3390/cells10123311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of melanoma progression have been extensively studied in the last decade, and despite the diagnostic and therapeutic advancements pursued, malignant melanoma still accounts for 60% of skin cancer deaths. Therefore, research efforts are required to better define the intercellular molecular steps underlying the melanoma development. In an attempt to represent the complexity of the tumour microenvironment (TME), here we analysed the studies on melanoma in acidic and hypoxic microenvironments and the interactions with stromal and immune cells. Within TME, acidity and hypoxia force melanoma cells to adapt and to evolve into a malignant phenotype, through the cooperation of the tumour-surrounding stromal cells and the escape from the immune surveillance. The role of tumour exosomes in the intercellular crosstalk has been generally addressed, but less studied in acidic and hypoxic conditions. Thus, this review aims to summarize the role of acidic and hypoxic microenvironment in melanoma biology, as well as the role played by melanoma-derived exosomes (Mexo) under these conditions. We also present a perspective on the characteristics of acidic and hypoxic exosomes to disclose molecules, to be further considered as promising biomarkers for an early detection of the disease. An update on the use of exosomes in melanoma diagnosis, prognosis and response to treatment will be also provided and discussed.
Collapse
Affiliation(s)
- Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
8
|
Zeeshan M, Ali H, Ain QU, Mukhtar M, Gul R, Sarwar A, Khan S. A holistic QBD approach to design galactose conjugated PLGA polymer and nanoparticles to catch macrophages during intestinal inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112183. [PMID: 34082983 DOI: 10.1016/j.msec.2021.112183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Recruited macrophages in inflammation attract various ligand-receptor drug delivery approaches. Galactose bound nanocarriers are promising to catch macrophages because of surface-expressed macrophage galactose type-lectin-C (MGL-2) receptor. The present study reported fabrication of galactose conjugated PLGA (GAL-PLGA) polymer and nanoparticles under quality by design (QBD) approach to investigate macrophages targeting potential at inflamed intestine. GAL-PLGA nanoparticles were fabricated through O/W emulsion-evaporation method under QBD approach and Box-Behnken design. Obtained GAL-PLGA nanoparticles have optimum particle size (~118 nm), drug entrapment (87%) and zeta potential (-9.5). TGA, XPRD and FTIR confirmed stability and negate drug-polymer interactions. Further, nanoparticles have considerable hemocompatibility, biocompatibility and cellular uptake; macrophage uptake was inhibited by D-galactose confirming involvement of MGL-2. Moreover, drug retention studies in the DSS-colitis model provide background for potential of nanoparticles to target and reside inflamed intestine. It is concluded that GAL-PLGA nanoparticles are suitable platform to target macrophages at the inflamed intestine through oral route.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged 6720, Hungary
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Atif Sarwar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
9
|
Swetha KL, Maravajjala KS, Sharma S, Chowdhury R, Roy A. Development of a tumor extracellular pH-responsive nanocarrier by terminal histidine conjugation in a star shaped poly(lactic-co-glycolic acid). Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Possible contribution of sialic acid to the enhanced tumor targeting efficiency of nanoparticles engineered with doxorubicin. Sci Rep 2020; 10:19738. [PMID: 33184416 PMCID: PMC7661514 DOI: 10.1038/s41598-020-76778-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Doxorubicin (DOX)-engineered poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) including phloretin (PHL) were designed and the feasible contribution of sialic acid (SA) to the improved tumor targeting and penetration capabilities was elucidated in lung adenocarcinoma models. DOX has been clinically used as liposomal formulations after its introduction to the inner side of vehicles, however DOX is anchored in the outer surface of PLGA NPs for improved tumor penetration by interactions with SA in this study. DOX (positively charged at physiological pH) was adsorbed onto the negatively charged PLGA NPs via electrostatic interactions and consequent binding of SA (negatively charged at physiological pH) to DOX located in NPs was also elucidated. DOX layer in DOX@PLGA NPs rendered improved endocytosis and partial contribution of SA (expressed in cancer cells) to that endocytosis was demonstrated. DOX@PLGA/PHL NPs provided enhanced antiproliferation potentials in A549 cells rather than single agent (DOX or PHL)-installed NPs. In addition, DOX-SA interactions seemed to play critical roles in tumor infiltration and accumulation of DOX@PLGA NPs in A549 tumor-xenografted mouse model. All these findings support the novel use of DOX which is used for the surface engineering of NPs for improved tumor targeting and penetration.
Collapse
|
11
|
Sasaki K, Nishina S, Yamauchi A, Fukuda K, Hara Y, Yamamura M, Egashira K, Hino K. Nanoparticle-Mediated Delivery of 2-Deoxy-D-Glucose Induces Antitumor Immunity and Cytotoxicity in Liver Tumors in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:739-762. [PMID: 33191170 PMCID: PMC7841526 DOI: 10.1016/j.jcmgh.2020.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Immune checkpoint inhibitors have shed light on the importance of antitumor immunity as a therapeutic strategy for hepatocellular carcinoma (HCC). The altered glucose metabolism known as the Warburg effect recently has gained attention as a cancer immune-resistance mechanism. Considering glycolysis inhibitors as therapeutic agents, their specific delivery to cancer cells is critical not to induce adverse effects. Thus, we investigated antitumor effects of a glycolysis inhibitor, consisting of 2-deoxy-D-glucose (2DG)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (2DG-PLGA-NPs), against hepatocellular carcinoma in mice. METHODS The antitumor effects of 2DG-PLGA-NPs were examined using hepatoma cell lines, xenograft tumors, and hepatocarcinogenic and syngeneic mouse models. RESULTS The 2DG-PLGA-NPs induced cytotoxic effects and antitumor immunity through enhanced T-cell trafficking. In addition, 2DG-PLGA-NPs induced decreased lactate production and increased interferon-γ-positive T cells in liver tumors. Human CD8+ T cells cocultured with 2DG-PLGA-NP-treated Huh7 cells showed their increased interferon-γ production and glucose uptake compared with the CD8+ T cells co-cultured with PLGA-NP-treated Huh7 cells. Chemotaxis of CD8+ T cells was suppressed by lactate and enhanced by glucose. Interferon-γ enhanced CD8+ T-cell chemotaxis in both an autocrine and paracrine manner. Notably, the 2DG-PLGA-NPs augmented chemokine (CXCL9/CXCL10) production in liver tumors via interferon-γ-Janus kinase-signal transducers and activator of transcription pathway and 5' adenosine monophosphate-activated protein kinase-mediated suppression of histone H3 lysine 27 trimethylation. These 2DG-PLGA-NPs not only amplified antitumor effects induced by sorafenib or an anti-programmed death-1 antibody, but also suppressed anti-programmed death-1-resistant tumors. CONCLUSIONS The newly developed 2DG-PLGA-NPs showed antitumor immunity and cytotoxicity in liver tumors in mice, suggesting the potential of 2DG-PLGA-NPs for future clinical applications.
Collapse
Affiliation(s)
- Kyo Sasaki
- Department of Hepatology and Pancreatology
| | - Sohji Nishina
- Department of Hepatology and Pancreatology,Correspondence Address correspondence to: Keisuke Hino, MD, PhD, or Sohji Nishina, MD, PhD, Kawasaki Medical School, Kurashiki, Okayama, 701-0192 Japan. fax: (81) 864641196.
| | | | | | | | - Masahiro Yamamura
- Department of Clinical Oncology, Kawasaki Medical School, Kurashiki, Japan
| | - Kensuke Egashira
- Sentan Pharma, Inc, Japan,Department of Translational Medicine, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology,Correspondence Address correspondence to: Keisuke Hino, MD, PhD, or Sohji Nishina, MD, PhD, Kawasaki Medical School, Kurashiki, Okayama, 701-0192 Japan. fax: (81) 864641196.
| |
Collapse
|
12
|
Kou L, Yao Q, Zhang H, Chu M, Bhutia YD, Chen R, Ganapathy V. Transporter-Targeted Nano-Sized Vehicles for Enhanced and Site-Specific Drug Delivery. Cancers (Basel) 2020; 12:E2837. [PMID: 33019627 PMCID: PMC7599460 DOI: 10.3390/cancers12102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood-brain barrier, and blood-retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood-brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Zhejiang 325027, China;
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Zhejiang 325027, China; (Q.Y.); (H.Z.); (M.C.)
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
13
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
14
|
Huang M, Pu Y, Peng Y, Fu Q, Guo L, Wu Y, Zheng Y. Biotin and glucose dual-targeting, ligand-modified liposomes promote breast tumor-specific drug delivery. Bioorg Med Chem Lett 2020; 30:127151. [PMID: 32317211 DOI: 10.1016/j.bmcl.2020.127151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. Ligand-modified liposomes are used for breast tumor-specific drug delivery to improve the efficacy and reduce the side effects of chemotherapy; however, only a few liposomes with high targeting efficiency have been developed because the mono-targeting, ligand-modified liposomes are generally unable to deliver an adequate therapeutic dose. In this study, we designed biotin-glucose branched ligand-modified, dual-targeting liposomes (Bio-Glu-Lip) and evaluated their potential as a targeted chemotherapy delivery system in vitro and in vivo. When compared with the non-targeting liposome (Lip), Bio-Lip, and Glu-Lip, Bio-Glu-Lip had the highest cell uptake in 4T1 cells (3.00-fold, 1.60-fold, and 1.95-fold higher, respectively) and in MCF-7 cells (2.63-fold, 1.63-fold, and 1.85-fold higher, respectively). The subsequent cytotoxicity and in vivo assays further supported the dual-targeting liposome is a promising drug delivery carrier for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mengyi Huang
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yanchi Pu
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yao Peng
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qiuyi Fu
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Li Guo
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yong Wu
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yongxiang Zheng
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Gao B, Wei Y, Fu J, Sun J, Xiong W. Improved Immunoregulation of Ultra-Low-Dose Silver Nanoparticle-Loaded TiO 2 Nanotubes via M2 Macrophage Polarization by Regulating GLUT1 and Autophagy. Int J Nanomedicine 2020; 15:2011-2026. [PMID: 32273699 PMCID: PMC7102919 DOI: 10.2147/ijn.s242919] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction The bone regeneration of endosseous implanted biomaterials is often impaired by the host immune response, especially macrophage-related inflammation which plays an important role in the bone healing process. Thus, it is a promising strategy to design an osteo-immunomodulatory biomaterial to take advantage of the macrophage-related immune response and improve the osseointegration performance of the implant. Methods In this study, we developed an antibacterial silver nanoparticle-loaded TiO2 nanotubes (Ag@TiO2-NTs) using an electrochemical anodization method to make the surface modification and investigated the influences of Ag@TiO2-NTs on the macrophage polarization, osteo-immune microenvironment as well as its potential molecular mechanisms in vitro and in vivo. Results The results showed that Ag@TiO2-NTs with controlled releasing of ultra-low-dose Ag+ ions had the excellent ability to induce the macrophage polarization towards the M2 phenotype and create a suitable osteo-immune microenvironment in vitro, via inhibiting PI3K/Akt, suppressing the downstream effector GLUT1, and activating autophagy. Moreover, Ag@TiO2-NTs surface could improve bone formation, suppress inflammation, and promote osteo-immune microenvironment compared to the TiO2-NTs and polished Ti surfaces in vivo. These findings suggested that Ag@TiO2-NTs with controlled releasing of ultra-low-dose Ag+ ions could not only inhibit the inflammation process but also promote the bone healing by inducing healing-associated M2 polarization. Discussion Using this surface modification strategy to modulate the macrophage-related immune response, rather than prevent the host response, maybe a promising strategy for implant surgeries in the future.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ming Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yong Wei
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
16
|
Lee JY, Lee HS, Kang NW, Lee SY, Kim DH, Kim S, Yoon IS, Cho HJ, Kim DD. Blood component ridable and CD44 receptor targetable nanoparticles based on a maleimide-functionalized chondroitin sulfate derivative. Carbohydr Polym 2019; 230:115568. [PMID: 31887874 DOI: 10.1016/j.carbpol.2019.115568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Chondroitin sulfate A-deoxycholic acid-polyethylene glycol-maleimide (CSA-DOCA-PEG-MAL; CDPM) nanostructures were designed for the transient binding of MAL with thiol in blood components and cell membranes, in addition to the CD44 receptor targeting, for the therapy of breast cancer. The spontaneous binding of free thiol groups in plasma proteins and blood cells with the MAL group of CDPM was significantly higher than that of CSA-DOCA-PEG (CDP). Enhanced cellular uptake and the in vitro antiproliferation efficacy of docetaxel (D)-loaded CDPM (CDPM/D) nanoparticles (NPs) in MCF-7 cells indicated dual-targeting effects based on MAL-thiol reactions and CSA-CD44 receptor interactions. Following intravenous injection in rats, reduced clearance and an elevated half-life of the drug was observed in the CDPM/D NPs compared to the CDP/D NPs. Taken together, MAL modification of CDP NPs could be a promising approach not only to enhance tumor targeting and penetration but also to extend the blood circulation time of anticancer drugs.
Collapse
Affiliation(s)
- Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sungyun Kim
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
18
|
Recent Progress in the Development of Poly(lactic- co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy. Pharmaceutics 2019; 11:pharmaceutics11060280. [PMID: 31197096 PMCID: PMC6630460 DOI: 10.3390/pharmaceutics11060280] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diverse nanosystems for use in cancer imaging and therapy have been designed and their clinical applications have been assessed. Among a variety of materials available to fabricate nanosystems, poly(lactic-co-glycolic acid) (PLGA) has been widely used due to its biocompatibility and biodegradability. In order to provide tumor-targeting and diagnostic properties, PLGA or PLGA nanoparticles (NPs) can be modified with other functional materials. Hydrophobic or hydrophilic therapeutic cargos can be placed in the internal space or adsorbed onto the surface of PLGA NPs. Protocols for the fabrication of PLGA-based NPs for cancer imaging and therapy are already well established. Moreover, the biocompatibility and biodegradability of PLGA may elevate its feasibility for clinical application in injection formulations. Size-controlled NP’s properties and ligand–receptor interactions may provide passive and active tumor-targeting abilities, respectively, after intravenous administration. Additionally, the introduction of several imaging modalities to PLGA-based NPs can enable drug delivery guided by in vivo imaging. Versatile platform technology of PLGA-based NPs can be applied to the delivery of small chemicals, peptides, proteins, and nucleic acids for use in cancer therapy. This review describes recent findings and insights into the development of tumor-targeted PLGA-based NPs for use of cancer imaging and therapy.
Collapse
|
19
|
Emerging transporter-targeted nanoparticulate drug delivery systems. Acta Pharm Sin B 2019; 9:49-58. [PMID: 30766777 PMCID: PMC6361857 DOI: 10.1016/j.apsb.2018.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Transporter-targeted nanoparticulate drug delivery systems (nano-DDS) have emerged as promising nanoplatforms for efficient drug delivery. Recently, great progress in transporter-targeted strategies has been made, especially with the rapid developments in nanotherapeutics. In this review, we outline the recent advances in transporter-targeted nano-DDS. First, the emerging transporter-targeted nano-DDS developed to facilitate oral drug delivery are reviewed. These include improvements in the oral absorption of protein and peptide drugs, facilitating the intravenous-to-oral switch in cancer chemotherapy. Secondly, the recent advances in transporter-assisted brain-targeting nano-DDS are discussed, focusing on the specific transporter-based targeting strategies. Recent developments in transporter-mediated tumor-targeting drug delivery are also discussed. Finally, the possible transport mechanisms involved in transporter-mediated endocytosis are highlighted, with special attention to the latest findings of the interactions between membrane transporters and nano-DDS.
Collapse
|
20
|
Nanodelivery systems for overcoming limited transportation of therapeutic molecules through the blood-brain barrier. Future Med Chem 2018; 10:2659-2674. [PMID: 30499740 DOI: 10.4155/fmc-2018-0208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Due to the impermeable structure and barrier function of the blood-brain barrier (BBB), the delivery of therapeutic molecules into the CNS is extremely limited. Nanodelivery systems are regarded as the most effective and versatile carriers for the CNS, as they can transport cargo molecules across the BBB via various mechanisms. This review emphasizes the multi-functionalization strategies of nanodelivery systems and combinatorial approaches for the delivery of therapeutic drugs and genes into the CNS. The characteristics and functions of the BBB and underlying mechanisms of molecular translocation across the BBB are also described.
Collapse
|