1
|
Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Rapid growth of nanotechnology has accelerated immense possibility of engineered nanomaterials (ENMs) exposure by human and living organisms. In this context, wide range applications of graphene based nanomaterials (GBNMs) may inevitably cause their release into the environment. Consequently, potential risks to the ecological system and human health is consistently increasing due to the probable ingestion of GBNMs by mean of contaminated water or food sources. Further, gut microbiome is known to play a profound impact on the health status of human being and has been recognized as the most exciting advancement in the biomedical science. Recent studies has shown vital role of ENMs to alter gut microbiome and thereby changed pathological status of organisms. Therefore, in this review results of numerous studies dedicated to explore the impact of GBNMs on gut microbiome and thereby various pathological status have been summarized. Dietary exposure of different types of GBNMs [e.g. graphene, graphene oxide (GO), partially reduced graphene oxide (PRGO), graphene quantum dots (GQDs)] have been evaluated on the gut microbiome through numerous in vitro and in vivo models. Moreover, emphasis has been made to evaluate different physiological responses with the short/long-term exposure of GBNMs, particularly in gastrointestinal tract (GIT) and its correlation with gut microbiome and the health status. It is reviewed that exposure of GBNMs can exert significant impact which alter the composition, diversity and function of gut microbiome. This may further appear in terms of enteric disorder along with numerous pathological changes e.g. IEC (intestinal epithelial cells) colitis, lysosomal dysfunction, inflammation, shortened colon, resorbed embryo, retardation in skeletal development, low weight of fetus, early or late dead of fetus and IBD (inflammatory bowel disease) like symptoms. Finally, potential health risks due to the exposure of GBNMs have been discussed with future perspective.
Collapse
Affiliation(s)
- Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah - 24382, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India.
| | - Mustfa F Alkhanani
- Emergency Medical Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
2
|
Tang M, Li S, Wei L, Hou Z, Qu J, Li L. Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota? Front Immunol 2021; 12:684605. [PMID: 34594323 PMCID: PMC8476765 DOI: 10.3389/fimmu.2021.684605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely exploited in several industrial domains as well as our daily life, raising concern over their potential adverse effects. While in general ENMs do not seem to have detrimental effects on immunity or induce severe inflammation, their indirect effects on immunity are less known. In particular, since the gut microbiota has been tightly associated with human health and immunity, it is possible that ingested ENMs could affect intestinal immunity indirectly by modulating the microbial community composition and functions. In this perspective, we provide a few pieces of evidence and discuss a possible link connecting ENM exposure, gut microbiota and host immune response. Some experimental works suggest that excessive exposure to ENMs could reshape the gut microbiota, thereby modulating the epithelium integrity and the inflammatory state in the intestine. Within such microenvironment, numerous microbiota-derived components, including but not limited to SCFAs and LPS, may serve as important effectors responsible of the ENM effect on intestinal immunity. Therefore, the gut microbiota is implicated as a crucial regulator of the intestinal immunity upon ENM exposure. This calls for including gut microbiota analysis within future work to assess ENM biocompatibility and immunosafety. This also calls for refinement of future studies that should be designed more elaborately and realistically to mimic the human exposure situation.
Collapse
Affiliation(s)
- Mingxing Tang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Li
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lan Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Zhaohua Hou
- Department of Surgery, Sloan Kettering Institute Z427-D, Mortimer B. Zuckerman Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jing Qu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|