1
|
Daood U, Ilyas MS, Bashir S, Yousuf N, Rashid M, Kaur K, Bapat RA, Bijle MN, Pichika MR, Mak KK, Zhang S, Sheikh Z, Khan AS, Peters O, Matinlinna JP. Unravelling the Programmed Inflammation and Tissue Repair by a Multipotential Antimicrobial K21 Silane. Int Dent J 2024:S0020-6539(24)01502-8. [PMID: 39322516 DOI: 10.1016/j.identj.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS AND OBJECTIVES To examine if a novel antimicrobial silane K21 can alter macrophage polarisation and affect fibroblast proliferation by deciphering the molecular pathways for programmed healing using a combined in vitro and in vivo (animal) burn model. MATERIALS AND METHODS An injectable silane-based antimicrobial aimed to modulate macrophage polarisation was manufactured. Experimental analysis included colorimetric cell migration assays on gingival fibroblasts, macrophage phagocytosis characterisation, immunofluorescence staining, triacylglycerol accumulation within macrophages by LCMS, cellular metabolic/proliferation assays, macrophage exposure quantification with morphology assessment using FE-SEM, Raman spectral analysis, RNA isolation for relative gene expression and animal study model to morphometrically and microscopically analyse partial thickness burn wound healing under QAS/K21. RESULTS M1 and M2 polarisation both appeared exaggerated under QAS/K21 treatment. The wounds treated with K21 had depicted accelerated healing as compared to control (P < .05) in dorsal skin of rabbits. Relative gene expression results demonstrate reduced cytokine and anti-inflammatory response under the influence of K21. While M1 expression, TG accumulation, and associated characterisations demonstrate the programmed inflammatory potential of K21. CONCLUSION the antimicrobial and reparative efficacy of K21 silane aids in programmed inflammation for enhanced tissue healing and repair.
Collapse
Affiliation(s)
- Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia; School of Dentistry, The University of Queensland, Herston, Queensland, Australia.
| | | | - Sehar Bashir
- Histopathology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Neelofar Yousuf
- Pharmacology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Maryam Rashid
- Pharmacology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Kanwardeep Kaur
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shiming Zhang
- Interdisciplinary Institute of Life Medicine, Hunan University, Changsha, Hunan Province, China
| | - Zeeshan Sheikh
- Biomaterials & Applied Oral Sciences (BAOS), Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University; Dammam, Saudi Arabia
| | - Ove Peters
- Department of Endodontics, Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA; School of Dentistry, The University of Queensland, Herston, Queensland, Australia
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Biomaterials Science, Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Ma LL, Wei YY, Li J, Sun YY, Liu SR, Ma KM, Leung PHM, Tao XM. Clinical study of antibacterial medical textiles containing polyhydroxyalkanoate oligomers for reduction of hospital-acquired infections. J Hosp Infect 2024; 149:144-154. [PMID: 38705475 DOI: 10.1016/j.jhin.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION The prevention and control of hospital-acquired infections remain a significant challenge worldwide, as textiles used in hospital wards are highly involved in transmission processes. This paper reports a new antibacterial medical fabric used to prepare hospital pillowcases, bottom sheets and quilt covers for controlling and reducing hospital-acquired infections. METHOD The medical fabric was composed of blended yarns of staple polyester (PET) and degradable poly(3-hydroxybutyrate co-3-hydroxyvalerate) (PHBV)/polylactic acid (PLA) fibres, which were coated with polylactide oligomers (PLAO), which are environmentally friendly and safe antimicrobial agents with excellent thermal stability in high-temperature laundry. A clinical trial was conducted, with emphasis on the bacterial species that were closely related to the infection cases in the study hospital. RESULT After 7 days of use, 94% of PET/PHBV/PLA-PLAO fabric retained <20 colony-forming units/100 cm2 of the total bacterial amount, meeting hygiene and cleanliness standards. CONCLUSION This study demonstrates the potential of fabrics containing polyhydroxyalkanoate oligomers as highly effective, safe and long-lasting antimicrobial medical textiles that can effectively reduce the incidence of hospital-acquired infections.
Collapse
Affiliation(s)
- L L Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - Y-Y Wei
- Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - J Li
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - Y-Y Sun
- Department of Nursing, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - S R Liu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - K M Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China
| | - P H-M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - X M Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
3
|
Younes HM, Kadavil H, Ismail HM, Adib SA, Zamani S, Alany RG, Al-Kinani AA. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics 2023; 16:32. [PMID: 38258043 PMCID: PMC10818558 DOI: 10.3390/pharmaceutics16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Traditional electrospinning is a promising technique for fabricating nanofibers for tissue engineering and drug delivery applications. The method is highly efficient in producing nanofibers with morphology and porosity similar to the extracellular matrix. Nonetheless, and in many instances, the process has faced several limitations, including weak mechanical strength, large diameter distributions, and scaling-up difficulties of its fabricated electrospun nanofibers. The constraints of the polymer solution's intrinsic properties are primarily responsible for these limitations. Reactive electrospinning constitutes a novel and modified electrospinning techniques developed to overcome those challenges and improve the properties of the fabricated fibers intended for various biomedical applications. This review mainly addresses reactive electrospinning techniques, a relatively new approach for making in situ or post-crosslinked nanofibers. It provides an overview of and discusses the recent literature about chemical and photoreactive electrospinning, their various techniques, their biomedical applications, and FDA regulatory aspects related to their approval and marketing. Another aspect highlighted in this review is the use of crosslinking and reactive electrospinning techniques to enhance the fabricated nanofibers' physicochemical and mechanical properties and make them more biocompatible and tailored for advanced intelligent drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Husam M. Younes
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hana Kadavil
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Hesham M. Ismail
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Charles River Laboratories, Montreal, QC H9X 3R3, Canada
| | - Sandi Ali Adib
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
| | - Somayeh Zamani
- Tissue Engineering & Nanopharmaceuticals Research Laboratory (TENRL), Office of Vice President for Research & Graduate Studies, Qatar University, Doha P.O. Box 2713, Qatar; (H.K.); (H.M.I.); (S.A.A.)
- Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Raid G. Alany
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London KT2 7LB, UK
| | - Ali A. Al-Kinani
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand; (R.G.A.); (A.A.A.-K.)
| |
Collapse
|
4
|
Das P, Manna S, Roy S, Nandi SK, Basak P. Polymeric biomaterials-based tissue engineering for wound healing: a systemic review. BURNS & TRAUMA 2023; 11:tkac058. [PMID: 36761088 PMCID: PMC9904183 DOI: 10.1093/burnst/tkac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Background Biomaterials are vital products used in clinical sectors as alternatives to several biological macromolecules for tissue engineering techniques owing to their numerous beneficial properties, including wound healing. The healing pattern generally depends upon the type of wounds, and restoration of the skin on damaged areas is greatly dependent on the depth and severity of the injury. The rate of wound healing relies on the type of biomaterials being incorporated for the fabrication of skin substitutes and their stability in in vivo conditions. In this review, a systematic literature search was performed on several databases to identify the most frequently used biomaterials for the development of successful wound healing agents against skin damage, along with their mechanisms of action. Method The relevant research articles of the last 5 years were identified, analysed and reviewed in this paper. The meta-analysis was carried out using PRISMA and the search was conducted in major scientific databases. The research of the most recent 5 years, from 2017-2021 was taken into consideration. The collected research papers were inspected thoroughly for further analysis. Recent advances in the utilization of natural and synthetic biomaterials (alone/in combination) to speed up the regeneration rate of injured cells in skin wounds were summarised. Finally, 23 papers were critically reviewed and discussed. Results In total, 2022 scholarly articles were retrieved from databases utilizing the aforementioned input methods. After eliminating duplicates and articles published before 2017, ~520 articles remained that were relevant to the topic at hand (biomaterials for wound healing) and could be evaluated for quality. Following different procedures, 23 publications were selected as best fitting for data extraction. Preferred Reporting Items for Systematic Reviews and Meta-Analyses for this review illustrates the selection criteria, such as exclusion and inclusion parameters. The 23 recent publications pointed to the use of both natural and synthetic polymers in wound healing applications. Information related to wound type and the mechanism of action has also been reviewed carefully. The selected publication showed that composites of natural and synthetic polymers were used extensively for both surgical and burn wounds. Extensive research revealed the effects of polymer-based biomaterials in wound healing and their recent advancement. Conclusions The effects of biomaterials in wound healing are critically examined in this review. Different biomaterials have been tried to speed up the healing process, however, their success varies with the severity of the wound. However, some of the biomaterials raise questions when applied on a wide scale because of their scarcity, high transportation costs and processing challenges. Therefore, even if a biomaterial has good wound healing qualities, it may be technically unsuitable for use in actual medical scenarios. All of these restrictions have been examined closely in this review.
Collapse
Affiliation(s)
- Pratik Das
- School of Bioscience and Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata 700037, West Bengal, India
| | | |
Collapse
|
5
|
Serrano-Aroca Á, Cano-Vicent A, Sabater i Serra R, El-Tanani M, Aljabali A, Tambuwala MM, Mishra YK. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio 2022; 16:100412. [PMID: 36097597 PMCID: PMC9463390 DOI: 10.1016/j.mtbio.2022.100412] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds’ antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities. Antibacterial, antifungal and antibiofilm scaffolds. Antimicrobial scaffold fabrication techniques. Antimicrobial biomaterials for tissue engineering applications. Antimicrobial characterization methods of scaffolds. Bone, oral tissue, skin, muscle, nerve, trachea, cardiac, among other applications.
Collapse
|
6
|
Zhou W, Wang X, Li Z, Zhao H, Weir MD, Cheng L, Xu HHK, Huang X. Novel dual-functional implants via oxygen non-thermal plasma and quaternary ammonium to promote osteogenesis and combat infections. Dent Mater 2021; 38:169-182. [PMID: 34924200 DOI: 10.1016/j.dental.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Implant-related infections are a primary reason for implant failures that affect millions of patients. It is of paramount importance to develop novel implants that possess the dual functions of osteogenesis-promotion and antibacterial activity. The objectives of this study were to: (1) develop novel dual-functional titanium (Ti) implants by combining oxygen non-thermal plasma and covalent bonding of antibacterial organosilicon quaternary ammonium monomers; (2) investigate the physicochemical properties, bioactivity and antibacterial effects of the modified implants for the first time. METHODS Surface characteristics of the modified Ti surfaces were tested. Adherence and viability of rat bone marrow-derived stem cells (rBMSCs) on the surface were evaluated. Metabolic activity of biofilm on the surfaces were measured. The stability of the dual-function after 5000 thermal cycles was also evaluated. RESULTS The presence of chemical bonding between Ti and organosilicon monomers demonstrated covalent immobilization of the antibacterial agents. The water contact angle of the treated Ti surfaces decreased from 70.98 ± 3.68° to 59.86 ± 4.91°. The adhesion and proliferation of rBMSCs on the modified Ti were increased by 40%, compared to control group (P < 0.05). The metabolic level of biofilms on modified Ti were reduced by more than half, compared to control (P < 0.05). The modified Ti implants exhibited cell-promotion and antibacterial stability after thermal cycles. SIGNIFICANCE The new dual-functional Ti implant is promising to promote osteogenesis while simultaneously preventing infections. Furthermore, the novel surface modification and processing methods have applicability to enhancing a wide range of other implants to improve bioactivity and combat infections.
Collapse
Affiliation(s)
- Wen Zhou
- Postdoctoral workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianlong Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122 Fujian, China
| | - Zhen Li
- Postdoctoral workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Hongyan Zhao
- Postdoctoral workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
| | - Xiaojing Huang
- Postdoctoral workstation & Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Jiang L, Chee PL, Gao J, Gan CRR, Owh C, Lakshminarayanan R, Jiang S, Hor TSA, Loh XJ. A New Potent Antimicrobial Metalloporphyrin. Chem Asian J 2021; 16:1007-1015. [PMID: 33617127 DOI: 10.1002/asia.202100053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Indexed: 11/06/2022]
Abstract
A series of bis-acryl functionalized porphyrins and their corresponding metalloporphyrins (M=Co, Mn) were synthesized and investigated for their antimicrobial properties through MIC screening and bacteria time-kill kinetic studies. The Mn(III) 4-(bis)methylphenyl-substituted-porphyrins showed superior batericidal activities even in the dark with low hemotoxicity and good cytotoxicity profile.
Collapse
Affiliation(s)
- Lu Jiang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Jian Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ching Ruey Raymond Gan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, 117543, Singapore
| | - Shan Jiang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - T S Andy Hor
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Agency for Science, Technology and Research, 1, #20-10 Fusionopolis Way, Connexis, North Tower, Singapore, 138632, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03, Innovis, Singapore, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
8
|
Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review. Bioengineering (Basel) 2021; 8:bioengineering8030039. [PMID: 33803598 PMCID: PMC8003061 DOI: 10.3390/bioengineering8030039] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.
Collapse
|
9
|
Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, Wong LA, Davamani F, Nagendrababu V, Fawzy A, Daood U. Quaternary ammonium silane (k21) based intracanal medicament triggers biofilm destruction. BMC Oral Health 2021; 21:116. [PMID: 33711992 PMCID: PMC7953794 DOI: 10.1186/s12903-021-01470-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin. METHODOLOGY Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21. RESULTS There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention. CONCLUSION 2%k21 can be considered as alternative intracanal medicament.
Collapse
Affiliation(s)
- Esther Sook Kuan Kok
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Xian Jin Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Soo Xiong Chew
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shu Fen Ong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Lok Yin See
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siao Hua Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ling Ang Wong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Faculty of Biomedical Science, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, Nedlands, Australia
| | - Umer Daood
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Hernández-Rangel A, Martin-Martinez ES. Collagen based electrospun materials for skin wounds treatment. J Biomed Mater Res A 2021; 109:1751-1764. [PMID: 33638606 DOI: 10.1002/jbm.a.37154] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Materials used for wound care have evolved from simple covers to functional wound dressings with bioactive properties. Electrospun nanofibers show great similarity to the natural fibrillar structure of skin extracellular matrix (ECM); therefore, by mimic, the morphology of ECM, nanofibers show high potential for facilitating the healing of skin injuries. Besides morphology, scaffold composition is another important parameter in the production of bioactive wound dressings. Collagen type I is the main structural protein of skin ECM is biocompatible, biodegradable, and its extraction from animal sources is relatively simple. The fabrication of electrospun wound dressings based on collagen and its blends have been studied for skin tissue engineering applications. This review focus on the new advances of collagen electrospun materials for skin wound treatment. It summarizes the recent research on pristine collagen, collagen blends, and collagen surface modifications on nanofibers mats. Finally, the strategies for three-dimensional nanofibers production will also be discussed.
Collapse
Affiliation(s)
- A Hernández-Rangel
- Instituto Politécnico Nacional-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio de Biomateriales, Ciudad de México, Mexico
| | - E San Martin-Martinez
- Instituto Politécnico Nacional-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio de Biomateriales, Ciudad de México, Mexico
| |
Collapse
|
11
|
|
12
|
Máková V, Holubová B, Tetour D, Brus J, Řezanka M, Rysová M, Hodačová J. (1 S,2 S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria. Polymers (Basel) 2020; 12:polym12010206. [PMID: 31947556 PMCID: PMC7023662 DOI: 10.3390/polym12010206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
An urgent need to find an effective solution to bacterial resistance is pushing worldwide research for highly effective means against this threat. Newly prepared hybrid organosilane fibres consisting of a (1S,2S)-cyclohexane-1,2-diamine derivative, interconnected in the fibre network via covalent bonds, were fully characterised via different techniques, including FTIR, TGA-FTIR, SEM-EDS, and solid-state NMR. Fibrous samples were successfully tested against two types of pathogenic bacterial strains, namely Staphylococcus aureus, and Pseudomonas aeruginosa. The obtained results, showing >99.9% inhibition against Staphylococcus aureus and Pseudomonas aeruginosa in direct contact compared to the control, may help particularly in case of infections, where there is an urgent need to treat the infection in direct contact. From this point of view, the above-mentioned fibrous material may find application in wound healing. Moreover, this new material has a positive impact on fibroblasts viability.
Collapse
Affiliation(s)
- Veronika Máková
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (B.H.); (M.Ř.)
- Correspondence: ; Tel.: +420-485-353-863
| | - Barbora Holubová
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (B.H.); (M.Ř.)
| | - David Tetour
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (D.T.); (J.H.)
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic;
| | - Michal Řezanka
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (B.H.); (M.Ř.)
| | - Miroslava Rysová
- Department of Nanomaterials and Informatics, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Jana Hodačová
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (D.T.); (J.H.)
| |
Collapse
|
13
|
Ma L, Zhang Z, Li J, Yang X, Fei B, Leung PHM, Tao X. A New Antimicrobial Agent: Poly (3-hydroxybutyric acid) Oligomer. Macromol Biosci 2019; 19:e1800432. [PMID: 30951260 DOI: 10.1002/mabi.201800432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Indexed: 01/03/2023]
Abstract
In this work, it is first reported that the poly (3-hydroxybutyric acid) (PHB) oligomer with a few degrees of polymerization possesses effective antibacterial and antifungal properties. Two preparation methods for the PHB oligomer are described, namely, one-step ring-opening polymerization of β-butyrolactone and extraction from the fermented PHB polymer. An appropriate amount of the synthesized PHB oligomer shows no physiological toxicity to the skin and major organs of mice. Topological application of the synthesized PHB oligomer imparts antimicrobial ability to non-antibacterial fabrics with washing resistance. The synthesized PHB oligomer offers effective sterilization and promotes wound healing in infected nude mice. Most importantly, the PHB oligomer is also reactive to drug-resistant bacteria. These results suggest that the PHB oligomer is not only a great candidate for antimicrobial modification but also a promising one for biomedical applications. Finally, the antimicrobial mechanisms of the PHB oligomer are revealed, and these include disruption of biofilm and the bacterial wall/membrane, leakage of the intracellular content, inhibition of protein activity, and change in the transmembrane potential.
Collapse
Affiliation(s)
- Linlin Ma
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China
| | - Ziheng Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China
| | - Jun Li
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China
| | - Xingxing Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China
| | - Bin Fei
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China.,Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
14
|
Ramalingam R, Dhand C, Leung CM, Ezhilarasu H, Prasannan P, Ong ST, Subramanian S, Kamruddin M, Lakshminarayanan R, Ramakrishna S, Verma NK, Arunachalam KD. Poly-ε-Caprolactone/Gelatin Hybrid Electrospun Composite Nanofibrous Mats Containing Ultrasound Assisted Herbal Extract: Antimicrobial and Cell Proliferation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E462. [PMID: 30897714 PMCID: PMC6474082 DOI: 10.3390/nano9030462] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023]
Abstract
Electrospun fibers have emerged as promising materials in the field of biomedicine, due to their superior physical and cell supportive properties. In particular, electrospun mats are being developed for advanced wound dressing applications. Such applications require the firers to possess excellent antimicrobial properties in order to inhibit potential microbial colonization from resident and non-resident bacteria. In this study, we have developed Poly-ε-Caprolactone /gelatin hybrid composite mats loaded with natural herbal extract (Gymnema sylvestre) to prevent bacterial colonization. As-spun scaffolds exhibited good wettability and desirable mechanical properties retaining their fibrous structure after immersing them in phosphate buffered saline (pH 7.2) for up to 30 days. The initial burst release of Gymnema sylvestre prevented the colonization of bacteria as confirmed by the radial disc diffusion assay. Furthermore, the electrospun mats promoted cellular attachment, spreading and proliferation of human primary dermal fibroblasts and cultured keratinocytes, which are crucial parenchymal cell-types involved in the skin recovery process. Overall these results demonstrated the utility of Gymnema sylvestre impregnated electrospun PCL/Gelatin nanofibrous mats as an effective antimicrobial wound dressing.
Collapse
Affiliation(s)
- Raghavendra Ramalingam
- Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Chak Ming Leung
- Department of Biomedical Engineering, National University of Singapore, Singapore 117581, Singapore.
| | - Hariharan Ezhilarasu
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sundarapandian Subramanian
- Department of Anatomy, SRM Medical College Hospital and Research Centre, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
| | - Mohammed Kamruddin
- Materials Physics Division, Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102, India.
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
| |
Collapse
|
15
|
Jansen K, Castilho M, Aarts S, Kaminski MM, Lienkamp SS, Pichler R, Malda J, Vermonden T, Jansen J, Masereeuw R. Fabrication of Kidney Proximal Tubule Grafts Using Biofunctionalized Electrospun Polymer Scaffolds. Macromol Biosci 2019; 19:e1800412. [PMID: 30548802 PMCID: PMC7116029 DOI: 10.1002/mabi.201800412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of end-stage renal disease and persistent shortage of donor organs call for alternative therapies for kidney patients. Dialysis remains an inferior treatment as clearance of large and protein-bound waste products depends on active tubular secretion. Biofabricated tissues could make a valuable contribution, but kidneys are highly intricate and multifunctional organs. Depending on the therapeutic objective, suitable cell sources and scaffolds must be selected. This study provides a proof-of-concept for stand-alone kidney tubule grafts with suitable mechanical properties for future implantation purposes. Porous tubular nanofiber scaffolds are fabricated by electrospinning 12%, 16%, and 20% poly-ε-caprolactone (PCL) v/w (chloroform and dimethylformamide, 1:3) around 0.7 mm needle templates. The resulting scaffolds consist of 92%, 69%, and 54% nanofibers compared to microfibers, respectively. After biofunctionalization with L-3,4-dihydroxyphenylalanine and collagen IV, 10 × 106 proximal tubule cells per mL are injected and cultured until experimental readout. A human-derived cell model can bridge all fiber-to-fiber distances to form a monolayer, whereas small-sized murine cells form monolayers on dense nanofiber meshes only. Fabricated constructs remain viable for at least 3 weeks and maintain functionality as shown by inhibitor-sensitive transport activity, which suggests clearance capacity for both negatively and positively charged solutes.
Collapse
Affiliation(s)
- Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Sanne Aarts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
| | - Michael M Kaminski
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Soeren S Lienkamp
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Roman Pichler
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
- Department of Equine Sciences, Room G05228, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100,, 3584, CX Utrecht, The Netherlands
| | - Tina Vermonden
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pathology and Pediatric Nephrology, RIMLS, RIHS, Radboud University Medical Center, P.O. Box 9101, 6500, HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| |
Collapse
|