1
|
Wei Y, Zeng M, Pi C, Shen H, Yuan J, Zuo Y, Wen J, Guo P, Zhao W, Li K, Su Z, Song X, Fu S, Lee RJ, Zhao L. Novel Curcumin Derivative-Decorated Ultralong-Circulating Paclitaxel Nanoparticles: A Novel Delivery System with Superior Anticancer Efficacy and Safety. Int J Nanomedicine 2022; 17:5265-5286. [PMID: 36406640 PMCID: PMC9673813 DOI: 10.2147/ijn.s369761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/02/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose Paclitaxel (PTX) has been widely utilized for the treatment of breast cancer. However, drawbacks, such as poor aqueous solubility, rapid blood clearance and severe toxicity, greatly reduce its efficacy and safety. Herein, a novel self-developed curcumin derivative (CUD) was chosen as the carrier to develop a long-acting PTX nano-delivery system (PTX-Sln@CUD) in order to improve its pharmacokinetic behavior, anti-breast cancer efficacy and safety. Methods PTX-Sln@CUD was prepared using solid dispersion and ultrasonic technology. Relevant physical and chemical properties, including stability and release behavior, were characterized. The clearance of PTX-Sln@CUD in vivo was studied by pharmacokinetic experiments. The anti-tumor activity of PTX-Sln@CUD was investigated in vitro and in vivo. Hemolysis experiments, acute toxicity and cumulative toxicity studies were performed in mice to determine the safety of PTX-Sln@CUD. Results The average particle size, PDI, Zeta potential, encapsulation efficiency and loading efficiency of the PTX-Sln@CUD were 238.5 ± 4.79 nm, 0.225 ± 0.011, −33.8 ± 1.26 mV, 94.20 ± 0.49% and 10.98 ± 0.31%, respectively. PTX-Sln@CUD was found to be stable at room temperature for half a year. The cumulative release rates of PTX-Sln@CUD at 24, 96 and 168 h were 17.98 ± 2.60, 57.09 ± 2.32 and 72.66 ± 4.16%, respectively, which were adherent to zero-order kinetics. T1/2, MRT (0-t) and AUC (0-t) of the PTX-Sln@CUD group were 4.03-fold (44.293 h), 7.78-fold (38.444 h) and 6.18-fold (14.716 mg/L*h) of the PTX group, respectively. PTX-Sln@CUD group demonstrated stronger anti-breast cancer activity than the PTX group. Importantly, the PTX-Sln@CUD group was safer compared to the PTX group both in vitro and in vivo. Conclusion PTX-Sln@CUD was verified as promising therapeutic nanoparticles for breast cancer and provided a novel strategy to solve the problem of low efficacy and poor safety of clinical chemotherapy drugs.
Collapse
Affiliation(s)
- Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- General Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Pu Guo
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People’s Republic of China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Correspondence: Shaozhi Fu, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China, Tel +86 830-3165698, Fax +86 830-3165690, Email
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Ling Zhao, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China, Tel/Fax +86 830 3160093, Email
| |
Collapse
|
2
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
3
|
Li C, Li Y, Li G, Wu S. Functional Nanoparticles for Enhanced Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081682. [PMID: 36015307 PMCID: PMC9412412 DOI: 10.3390/pharmaceutics14081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is the leading cause of death in people worldwide. The conventional therapeutic approach is mainly based on chemotherapy, which has a series of side effects. Compared with traditional chemotherapy drugs, nanoparticle-based delivery of anti-cancer drugs possesses a few attractive features. The application of nanotechnology in an interdisciplinary manner in the biomedical field has led to functional nanoparticles achieving much progress in cancer therapy. Nanoparticles have been involved in the diagnosis and targeted and personalized treatment of cancer. For example, different nano-drug strategies, including endogenous and exogenous stimuli-responsive, surface conjugation, and macromolecular encapsulation for nano-drug systems, have successfully prevented tumor procession. The future for functional nanoparticles is bright and promising due to the fast development of nanotechnology. However, there are still some challenges and limitations that need to be considered. Based on the above contents, the present article analyzes the progress in developing functional nanoparticles in cancer therapy. Research gaps and promising strategies for the clinical application are discussed.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Yuqing Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (G.L.); (S.W.)
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (G.L.); (S.W.)
| |
Collapse
|
4
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
5
|
Glioblastoma multiforme targeted delivery of docetaxel using bevacizumab-modified nanostructured lipid carriers impair in vitro cell growth and in vivo tumor progression. Int J Pharm 2022; 618:121682. [PMID: 35307470 DOI: 10.1016/j.ijpharm.2022.121682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain cancer, characterized by high invasiveness and poor prognosis. Docetaxel (DTX) is a chemotherapeutic drug with promising anti-tumor properties. However, conventional intravenous formulations exhibit side effects of systemic biodistribution and low brain bioavailability, limiting their clinical use. The current work aimed to evaluate the effect of DTX-loaded nanostructured lipid carriers (NLC) functionalized with bevacizumab (BVZ-NLC-DTX) against GBM using in vitro and in vivo models. The NLC was obtained by the fusion-emulsification method followed by sonication, with narrow size distribution, negative zeta potential, and low polydispersity index. NLC showed DTX entrapment efficiency above 90%. BVZ coupling efficiency was 62% and BVZ integrity after functionalization was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Calorimetry studies confirmed thermal stability and molecular dispersion of DTX in the lipid matrix. NLC showed a sustained DTX release over 84 h. In vitro anti-tumor assays shown that BVZ-NLC-DTX selectively increased the cytotoxic of DTX in cells overexpressing VEGF (U87MG and A172), but not in peripheral blood mononuclear cells (PMBCs), promoting cell death by apoptosis. BVZ functionalization did not impair cellular uptake. An in vivo orthotopic rat model demonstrated that free-DTX was not capable of reducing tumor growth whereas BVZ-NLC-DTX reduced up to 70% tumor volume after 15-days of treatment. Therefore, this study contributes to understanding new nanotechnology-based vehicles capable of reaching the brain more efficiently and repurposing the use of anti-cancer drugs in GBM treatment.
Collapse
|
6
|
Musolino E, Pagiatakis C, Serio S, Borgese M, Gamberoni F, Gornati R, Bernardini G, Papait R. The Yin and Yang of epigenetics in the field of nanoparticles. NANOSCALE ADVANCES 2022; 4:979-994. [PMID: 36131763 PMCID: PMC9419747 DOI: 10.1039/d1na00682g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/30/2021] [Indexed: 05/02/2023]
Abstract
Nanoparticles (NPs) have become a very exciting research avenue, with multitudinous applications in various fields, including the biomedical one, whereby they have been gaining considerable interest as drug carriers able to increase bioavailability, therapeutic efficiency and specificity of drugs. Epigenetics, a complex network of molecular mechanisms involved in gene expression regulation, play a key role in mediating the effect of environmental factors on organisms and in the etiology of several diseases (e.g., cancers, neurological disorders and cardiovascular diseases). For many of these diseases, epigenetic therapies have been proposed, whose application is however limited by the toxicity of epigenetic drugs. In this review, we will analyze two aspects of epigenetics in the field of NPs: the first is the role that epigenetics play in mediating nanotoxicity, and the second is the possibility of using NPs for delivery of "epi-drugs" to overcome their limitations. We aim to stimulate discussion among specialists, specifically on the potential contribution of epigenetics to the field of NPs, and to inspire newcomers to this exciting technology.
Collapse
Affiliation(s)
- Elettra Musolino
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Christina Pagiatakis
- Department of Cardiovascular Medicine, Humanitas Research Hospital Rozzano MI Italy
| | - Simone Serio
- Department of Cardiovascular Medicine, Humanitas Research Hospital Rozzano MI Italy
- Department of Biomedical Sciences, Humanitas University Via Rita Levi Montalcini 4 20090 Pieve Emanuele MI Italy
| | - Marina Borgese
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Federica Gamberoni
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Rosalba Gornati
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Giovanni Bernardini
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
| | - Roberto Papait
- Department of and Life Sciences, Insubria University Via Dunant 3 21100 Varese Italy
- Department of Cardiovascular Medicine, Humanitas Research Hospital Rozzano MI Italy
| |
Collapse
|
7
|
Akram Keramat AX, Kadkhoda J, Farahzadi R, Fathi E, Davaran S. The potential of Graphene Oxide and reduced Graphene Oxide in diagnosis and treatment of Cancer. Curr Med Chem 2022; 29:4529-4546. [PMID: 35135444 DOI: 10.2174/0929867329666220208092157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a pioneer field of study; for engineering smart nanosystems in targeted diagnosis and treatment in cancer therapy. The potent therapy for different kinds of solid tumors should ideally target individually the cancerous cells and tissue with no impact on healthy cells in the body. Nano-sized graphene oxide (GO) and reduced graphene oxide (rGO) have phenomenal chemical versatility, high surface area ratio, and supernatural physical properties. The synergistic effects caused by the well-defined assembly of GO and rGO surface generate not only essential optical, mechanical, but also electronic behaviors. Developing novel multifunctional hybrid nanoparticles with great potential is highly considered in multimodal cancer treatment. GO, and rGO are engineered as a programmable targeting delivery system and combed with photonic energy they utilize in photothermal therapy. Its remarkable properties indicated its applications as a biosensor, bio-imaging for cancer diagnosis. In this current review, we show a remarkable highlight about GO, rGO, and discuss the notable applications for cancer diagnosis and treatment, and an overview of possible cellular signaling pathways that are affected by GO, rGO in cancer treatment.
Collapse
Affiliation(s)
- Akram X Akram Keramat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz-Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Joy R, George J, John F. Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect 2022. [DOI: 10.1002/slct.202104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reshma Joy
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Jinu George
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Franklin John
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| |
Collapse
|
9
|
Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.
Collapse
|
10
|
Alhourani A, Førde JL, Eichacker LA, Herfindal L, Hagland HR. Improved pH-Responsive Release of Phenformin from Low-Defect Graphene Compared to Graphene Oxide. ACS OMEGA 2021; 6:24619-24629. [PMID: 34604644 PMCID: PMC8482513 DOI: 10.1021/acsomega.1c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based drug carriers provide a promising addition to current cancer drug delivery options. Increased accessibility of high-quality graphene made by plasma-enhanced chemical vapor deposition (PE-CVD) makes it an attractive material to revisit in comparison to the widely studied graphene oxide (GO) in drug delivery. Here, we show the potential of repurposing the metabolic drug phenformin for cancer treatment in terms of stability, binding, and pH-responsive release. Using covalent attachment of poly(ethylene glycol) (PEG) onto pristine (PE-CVD) graphene, we show that PEG stabilized graphene nanosheets (PGNS) are stable in aqueous solutions and exhibit higher binding affinity toward phenformin than GO. Moreover, we experimentally demonstrate an improved drug release from PGNS than GO at pH levels lower than physiological conditions, yet comparable to that found in tumor microenvironments.
Collapse
Affiliation(s)
- Abdelnour Alhourani
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Jan-Lukas Førde
- Centre
for Pharmacy, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department
of Internal Medicine, Haukeland University
Hospital, 5021 Bergen, Norway
| | - Lutz Andreas Eichacker
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Lars Herfindal
- Centre
for Pharmacy, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Hanne Røland Hagland
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
11
|
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021; 606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
Collapse
Affiliation(s)
- Achalla Vaishnav Pavan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sunil K Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow 226002, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
12
|
Liu B, Jiang F, Sun J, Wang F, Liu K. Biomacromolecule-based photo-thermal agents for tumor treatment. J Mater Chem B 2021; 9:7007-7022. [PMID: 34023868 DOI: 10.1039/d1tb00725d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer treatment has become one of the biggest challenges in modern medicine. Recently, many efforts have been devoted to treat tumors by surgical resection, radiotherapy, or chemotherapy. In comparison to these methods, photo-thermal therapy (PTT) with noninvasive, controllable, direct, and precise characteristics has received tremendous attention in eliminating tumor cells over the past decades. In particular, PTT based on biomacromolecule-based photo-thermal agents (PTAs) outperforms other systems with high photo-thermal efficiency, simple coating, and low immunogenicity. Considering the unique advantages of biomacromolecule-based PTAs in tumor treatment, it is necessary to summarize the recent progress in the field of biomacromolecule-based PTAs for tumor treatment. Herein, this minireview outlines recent progress in the fabrication and applications of biomacromolecule-based PTAs. Within this framework, various types of biomacromolecule-based PTAs are highlighted, including cell-based agents, protein-based agents, nucleotide-based agents, and polysaccharide-based PTAs. In each section, the functional design, photo-thermal effects, and potential clinical applications of each type of PTA are discussed. Finally, a brief perspective for the development of biomacromolecule-based PTAs is presented.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, China and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fuquan Jiang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.644564] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
With growing interest, a large number of researches have been conducted on carbon-based nanomaterials (CBNs). However, their uses are limited due to comprehensive potential environmental and human health effects. It is often confusing for researchers to make an informed choice regarding the versatile carbon-based nanocarrier system and its potential applications. This review has highlighted emerging applications and cutting-edge progress of CBNs in drug delivery. Some critical factors like enzymatic degradation, surface modification, biological interactions, and bio-corona have been discussed here. These factors will help to fabricate CBNs for effective drug delivery. This review also addresses recent advancements in carbon-based target specific and release controlled drug delivery to improve disease treatment. The scientific community has turned their research efforts into the development of novel production methods of CBNs to make their production more attractive to the industrial sector. Due to the nanosize and diversified physical properties, these CBNs have demonstrated distinct biological interaction. Thus long-term preclinical toxicity study is recommended before finally translating to clinical application.
Collapse
|
14
|
Jonoush ZA, Farahani M, Bohlouli M, Niknam Z, Golchin A, Hatamie S, Rezaei-Tavirani M, Omidi M, Zali H. Surface Modification of Graphene and its Derivatives for Drug Delivery Systems. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507093954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nowadays, carbon-based nanostructure materials are regarded as promising carriers for
drug delivery to improve the effective treatment of diseases. The formation of covalent and noncovalent
molecular bonds can be used for surface modification of nano-carriers in order to manipulate
their toxicity, water solubility, and cellular internalization. Graphene and its derivatives have
shown important potential in drug delivery systems. Among different graphene derivatives, Graphene
Oxide (GO) is the most extensively used derivative. GO sheets have possessed certain oxygen
functional groups including carboxylic acid groups at the edges, epoxy and hydroxyl groups on the
basal planes. The oxygen groups on the surface of GO sheets enhance their capabilities for functionalization
with chemical and bioactive molecules. In this review, we highlight the recent researches
about the effect of reactive sites on the surface of GO and its derivatives in drug delivery systems.
Therefore, the application of GO and its derivatives have been discussed as a delivery system in cancer
treatment, gene therapy, and combination therapy, followed by discussions on their related issues.
Finally, the review will provide a future perspective to the applications of GO-based materials as part
of drug delivery systems, and may open up new viewpoints to motivate broader interests across these
interdisciplinary fields.
Collapse
Affiliation(s)
- Zahra A. Jonoush
- Department of Immunology, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadie Hatamie
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu 30013, Taiwan
| | | | - Meisam Omidi
- School of Dentistry, Marquette University, Wisconsin, United States
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. J Control Release 2021; 330:945-962. [DOI: 10.1016/j.jconrel.2020.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
|
16
|
Wei L, Lu Z, Ji X, Jiang Y, Ma L. Self-Assembly of Hollow Graphene Oxide Microcapsules Directed by Cavitation for Loading Hydrophobic Drugs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2988-2996. [PMID: 33403846 DOI: 10.1021/acsami.0c16550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hollow graphene oxide microcapsules (GOMs) have been widely used in energy, electronics, catalysis, sensing, tissue engineering, and drug loading due to their unique properties. However, it is still a great challenge to prepare GOMs with high quality and in large quantity using a simple method. In this work, we obtained single-component GOMs using the liquid nitrogen cavitation effect, which directed the self-assembly of graphene oxide (GO) debris at the gas-liquid interface. This method avoids the introduction of additional components and removal of templates. The morphology of GOM with wrinkles on its surface was characterized by transmission electron microscopy and scanning electron microscopy. The abundant polar groups of GO microcapsules enabled them to easily disperse in water. Based on this, GOMs have good potential for loading hydrophobic drugs. Subsequently, we used GOMs as carriers to deliver a hydrophobic drug paclitaxel (PTX), which exhibited a good loading capacity. Moreover, PTX loaded GOMs showed excellent cytotoxicity to A549 and MDA-MB-231 cells. The GOMs also showed a pH-dependent drug release performance. Therefore, GOMs can be regarded as potential carriers for biomedical applications.
Collapse
Affiliation(s)
- Luyao Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhiquan Lu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Ji
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yike Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lan Ma
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
17
|
Jiang C, Zhao H, Xiao H, Wang Y, Liu L, Chen H, Shen C, Zhu H, Liu Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin Drug Deliv 2020; 18:119-138. [PMID: 32729733 DOI: 10.1080/17425247.2020.1798400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Owing to the unique properties of graphene, including large specific surface area, excellent thermal conductivity, and optical absorption, graphene-family nanomaterials (GFNs) have attracted extensive attention in biomedical applications, particularly in drug delivery and phototherapy. AREAS COVERED In this review, we point out several challenges involved in the clinical application of GFNs. Then, we provide an overview of the most recent publications about GFNs in biomedical applications, including diverse strategies for improving the biocompatibility, specific targeting and stimuli-responsiveness of GFNs for drug delivery, codelivery of drug and gene, photothermal therapy, photodynamic therapy, and multimodal combination therapy. EXPERT OPINION Although the application of GFNs is still in the preclinical stage, rational modification of GFNs with functional elements or making full use of GFNs-based multimodal combination therapy might show great potential in biomedicine for clinical application.
Collapse
Affiliation(s)
- Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyue Zhao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyan Xiao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Hongxia Zhu
- Combining Traditional Chinese and Western Medicine Hospital, Southern Medical University , 510315, Guangzhou, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| |
Collapse
|
18
|
Seifi T, Kamali AR. Anti-pathogenic activity of graphene nanomaterials: A review. Colloids Surf B Biointerfaces 2020; 199:111509. [PMID: 33340933 DOI: 10.1016/j.colsurfb.2020.111509] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives are promising candidates for a variety of biological applications, among which, their anti-pathogenic properties are highly attractive due to the outstanding physicochemical characteristics of these novel nanomaterials. The antibacterial, antiviral and antifungal performances of graphene are increasingly becoming more important due to the pathogen's resistance to existing drugs. Despite this, the factors influencing the antibacterial activity of graphene nanomaterials, and consequently, the mechanisms involved are still controversial. This review aims to systematically summarize the literature, discussing various factors that affect the antibacterial performance of graphene materials, including the shape, size, functional group and the electrical conductivity of graphene flakes, as well as the concentration, contact time and the pH value of the graphene suspensions used in related microbial tests. We discuss the possible surface and edge interactions between bacterial cells and graphene nanomaterials, which cause antibacterial effects such as membrane/oxidative/photothermal stresses, charge transfer, entrapment and self-killing phenomena. This article reviews the anti-pathogenic activity of graphene nanomaterials, comprising their antibacterial, antiviral, antifungal and biofilm-forming performance, with an emphasis on the antibacterial mechanisms involved.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
19
|
Sokol MB, Sycheva YV, Yabbarov NG, Zabolotskii AI, Mollaev MD, Faustova MR, Tereshchenko OG, Fomicheva MV, Nikol’skaya ED. Validation of a UV-Spectrophotometric Method for Quantitative Determination of Paclitaxel in a Targeted Delivery System Based on Poly(Lactic–Glycolic Acid) Copolymer Nanoparticles. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020; 8:5241-5259. [PMID: 32996922 DOI: 10.1039/d0bm01158d] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging anti-tumor immunotherapy has made significant progress in clinical application. However, single immunotherapy is not effective for all anti-tumor treatments, owing to the low objective response rate and the risk of immune-related side effects. Meanwhile, photothermal therapy (PTT) has attracted significant attention because of its non-invasiveness, spatiotemporal controllability and small side effects. Combining PTT with immunotherapy overcomes the issue that single photothermal therapy cannot eradicate tumors with metastasis and recurrence. However, it improves the therapeutic effect of immunotherapy, as the photothermal therapy usually promotes release of tumor-related antigens, triggers immune response by the immunogenic cell death (ICD), thereby, endowing unique synergistic mechanisms for cancer therapy. This review summarizes recent research advances in utilizing nanomedicines for PTT in combination with immunotherapy to improve the outcome of cancer treatment. The strategies include immunogenic cell death, immune agonists and cancer vaccines, immune checkpoint blockades and tumor specific monoclonal antibodies, and small-molecule immune inhibitors. The combination of synergized PTT-immunotherapy with other therapeutic strategies is also discussed.
Collapse
Affiliation(s)
- Tongyi Shang
- The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | | | | | | |
Collapse
|
21
|
Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci 2020; 21:E6280. [PMID: 32872646 PMCID: PMC7504176 DOI: 10.3390/ijms21176280] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
The usage of nanomaterials for cancer treatment has been a popular research focus over the past decade. Nanomaterials, including polymeric nanomaterials, metal nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials such as graphene oxide (GO), have been used for cancer cell imaging, chemotherapeutic drug targeting, chemotherapy, photothermal therapy, and photodynamic therapy. In this review, we discuss the concept of targeted nanoparticles in cancer therapy and summarize the in vivo biocompatibility of graphene-based nanomaterials. Specifically, we discuss in detail the chemistry and properties of GO and provide a comprehensive review of functionalized GO and GO-metal nanoparticle composites in nanomedicine involving anticancer drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA;
| | | |
Collapse
|
22
|
Wang K, Xiang Y, Pan W, Wang H, Li N, Tang B. Dual-targeted photothermal agents for enhanced cancer therapy. Chem Sci 2020; 11:8055-8072. [PMID: 34123080 PMCID: PMC8163445 DOI: 10.1039/d0sc03173a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Photothermal therapy, in which light is converted into heat and triggers local hyperthermia to ablate tumors, presents an inherently specific and noninvasive treatment for tumor tissues. In this area, the development of efficient photothermal agents (PTAs) has always been a central topic. Although many efforts have been made on the investigation of novel molecular architectures and photothermal materials over the past decades, PTAs can cause severe damage to normal tissues because of the poor tumor aggregate ability and high irradiation density. Recently, dual-targeted photothermal agents (DTPTAs) provide an attractive strategy to overcome these problems and enhance cancer therapy. DTPTAs are functionalized with two classes of targeting units, including tumor environment targeting sites, tumor targeting sites and organelle targeting sites. In this perspective, typical targeted ligands and representative examples of photothermal therapeutic agents with dual-targeted properties are systematically summarized and recent advances using DTPTAs in tumor therapy are highlighted.
Collapse
Affiliation(s)
- Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yanan Xiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Hongyu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
23
|
Triggering of Apoptosis in Osteosarcoma 143B Cell Line by Carbon Quantum Dots via the Mitochondrial Apoptotic Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2846297. [PMID: 32733936 PMCID: PMC7369657 DOI: 10.1155/2020/2846297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 02/02/2023]
Abstract
Objectives Carbon-based nanomaterials have gained attention in the field of biomedicine in recent years, especially for the treatment of complicated diseases such as cancer. Here, we report a novel carbon-based nanomaterial, named carbon quantum dots (CQDs), which has potential for cancer therapy. We performed a systematic study on the effects of CQDs on the osteosarcoma 143B cell line in vitro and in vivo. Methods Cell counting assay, the neutral red assay, lactic dehydrogenase assay, and fluorescein isothiocyanate (FITC) Annexin V/Propidium iodide (PI) were used to detect the cytotoxicity and apoptosis of CQDs on the 143B cell line. Intracellular reactive oxygen species (ROS) were detected by the oxidation-sensitive fluorescent probe 2′,7′-dichlorofluorescein diacetate. The JC-10 assay was used to detect the mitochondrial membrane potential (MMP) of 143B cells incubated with CQDs. The effects of CQDs on the 143B cell line were evaluated by Western blot and immunofluorescence analysis of apoptosis-related proteins Bax, Bcl-2, cytochrome-C, caspase-3, cleaved-caspase-3, PARP1, and cleaved-PARP1. Male tumor-bearing BALB/c nude mice were used to investigate the antitumor effects of CQDs, and the biosafety of CQDs in vivo was tested in male BALB/c mice by measuring weight changes, hematology tests, and histological analyses of major organs. Results CQDs exhibited a high cytotoxicity and induced apoptosis toward the 143B cell line. CQDs can also significantly increase the intracellular level of ROS and lower the mitochondrial membrane potential levels of 143B cells. CQDs increase apoptotic protein expression to induce apoptosis of 143B cells by triggering the mitochondrial apoptotic signaling pathway. The tumor volume in the CQD-treated mice was smaller than that in the control group, the tumor volume inhibition rate was 38.9%, and the inhibitory rate by tumor weight was 30.1%. All biosafety test indexes were within reference ranges, and neither necrosis nor inflammation was observed in major organs. Conclusions CQDs induced cytotoxicity in the 143B cell line through the mitochondrial apoptotic signaling pathway. CQDs not only showed an antitumor effect but also high biocompatibility in vivo. As a new carbon-based nanomaterial, CQDs usage is a promising method for novel cancer treatments.
Collapse
|
24
|
Wu M, Zhong C, Deng Y, Zhang Q, Zhang X, Zhao X. Resveratrol loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles for tail vein injection II: pharmacokinetics, tissue distribution and bioavailability. Drug Deliv 2020; 27:81-90. [PMID: 31858857 PMCID: PMC6968672 DOI: 10.1080/10717544.2019.1704944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There are many kinds of biological activities of resveratrol itself, but its clinical application is limited by its poor solubility in water and low bioavailability. Therefore, we have prepared glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles (GL-HSA-RESNPs). The purpose of this study was to investigate the bioavailability, pharmacokinetics and tissue distribution of resveratrol in rats after single-dose tail vein injection administration of GL-HSA-RESNPs. A sensitive and reliable high performance liquid chromatography (HPLC) method was established to verify the content of resveratrol in rat plasma and organs. The Cmax value after GL-HSA-RESNPs administration was significantly higher than that of resveratrol suspension (933 ± 76.64 ng/mL vs. 618 ± 42.54 ng/mL, p < .01). The Tmax value obtained after GL-HSA-RESNPs administration was significantly shorter than that after resveratrol suspension administration (0.17 ± 0.01 h vs. 0.25 ± 0.01 h, p < .001). The bioavailability of GL-HSA-RESNPs was 4.25 times higher than that of the pure resveratrol. The concentration of resveratrol in the main organs of rats treated with the GL-HSA-RESNPs was higher than that in rats treated with the pure resveratrol. Rats treated with GL-HSA-RESNPs had the highest concentration of resveratrol in their liver. It is indicated that GL-HSA-RESNPs is a promising liver-targeted delivery system that improves the in vivo bioavailability of resveratrol.
Collapse
Affiliation(s)
- Mingfang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Chen Zhong
- State Key laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiping Deng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xiaoxue Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Han XM, Zheng KW, Wang RL, Yue SF, Chen J, Zhao ZW, Song F, Su Y, Ma Q. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery. Am J Transl Res 2020; 12:1515-1534. [PMID: 32509159 PMCID: PMC7270027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Graphene-family nanomaterials (GFNs) have been widely used in cancer therapy, tissue engineering, antibacterial and biological imaging due to their optical, thermal, and drug absorption properties. When used as drug and gene nanocarrier, the major limitations are aggregation, biocompatibility, and inappropriate release of drugs or genes. To overcome these problems, researchers have developed a variety of functionalization processes. In this review, we grouped the functionalization according to the decoration molecules, putting particular emphasis on the gene delivery. Organic and inorganic materials resulted as the major sets to introduce functional sections onto graphene oxide (GO). We also classified the target molecules used in the GO delivery system, as well as introduced other strategies to increase the delivery efficacy such as controlled release and magnetic targeting.
Collapse
Affiliation(s)
- Xiao-Min Han
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Ke-Wen Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, P. R. China
| | - Rui-Long Wang
- No. 5 Railway Middle SchoolBaotou, Inner Mongolia Autonomous Region, P. R. China
| | - Shu-Fen Yue
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Jing Chen
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Zi-Wei Zhao
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Fang Song
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Yan Su
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
- Blood Conservation Institute, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Qiang Ma
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
- Blood Conservation Institute, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
26
|
He L, Qing F, Li M, Lan D. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy. Int J Nanomedicine 2020; 15:2337-2349. [PMID: 32308385 PMCID: PMC7135189 DOI: 10.2147/ijn.s240707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to develop an "all-in-one" nanoplatform that integrates at the second near-infrared (NIR-II) region dye IR1061 and anticancer drug paclitaxel (PTX) into an apoferritin (AFN) nanocage (IR-AFN@PTX). Simultaneously, folic acid (FA), tumor target molecule, was conjugated onto IR-AFN@PTX to be IR-AFN@PTX-FA for tumor-targeted and pH/NIR-II-triggered synergistic photothermal-chemotherapy. METHODS IR1061 was firstly reacted with PEG and then conjugated with AFN to be IR-AFN. Then, FA was conjugated onto the surface of IR-AFN to be IR-AFN-FA. At last, PTX was incorporated into IR-AFN-FA to fabricate a nanoplatform IR-AFN@PTX-FA. The NIR-II photothermal properties and pH/NIR-II triggered drug release were evaluated. The ability of IR-AFN@PTX-FA to target tumors was estimated using optical bioluminescence. In vitro and in vivo synergistic therapeutic effects of pH/NIR-II-triggered and tumor-targeted photothermal-chemotherapy were investigated in 4T1 tumor model. RESULTS IR-AFN@PTX-FA showed excellent water solubility and physiological stability, which significantly enhanced the solubility of both IR1061 and PTX. After 5 min of laser irradiation at 1064 nm, IR-AFN@PTX-FA exhibited an effective photothermal effect compared with laser irradiation at 808 nm, even when blocked with 0.6 cm thick chicken breast. Cellular uptake experiments showed IR-AFN@PTX-FA utilized clathrin-mediated and caveolae-mediated endocytosis pathways to enter 4T1 cells, and was then delivered by the endosome to the lysosome. NIR-II laser irradiation and pH could synergistically trigger PTX release, inducing significant tumor inhibition in vitro and in vivo. CONCLUSION As a novel "all-in-one" nanoplatform, IR-AFN@PTX-FA was found to selectively target tumors and showed very efficient NIR-II photothermal effects and pH/NIR-II triggered drug release effects, showing a remarkable, synergistic photothermal-chemotherapy effect.
Collapse
Affiliation(s)
- Li He
- Department of Thyroid and Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Fangzhen Qing
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Maode Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| | - Daitian Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (East Hospital), Chengdu610100, Sichuan, People’s Republic of China
| |
Collapse
|
27
|
Curcio M, Avena P, Cirillo G, Casaburi I, Spizzirri UG, Nicoletta FP, Iemma F, Pezzi V. Functional Albumin Nanoformulations to Fight Adrenocortical Carcinoma: a Redox-Responsive Approach. Pharm Res 2020; 37:55. [DOI: 10.1007/s11095-020-2775-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
28
|
Meerovich I, Nichols MG, Dash AK. Low-intensity light-induced drug release from a dual delivery system comprising of a drug loaded liposome and a photosensitive conjugate. J Drug Target 2019; 28:655-667. [PMID: 31886709 DOI: 10.1080/1061186x.2019.1710838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This study reports the development of a binary drug delivery system consisting of charged liposomes and an oppositely charged peptide-photosensitiser conjugate. Liposomes were prepared with phosphatidyl-l-serine as a negatively charged lipid. Calcein, a fluorophore marker, and doxorubicin, an anticancer drug, were used as model hydrophilic loads. The conjugate consisted of a positively charged arginine-rich peptide synthesised by solid-phase peptide synthesis, and a phthalocyanine derivative with characteristic absorption around 685 nm. Illumination of the binary system with far-red light of 12-15 mW/cm2 intensity resulted in 5- to 15-fold increase in release of payloads from the liposomes. The mechanism of drug release was based on photosensitised oxidation of lipids destabilising the liposomal membrane. The cytotoxicity of the liposomes loaded with doxorubicin was tested on B16-F10 melanoma and Y79 retinoblastoma cells. The cytotoxicity of the illuminated binary system in melanoma cell line was significantly higher as compared to the system without illumination. The components of the binary system can be individually prepared and stored with greater storage stability. However, their combination will allow for substantial release of hydrophilic payload from the liposomes under externally applied light.
Collapse
Affiliation(s)
- Igor Meerovich
- Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA
| | | | - Alekha K Dash
- Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA
| |
Collapse
|
29
|
Manivasagan P, Nguyen VT, Jun SW, Hoang G, Mondal S, Kim H, Doan VHM, Kim J, Kim CS, Oh J. Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. J Control Release 2019; 311-312:26-42. [DOI: 10.1016/j.jconrel.2019.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
|
30
|
Su W, Wang Z, Jiang J, Liu X, Zhao J, Zhang Z. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int J Nanomedicine 2019; 14:1835-1847. [PMID: 30880983 PMCID: PMC6417852 DOI: 10.2147/ijn.s183842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background These normal entheses are not reestablished after repair despite significant advances in surgical techniques. There is a significant need to develop integrative biomaterials, facilitating functional tendon-to-bone integration. Materials and methods We fabricated a highly interconnective graphene oxide-doped electrospun poly(lactide-co-glycolide acid) (GO-PLGA) nanofibrous membrane by electrospinning technique and evaluated them using in vitro cell assays. Then, we established rabbit models, the PLGA and GO-PLGA nanofibrous membranes were used to augment the rotator cuff repairs. The animals were killed postoperatively, which was followed by micro-computed tomography, histological and biomechanical evaluation. Results GO was easily mixed into PLGA filament without changing the three dimensional microstructure. An in vitro evaluation demonstrated that the PLGA membranes incorporated with GO accelerated the proliferation of BMSCs and furthered the Osteogenic differentiation of BMSCs. In addition, an in vivo assessment further revealed that the local application of GO-PLGA membrane to the gap between the tendon and the bone in a rabbit model promoted the healing enthesis, increased new bone and cartilage generation, and improved collagen arrangement and biomechanical properties in comparison with repair with PLGA only. Conclusion The electrospun GO-PLGA fibrous membrane provides an effective approach for the regeneration of tendon to bone enthesis.
Collapse
Affiliation(s)
- Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Zhiying Wang
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Xiaoyun Liu
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Zhijun Zhang
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| |
Collapse
|
31
|
Qi F, Liu R. Tumor-Targeted and Biocompatible MoSe 2 Nanodots@Albumin Nanospheres as a Dual-Modality Therapy Agent for Synergistic Photothermal Radiotherapy. NANOSCALE RESEARCH LETTERS 2019; 14:67. [PMID: 30806849 PMCID: PMC6391510 DOI: 10.1186/s11671-019-2896-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
Integrating multiple tumor therapy functions into one nanoplatform has been a new tumor therapy strategy in recent years. Herein, a dual-modality therapy agent consisting of molybdenum selenide nanodots (MoSe2 NDs) and bovine serum albumin (BSA) assembled nanospheres (MoSe2@BSA NSs) was successfully synthesized. After conjugation of folic acid (FA) molecules via polyethylene glycol (PEG) "bridges," the FA-MoSe2@BSA NSs were equipped with tumor-targeting function. The BSA and PEG modifications provided the unstable MoSe2 NDs with excellent physiological stability. Since the end-product FA-MoSe2@BSA NSs had strong near-infrared (NIR) and X-ray absorbance properties, they exhibited good photothermal properties with excellent photothermal stability and radio-sensitization ability, hence, were explored as photothermal radiotherapy agents. In vitro and in vivo experiments indicated that the FA-MoSe2@BSA NSs possessed highly efficient tumor-targeting effect, great biocompability, and synergistic photothermal radiotherapy effect. This work suggests that such biocompatible FA-MoSe2@BSA NSs may be a promising multifunctional dual-modality tumor therapy agent for use in combination tumor therapy.
Collapse
Affiliation(s)
- Feng Qi
- Department of Radiotherapy, First People’s Hospital of Shangqiu City, Shangqiu, 476100 China
| | - Ruizhen Liu
- Department of Radiotherapy, First People’s Hospital of Shangqiu City, Shangqiu, 476100 China
| |
Collapse
|
32
|
Meerovich I, Nichols MG, Dash AK. Low-intensity light-induced paclitaxel release from lipid-based nano-delivery systems. J Drug Target 2019; 27:971-983. [DOI: 10.1080/1061186x.2019.1571066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Igor Meerovich
- Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA
| | | | - Alekha K. Dash
- Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA
| |
Collapse
|
33
|
Ma Y, Liu X, Ma Q, Liu Y. Near-infrared nanoparticles based on indocyanine green-conjugated albumin: a versatile platform for imaging-guided synergistic tumor chemo-phototherapy with temperature-responsive drug release. Onco Targets Ther 2018; 11:8517-8528. [PMID: 30555242 PMCID: PMC6278719 DOI: 10.2147/ott.s183887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to develop a multifunctional theranostic agent based on BSA nanoparticles (NPs), which loaded artemisinin (ART) and co-conjugated with indocyanine green (ICG) and arginine-glycine-aspartic acid (RGD) peptide (RGD-indocyanine green-Bovine Serum Albumin-artemisinin [IBA] NPs). MATERIALS AND METHODS The physicochemical parameters of RGD-IBA NPs were character-ized in terms of the particle size, zeta potential, morphology, entrapment efficiency, drug loading, in vitro release behavior, photothermal and photodynamic effect, and in vitro anticancer ability. In vivo fluorescence and thermal imaging as well as antitumor studies were also evaluated. RESULTS The tumor chemotherapeutic effects of ART and the ability of fluorescence imaging, hyperthermia generation and reactive oxygen species production of ICG and tumor-targeting RGD were integrated to achieve RGD-IBA NPs for imaging-guided tumor-targeted chemotherapy/photothermal/photodynamic therapy (chemo-phototherapy). The RGD-IBA NPs showed enhanced physiological stability and photo-stability compared with free ART and ICG. In addition, they were temperature-responsive; their sizes increased with increasing temperature between 25°C and 55°C, thereby leading to drug release upon the irradiation with near infrared (NIR) laser. In vivo fluorescence images of tumor-bearing mice showed that the RGD-IBA NPs could highly and passively reach the targeted tumor region with maximum accumulation at 24 hours post-intravenous injection. The in vitro and in vivo results demonstrated that the RGD-IBA NPs not only have good biocompatibility, but also are highly efficient tumor synergistic chemo-phototherapeutic agents. CONCLUSION Through this study, it was found that RGD-IBA NPs could potentially be a very promising tumor theranostic agent.
Collapse
Affiliation(s)
- Yuxin Ma
- Jinan Stomatologic Hospital, Jinan 250001, Shandong, China,
| | - Xiaohua Liu
- Jinan Stomatologic Hospital, Jinan 250001, Shandong, China,
| | - Qianli Ma
- School and Hospital of Stomatology, Shandong University, Jinan 250001, Shandong, China
| | - Yizhi Liu
- Binzhou Medical School, Binzhou 256603, Shandong, China
| |
Collapse
|
34
|
Babadaei MMN, Moghaddam MF, Solhvand S, Alizadehmollayaghoob E, Attar F, Rajabbeigi E, Akhtari K, Sari S, Falahati M. Biophysical, bioinformatical, cellular, and molecular investigations on the effects of graphene oxide nanosheets on the hemoglobin structure and lymphocyte cell cytotoxicity. Int J Nanomedicine 2018; 13:6871-6884. [PMID: 30498348 PMCID: PMC6207253 DOI: 10.2147/ijn.s174048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Implementations of nanoparticles have been receiving great interest in medicine and technology due to their unique characteristics. However, their toxic impacts on the biological system are not well explored. AIM This study aims to investigate the influence of fabricated nano graphene oxide (NGO) sheets on the secondary and quaternary structural alterations of human hemoglobin (Hb) and cytotoxicity against lymphocyte cells. MATERIALS AND METHODS Different spectroscopic methods, such as extrinsic and synchronous fluorescence spectroscopy and far circular dichroism (CD) spectroscopy, molecular docking investigation, cellular assays (trypan blue exclusion, cellular uptake, ROS, cell cycle, and apoptosis), and molecular assay (fold changes in anti/proapoptotic genes [B-cell lymphoma-2 {BCL2}/BAX] expression levels) were used in this study. RESULTS Transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and zeta potential investigations revealed the nano-sized nature of NGOs with good colloidal stability. Extrinsic fluorescence spectroscopy by using 8-anilinonaphthalene-1 -sulfonic acid and synchronous fluorescence spectroscopy showed that NGOs can unfold the quaternary structure of Hb in the vicinity of Tyr residues. The CD investigation demonstrated that the α-helicity of Hb experienced substantial alteration upon interaction with increasing concentrations of NGOs. The molecular docking study showed that NGOs interacted with polar residues of Hb. Cellular and molecular assays revealed that NGOs lead to ROS formation, cell cycle arrest, and apoptosis through the BAX and BCL2 pathway. CONCLUSION These data reveal that NGOs can induce some protein structural changes and stimulate cytotoxicity against normal cell targets. Therefore, their applications in healthy systems should be limited.
Collapse
Affiliation(s)
- Mohammad Mahdi Nejadi Babadaei
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Mina Feli Moghaddam
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Sara Solhvand
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Ehsan Alizadehmollayaghoob
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Elham Rajabbeigi
- Department of Biochemistry, Faculty of Advance Science and Technology, Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran,
| |
Collapse
|
35
|
Yang H, Liu Z, Li X, Zhang Z, Chen D, Lian H. Artesunate-Loaded and Near-Infrared Dye-Conjugated Albumin Nanoparticles as High-Efficiency Tumor-Targeted Photo-Chemo Theranostic Agent. NANOSCALE RESEARCH LETTERS 2018; 13:319. [PMID: 30311065 PMCID: PMC6181830 DOI: 10.1186/s11671-018-2700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
Herein, a tumor-targeted multifunctional theranostic agent was synthetized using a facile method, combining four clinically approved materials: artesunate (Arte), human serum albumin (HSA), folic acid (FA), and indocyanine green (ICG). The obtained nanocomposites (FA-IHA NPs) showed an excellent photo- and physiological stability. The ICG in the FA-IHA NPs was used not only for near infrared (NIR) fluorescence imaging, but also for photothermal and photodynamic (PTT-PDT) therapy under a single NIR irradiation. In addition, the NIR irradiation (808 nm, 1 W/cm2) could trigger Arte release that showed enhanced chemotherapeutic effect. Through fluorescence imaging, the cell uptake and tumor accumulation of FA-IHA NPs were observed in vitro and in vivo, analyzed by confocal microscopy and NIR fluorescence imaging in tumor xenograft mice. Based on the diagnostic results, FA-IHA NPs at 24 h post injection and combined with NIR irradiation (808 nm, 1 W/cm2) could efficiently suppress tumor growth through a photo-chemo combination therapy, with no tumor recurrence in vitro and in vivo. The obtained results suggested that FA-IHA NPs are promising photo-chemo theranostic agents for future clinical translation.
Collapse
Affiliation(s)
- Hainan Yang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260 China
| | - Zaijia Liu
- Department of Medical Image, Ezhou Central Hospital, Ezhou, 436000 China
| | - Xufeng Li
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260 China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260 China
| | - Deji Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260 China
| | - Hui Lian
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260 China
| |
Collapse
|