1
|
Hajebi S, Chamanara M, Nasiri SS, Ghasri M, Mouraki A, Heidari R, Nourmohammadi A. Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems. Biomed Pharmacother 2024; 180:117493. [PMID: 39353321 DOI: 10.1016/j.biopha.2024.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In recent years, the use of gold nanorods (AuNRs) has garnered considerable attention in biomedical applications due to their unique optical and physicochemical properties. They have been considered as potential tools for the advanced treatment of diseases by various stimuli such as magnetic fields, pH, temperature and light in the fields of targeted therapy, imaging and drug delivery. Their biocompatibility and tunable plasmonic properties make them a versatile platform for a range of biomedical applications. While endogenous stimuli have limited cargo delivery control at specific sites, exogenous stimuli are a more favored approach despite their circumscribed penetration depth for releasing the cargo at the specific target. Dual/multi-stimuli responsive AuNTs can be triggered by multiple stimuli for enhanced control and specificity in biomedical applications. This review provides to provide a summary of the biomedical applications of stimuli-responsive AuNRs, including their endogenous and exogenous properties, as well as their dual/multi-functionality and potential for clinical delivery. This review provides a comprehensive review on the improvement of therapeutic efficacy and the effective control of drug release with AuNRs, highlights AuNRs design strategies in recent years, discusses the advantages or challenges so far in the field of AuNRs. Finally, we have addressed the clinical translation bio-integrated nanoassemblies (CTBNs) in this field.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Shadi Sadat Nasiri
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mahsa Ghasri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Alireza Mouraki
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran.
| | - Abbas Nourmohammadi
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center of Aerospace Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Fu J, Dong H, Wu J, Jin Y. Emerging Progress of RNA-Based Antitumor Therapeutics. Int J Biol Sci 2023; 19:3159-3183. [PMID: 37416764 PMCID: PMC10321292 DOI: 10.7150/ijbs.83732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
RNA-based therapeutics (e.g., mRNAs, siRNAs, microRNAs, ASOs, and saRNAs) have considerable potential for tumor treatment. The development and optimization of RNA modifications and delivery systems enable the stable and efficient delivery of RNA cargos in vivo to elicit an antitumor response. Targeted RNA-based therapeutics with multiple specificities and high efficacies are now available. In this review, we discuss progress in RNA-based antitumor therapeutics, including mRNAs, siRNAs, miRNAs, ASOs, saRNAs, RNA aptamers, and CRISPR-based gene editing. We focus on the immunogenicity, stability, translation efficiency, and delivery of RNA drugs, and summarize their optimization and the development of delivery systems. In addition, we describe the mechanisms by which RNA-based therapeutics induce antitumor responses. Furthermore, we review the merits and limitations of RNA cargos and their therapeutic potential for cancers.
Collapse
Affiliation(s)
- Jiayan Fu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Haiyang Dong
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Yongfeng Jin
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China
| |
Collapse
|
3
|
Wu D, Zhang W, Li Y, Zhao Z, Ji W, Liu H, Yang G. Gold nanorods-loaded chitosan-based nanomedicine platform enabling an effective tumor regression in vivo. Int J Pharm 2023; 632:122561. [PMID: 36586640 DOI: 10.1016/j.ijpharm.2022.122561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The clinical utility of 7-ethyl-10-hydroxycamptothecin (SN-38) is hampered by its low water solubility and reduced bioactivity at neutral or alkaline conditions. The rational design of an effective drug delivery system that can significantly enhance the therapeutic index of SN-38 and achieve complete tumor regression still remains a challenge. Herein, chitosan-based hybrid nanoparticles system co-loading with chemotherapeutic drug SN-38 and gold nanorods (AuNRs) was engineered for effective combinational photothermal-chemotherapy. To increase the solubility of SN-38, soluble polymeric prodrug poly (l-glutamic acid)-SN38 (l-PGA-SN38) was firstly synthesized and then complexed with chitosan to form stable nanomedicine via a mild and facile way without using any organic solvent or surfactant. Upon introducing AuNRs into chitosan-based nanomedicine by coordination interaction between the amine group of chitosan and AuNRs, the hybrid nanoparticles exhibited distinct synergistic therapeutic effect compared with single chemotherapy or photothermal treatment in vitro and in vivo. Almost complete tumor regression was achieved after 21-day treatment of the developed hybrid nanoparticles and showed no recurrence for at least 60 days.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zejing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weili Ji
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
5
|
Darwish WM, Bayoumi NA, El-Shershaby HM, Moustafa KA. A novel gold-polymer-antibody conjugate for targeted (radio-photothermal) treatment of HepG2 cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:53-71. [PMID: 35929853 DOI: 10.1080/09205063.2022.2110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Localization of the near-infrared (NIR) plasmonic nanoparticles at the tumor sites is essential for safe and efficient photothermal therapy of cancer. In this work, two biocompatible polymers: modified poly(ethylene glycol) (PEG) and branched polyethyleneimine (bPEI) were used to bind plasmonic hollow gold nanospheres (HAuNS) to the tumor-specific antibody, atezolizumab (ATZ). The photo-immunoconjugate (HAuNS-PEI-PEG-ATZ) was prepared via a simple and cost-effective procedure. The conjugate was also prepared with the radioiodinated antibody (ATZ-131I) to combine the targeted radio- and photothermal cytotoxic actions against human hepatoma (HepG2) cells. In vitro study revealed that attachment to the antibody and the use of cellular internalizing polymers enhanced the cellular localization of both gold and the radiotherapeutic Iodine-131. Compared to bare gold nanoparticles, (HAuNS-PEI-PEG-ATZ) conjugate exhibited a significantly enhanced photothermal ablation of HepG2 cells after laser irradiation (0.4 W cm-2, 5 min). Laser irradiation of the cells treated with the radiolabeled conjugate (HAuNS-PEI-PEG-ATZ-131I) exhibited the highest cytotoxicity against HepG2 cells due to the combinatorial cytotoxic effects.
Collapse
Affiliation(s)
- Wael M Darwish
- Department of Polymers and Pigments, National Research Centre, Dokki, Egypt
| | - Noha A Bayoumi
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hanan M El-Shershaby
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Kamel A Moustafa
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Zhou L, Gong X, Zhao Y, Xu J, Guo Y. Preparation and characterization of GNRs stabled with thiolated lemon polysaccharide and the applications for tumor photothermal therapy. Int J Biol Macromol 2022; 224:1303-1312. [DOI: 10.1016/j.ijbiomac.2022.10.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
7
|
Li S, Lui KH, Lau WS, Chen J, Lo WS, Li X, Gu YJ, Lin LT, Wong WT. MSOT-Guided Nanotheranostics for Synergistic Mild Photothermal Therapy and Chemotherapy to Boost Necroptosis/Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33712-33725. [PMID: 35822699 DOI: 10.1021/acsami.2c07592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanotheranostics for precision imaging-guided regulated cell death-mediated synergistic tumor therapy is still challenging. Herein, a novel multifunctional nanotheranostic agent, iRGD-coated maleimide-poly(ethylene glycol)-poly(lactic acid/glycolic acid)-encapsulated hydrophobic gold nanocages (AuNCs) and hydrophilic epigallocatechin gallate (EGCG) (PAuE) is developed for multispectral optoacoustic tomography (MSOT)-guided photothermal therapy (PTT) and chemotherapy. The portions of necroptotic and apoptotic tumor cells were 52.9 and 5.4%, respectively, at 6 h post-incubation after the AuNC-induced mild PTT treatment, whereas they became 14.0 and 46.1% after 24 h, suggesting that the switch of the cell death pathway is a time-dependent process. Mild PTT facilitated the release of EGCG which induces the downregulation of hypoxia-inducible factor-1 (HIF-1α) expression to enhance apoptosis at a later stage, realizing a remarkable tumor growth inhibition in vivo. Moreover, RNA sequence analyses provided insights into the significant changes in genes related to the cross-talk between necroptosis and apoptosis pathways via PAuE upon laser irradiation. In addition, the biodistribution and metabolic pathways of PAuE have been successfully revealed by 3D MSOT. Taken together, this strategy of first combination of EGCG and AuNC-based photothermal agent via triggering necroptosis/apoptosis to downregulate HIF-1α expression in a tumor environment provides a new insight into anti-cancer therapy.
Collapse
Affiliation(s)
- Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wing-Sum Lau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Juyu Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Xin Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Yan-Juan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Liang-Ting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 000000, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
9
|
Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1606. [PMID: 35208145 PMCID: PMC8878601 DOI: 10.3390/ma15041606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Nikolai G. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Boris N. Khlebtsov
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Galina N. Maslyakova
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Nikita A. Navolokin
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
| |
Collapse
|
10
|
ATİLA DİNÇER C, GETİREN B, GÖKALP C, ÇIPLAK Z, KARAKEÇİLİ A, YILDIZ N. An anticancer drug loading and release study to ternary GO-Fe3O4-PPy and Fe3O4 @PPy-NGQDs nanocomposites for photothermal chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Aldahhan R, Almohazey D, Khan FA. Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment. Semin Cancer Biol 2021; 86:1056-1065. [PMID: 34843989 DOI: 10.1016/j.semcancer.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is one of the most aggressive types of cancer with about two million new cases and one million deaths in 2020. The side effects of the available chemotherapies and the possibility of developing resistance against treatment highlight the importance of developing new therapeutic options. The development in the field of nanotechnology have introduced the application of nanoparticles (NPs) as a promising approach in the diagnosis and treatments of colorectal cancer and other types of cancer. Gold nanoparticles (AuNPs) are currently one of the most studied materials as they possess unique tunable properties allowing them to play a role in colorectal cancer bioimaging, diagnosis, and therapy. The high surface-to-volume ratio of AuNPs mediates their utilization in drug delivery as well as functionalization to provide specific targeting. Moreover, depending on their physical properties (size, shape), AuNPs can be modified to fit the intended application. However, there are contradictory results around the pharmacokinetics of AuNPs including their biodistribution, clearance, and toxicity. This variation of opinions is most likely due to the development of different AuNPs that vary in shape, size, and surface chemistry, in addition to the conditions under which each research was carried out. The conflicting data represent a challenge in the clinical use of AuNPs suggesting the need to understand the toxicity, fate, and long-term exposure of AuNPs in vivo. Thus, there is an unmet need for the establishment of a publicly available data base for extensive analysis. In this review, we discuss the recent advances in AuNP applications in the treatment and diagnosis of colorectal cancer, mechanisms of action, and clinical challenges.
Collapse
Affiliation(s)
- Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
12
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
13
|
Meireles IBDCJ, Cipreste MF, Gastelois PL, Macedo WADA, Gomes DA, de Sousa EMB. Synthesis and characterization of gold nanorods coated by mesoporous silica MCM-41 as a platform bioapplication in photohyperthermia. NANOTECHNOLOGY 2021; 32:505720. [PMID: 34547742 DOI: 10.1088/1361-6528/ac28db] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles have been widely investigated for biomedical applications due to their optical properties. These particles present the interesting feature of absorbing light when stimulated with laser radiation to generate heating. Among the possible morphologies for synthetic gold nanoparticles, gold nanorods have properties of great interest for applications in the photohyperthermia processes. Due to their morphology, gold nanorods can absorb light at longer wavelengths comprising specific regions of the electromagnetic spectrum, such as the region of the biological window, in which laser radiation has less interaction with tissues. However, these nanoparticles present limitations in biomedical applications, such as low colloidal and thermal stabilities that can be overcome by coating the gold nanorods with silica MCM-41. The silicate covering can provide greater stability for gold nanorods and allow multifunctionality in treating different diseases through photohyperthermia. This work developed a specific chemical route through seed and growth solutions to synthesize gold nanorods with controlled particle size, rod morphology, and silica covering for photohyperthermia applications. The synthesized samples were characterized through a multi-technique approach that successfully demonstrated the presence of gold nanorods inside the silica coating, presenting high stability and desirable textural and morphological characteristics for bioapplications. Furthermore, silica-coated gold nanorods exhibit high biocompatibility and great performance in generating therapeutic heating by absorbing laser radiation in the biological window range, making the system developed in this work a promising agent in photohyperthermia.
Collapse
Affiliation(s)
| | | | - Pedro Lana Gastelois
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia-ICB-UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
14
|
Sun Y, Ran H, Liu F. Polymer-Based Materials and Their Applications in Image-Guided Cancer Therapy. Curr Med Chem 2021; 29:1352-1368. [PMID: 34137360 DOI: 10.2174/0929867328666210616160717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advances in nanotechnology have enabled the combination of disease diagnosis and therapy into a single nano package that has tremendous potential for the development of new theranostic strategies. The variety of polymer-based materials has grown exponentially over the past several decades. Such materials have great potential as carriers in disease detection imaging and image monitoring and in systems for the precise delivery of drugs to specific target sites. OBJECTIVE In the present article, we review recent key developments in the synthesis of polymer-based materials for various medical applications and their clinical trials. CONCLUSION There is a growing range of multi-faceted, polymer-based materials with various functions. These functions include carriers for image contrast agents, drug delivery systems, and real-time image-guided systems for noninvasive or minimally invasive therapeutic procedures for cancer therapy.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Fan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| |
Collapse
|
15
|
Liao S, Yue W, Cai S, Tang Q, Lu W, Huang L, Qi T, Liao J. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front Pharmacol 2021; 12:664123. [PMID: 33967809 PMCID: PMC8100678 DOI: 10.3389/fphar.2021.664123] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wang Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weitong Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Qi
- Department of Radiation Biology, Radiation Oncology Key Laboratory of Sichuan Province, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
El-Sherbiny RH, Hassan MM, El-Hossary WH, Shata MS, Darwish WM. Folate-targeted polymeric nanoparticles for efficient dual (chemo-photothermal) therapy of oral squamous carcinoma. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1725756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Randa H. El-Sherbiny
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Magda M. Hassan
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Wafaa H. El-Hossary
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Mona S. Shata
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Wael M. Darwish
- Department of Polymers and Pigments, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
17
|
Awan UA, Raza A, Ali S, Saeed RF, Akhtar N. Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:295-303. [PMID: 34012759 PMCID: PMC8022204 DOI: 10.3762/bjnano.12.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Two of the limitations associated with cancer treatment are the low efficacy and the high dose-related side effects of anticancer drugs. The purpose of the current study was to fabricate biocompatible multifunctional drug-loaded nanoscale moieties for co-therapy (chemo-photothermal therapy) with maximum efficacy and minimum side effects. Herein, we report in vitro anticancerous effects of doxorubicin (DOX) loaded on gold nanorods coated with the polyelectrolyte poly(sodium-4-styrenesulfonate) (PSS-GNRs) with and without NIR laser (808 nm, power density = 1.5 W/cm2 for 2 min) irradiation. The drug-loading capacity of PSS-GNRs was about 76% with a drug loading content of 3.2 mg DOX/mL. The cumulative DOX release significantly increased after laser exposure compared to non-irradiated samples (p < 0.05). The zeta potential values of GNRs, PSS-GNRs and DOX-PSS-GNRs were measured as 42 ± 0.1 mV, -40 ± 0.3 mV and 39.3 ± 0.6 mV, respectively. PSS-GNRs nanocomplexes were found to be biocompatible and showed higher photothermal stability. The DOX-conjugated nanocomplexes with NIR laser irradiation appear more efficient in cell inhibition (93%) than those without laser exposure (65%) and doxorubicin alone (84%). The IC50 values of PSS-GNRs-DOX and PSS-GNRs-DOX were measured as 7.99 and 3.12 µg/mL, respectively, with laser irradiation. Thus, a combinatorial approach based on chemotherapy and photothermal strategies appears to be a promising platform in cancer management.
Collapse
Affiliation(s)
- Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, (PIEAS), Islamabad, Pakistan
| | - Abida Raza
- NILOP Nanomedicine Research Laboratories, National Institute of Lasers and Optronics College, (PIEAS), Islamabad, Pakistan
| | - Shaukat Ali
- Medical Toxicology Lab, Department of Zoology, Government College University Lahore, Lahore-54000, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| |
Collapse
|
18
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
19
|
Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of targeted PLGA nanoparticles: a systematic review. RSC Adv 2021; 11:9433-9449. [PMID: 35423427 PMCID: PMC8695459 DOI: 10.1039/d1ra00074h] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nanotechnology have contributed tremendously to the development and revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect, Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand, active compounds and cell line used. The half maximal inhibitory concentration (IC50) for cytotoxicity was the main measurement in this data extraction, and the SI units were standardized to μg mL-1 for a better view of comparison. This systematic review also identified that cytotoxicity potency was inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less than 300 nm and absolute zeta potential ∼20 mV. In conclusion, more comprehensive and critical appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| |
Collapse
|
20
|
Kermanizadeh A, Jacobsen NR, Murphy F, Powell L, Parry L, Zhang H, Møller P. A Review of the Current State of Nanomedicines for Targeting and Treatment of Cancers: Achievements and Future Challenges. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Fiona Murphy
- Heriot Watt University School of Engineering and Physical Sciences Edinburgh EH14 4AS UK
| | - Leagh Powell
- Heriot Watt University School of Engineering and Physical Sciences Edinburgh EH14 4AS UK
| | - Lee Parry
- Cardiff University European Cancer Stem Cell Research Institute, School of Biosciences Cardiff CF24 4HQ UK
| | - Haiyuan Zhang
- Changchun Institute of Applied Chemistry Laboratory of Chemical Biology Changchun 130022 China
| | - Peter Møller
- University of Copenhagen Department of Public Health Copenhagen DK1014 Denmark
| |
Collapse
|
21
|
Gerosa C, Crisponi G, Nurchi VM, Saba L, Cappai R, Cau F, Faa G, Van Eyken P, Scartozzi M, Floris G, Fanni D. Gold Nanoparticles: A New Golden Era in Oncology? Pharmaceuticals (Basel) 2020; 13:E192. [PMID: 32806755 PMCID: PMC7464886 DOI: 10.3390/ph13080192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
In recent years, the spectrum of possible applications of gold in diagnostics and therapeutic approaches in clinical practice has changed significantly, becoming surprisingly broad. Nowadays, gold-based therapeutic agents are used in the therapy of multiple human diseases, ranging from degenerative to infectious diseases and, in particular, to cancer. At the basis of these performances of gold, there is the development of new gold-based nanoparticles, characterized by a promising risk/benefit ratio that favors their introduction in clinical trials. Gold nanoparticles appear as attractive elements in nanomedicine, a branch of modern clinical medicine, which combines high selectivity in targeting tumor cells and low toxicity. Thanks to these peculiar characteristics, gold nanoparticles appear as the starting point for the development of new gold-based therapeutic strategies in oncology. Here, the new gold-based therapeutic agents developed in recent years are described, with particular emphasis on the possible applications in clinical practice as anticancer agents, with the aim that their application will give rise to a new golden age in oncology and a breakthrough in the fight against cancer.
Collapse
Affiliation(s)
- Clara Gerosa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Valeria Marina Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Luca Saba
- UOC Radiologia, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Rosita Cappai
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Flaviana Cau
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Gavino Faa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Mario Scartozzi
- UOC Oncologia Medica, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Giuseppe Floris
- Pathologische Ontleedkunde K.U. Leuven, 3000 Leuven, Belgium;
| | - Daniela Fanni
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| |
Collapse
|
22
|
Chen Z, Zhang Q, Zeng L, Zhang J, Liu Z, Zhang M, Zhang X, Xu H, Song H, Tao C. Light-triggered OVA release based on CuS@poly(lactide-co-glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumor. Pharmacol Res 2020; 158:104902. [DOI: 10.1016/j.phrs.2020.104902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
|
23
|
Chuang CC, Chen YN, Wang YY, Huang YC, Lin SY, Huang RY, Jang YY, Yang CC, Huang YF, Chang CW. Stem Cell-Based Delivery of Gold/Chlorin e6 Nanocomplexes for Combined Photothermal and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30021-30030. [PMID: 32594734 DOI: 10.1021/acsami.0c03446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining photothermal and photodynamic modalities has shown encouraging therapeutic efficacy against various malignant cancers. Developing a delivery method for targeting and penetrating tumors is still a major focus for advancing this therapeutic approach. Herein, we report a novel strategy involving the utilization of stem cells as a live carrier to codeliver photothermal and photodynamic agents for cancer therapy. To this end, a novel gold nanorod (AuNR)-PEG-PEI (APP)/chlorin e6 (Ce6)-loaded adipose-derived stem cell (ADSC) system is proposed in which AuNRs and Ce6 act as the photothermal and photodynamic agents, respectively. To integrate with stem cells, the APP/Ce6 nanocomplexes exhibit advantages of low drug leakage, low cytotoxicity, efficient cellular uptake, and redox-responsive release. After loading of APP/Ce6 nanocomplexes, the ADSCs still maintained good tumor tropism and were capable of penetrating into the tumor spheroids. The photothermal effect induced by exposure to near-infrared light irradiation at 808 nm promoted the release of Ce6 from the stem cells into the surroundings and hence increased its availability to treat cancer cells. APP/Ce6-loaded ADSCs exerted effective dose-dependent in vitro anticancer activities via anticipated photothermal and photodynamic effects. In a murine CT26 colon cancer model, APP/Ce6 delivered by ADSCs resulted in superior tumor suppression compared to other delivery strategies. It was also noted that in vivo applications of APP/Ce6-loaded ADSCs did not induce noticeable detrimental effects on normal tissues/organs.
Collapse
Affiliation(s)
- Chun-Chiao Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Yi-Ning Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Yi-Ya Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Yu-Chen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Ssu-Yu Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Yu-Yun Jang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Chun-Chi Yang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
24
|
Xiong J, Jiang B, Luo Y, Zou J, Gao X, Xu D, Du Y, Hao L. Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer. Int J Nanomedicine 2020; 15:4151-4169. [PMID: 32606670 PMCID: PMC7305853 DOI: 10.2147/ijn.s246447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Die Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Ultrasonography Department, The Fourth People's Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing 400014, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
25
|
Darwish WMA, Bayoumi NA. Gold nanorod-loaded (PLGA-PEG) nanocapsules as near-infrared controlled release model of anticancer therapeutics. Lasers Med Sci 2020; 35:1729-1740. [PMID: 31965353 DOI: 10.1007/s10103-020-02964-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
Despite of high in vitro anticancer efficacy of many chemotherapeutics, their in vivo use is limited due to lack of biocompatibility and tumor targeting. Near-infrared (NIR) photothermally induced phase transition of PLGA-PEG regime was utilized for developing highly efficient photoresponsive drug delivery systems. Co-encapsulation of plasmonic gold nanorods (GNRs), as NIR-trigger, with the novel and highly efficient anticancer drug N'-(2-Methoxybenzylidene)-3-methyl-1-phenyl-H-Thieno[2,3-c]Pyrazole-5-Carbohyd-razide (MTPC) produced NIR-responsive biodegradable polymeric (PLGA-b-PEG) nanocapsules. This remotely controllable drug release significantly enhanced both biodistribution and pharmacokinetics of the hydrophobic drug. Intravenous (IV) injection of the prepared nanocapsules (MTPC/GNRs@PLGA-PEG) to tumor-bearing mice followed by extracorporeal exposure of the tumor to NIR light resulted in highly selective drug accumulation at the tumor sites. In vivo biodistribution and pharmacokinetics utilizing iodine-131 drug-radiolabelling technique revealed a maximum target to non-target ratio (T/NT) of 5.8, 4 h post-injection with maximum drug level in the tumor (6.3 ± 0.6% of the injected dose). Graphical abstract.
Collapse
Affiliation(s)
- Wael Mahmoud Ahmed Darwish
- Department of Polymers and Pigments, National Research Centre, Elbuhouth Street, Dokki, Giza, 12622, Egypt.
| | - Noha A Bayoumi
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
26
|
Xu W, Lin Q, Yin Y, Xu D, Huang X, Xu B, Wang G. A Review on Cancer Therapy Based on the Photothermal Effect of Gold Nanorod. Curr Pharm Des 2020; 25:4836-4847. [DOI: 10.2174/1381612825666191216150052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/29/2019] [Indexed: 02/05/2023]
Abstract
Background:
Cancer causes millions of deaths and huge economic losses every year. The currently
practiced methods for cancer therapy have many defects, such as side effects, low curate rate, and discomfort for
patients.
Objective:
Herein, we summarize the applications of gold nanorods (AuNRs) in cancer therapy based on their
photothermal effect-the conversion of light into local heat under irradiation.
Methods:
The recent advances in the synthesis and regulation of AuNRs, and facile surface functionalization
further facilitate their use in cancer treatment. For cancer therapy, AuNRs need to be modified or coated with
biocompatible molecules (e.g. polyethylene glycol) and materials (e.g. silicon) to reduce the cytotoxicity and
increase their biocompatibility, stability, and retention time in the bloodstream. The accumulation of AuNRs in
cancerous cells and tissues is due to the high leakage in tumors or the specific interaction between the cell surface
and functional molecules on AuNRs such as antibodies, aptamers, and receptors.
Results:
AuNRs are employed not only as therapeutics to ablate tumors solely based on the heat produced under
laser that could denature protein and activate the apoptotic pathway, but also as synergistic therapies combined
with photodynamic therapy, chemotherapy, and gene therapy to kill cancer more efficiently. More importantly,
other materials like TiO2, graphene oxide, and silicon, etc. are incorporated on the AuNR surface for multimodal
cancer treatment with high drug loadings and improved cancer-killing efficiency. To highlight their applications
in cancer treatment, examples of therapeutic effects both in vitro and in vivo are presented.
Conclusion:
AuNRs have potential applications for clinical cancer therapy.
Collapse
Affiliation(s)
- Weizhen Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinlu Lin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yueqin Yin
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dong Xu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohui Huang
- Hunan Edible Fungi Institute, Changsha, 410004, China
| | - Bucheng Xu
- Wangcheng Commodity Inspection Center, Changsha, 410200, China
| | - Guangwei Wang
- Biomedical Research Center, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
27
|
Liu J, Ma W, Kou W, Shang L, Huang R, Zhao J. Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells. Biosci Rep 2019; 39:BSR20192521. [PMID: 31742323 PMCID: PMC6928523 DOI: 10.1042/bsr20192521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/13/2023] Open
Abstract
In this work, we have successfully designed and formulated a doxorubicin-loaded polypeptide-based multilayer assembled gold nanorod (DH-GNR). We have hypothesized that near-infrared (NIR) laser irradiation of DH-GNR will combine the benefits of chemotherapy and photothermal therapy. The GNR was surface functionalized with poly-glutamic acid (PGA) and poly-l-Lysine (PLL) with a final layer of hyaluronic acid (HA) that could also serve as a targeting ligand toward the overexpressed CD44 receptors in ovarian cancer cells. The zigzag ζ potential of nanoparticle is a proof of successful assembly of alternative polymers on the GNR surface. NIR irradiation exhibited a burst release of drug in pH 7.4 and pH 5.0 buffer conditions. The combination of doxorubicin (DOX)-based chemotherapy and GNR-based photothermal therapy exhibited a synergistic effect in killing the SKOV3 cancer cells. DH-GNR(+NIR) induced a 82.5% apoptosis (combined early and late apoptosis) compared with only 35.2 and 38.5% for DOX or DH-GNR(-NIR) treated cell group. Results clearly suggest that the excessive reactive oxygen species (ROS) generation in DH-GNR (+NIR) might be responsible for the cell apoptosis and cell death. The promising anticancer effect of DH-GNR will be of great potential in the treatment of ovarian cancers and worth further development for treating other malignant tumors.
Collapse
Affiliation(s)
- JinYing Liu
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Wei Ma
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Wei Kou
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Lina Shang
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Rui Huang
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| | - Jin Zhao
- School of Medicine, Northwest University for Nationalities, Lanzhou 730030, China
| |
Collapse
|
28
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4222-4233. [DOI: 10.1080/21691401.2019.1687501] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Wang J, Zhang W, Li S, Miao D, Qian G, Su G. Engineering of Porous Silica Coated Gold Nanorods by Surface-Protected Etching and Their Applications in Drug Loading and Combined Cancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14238-14247. [PMID: 31600438 DOI: 10.1021/acs.langmuir.9b01891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Core-shell nanostructures, specifically gold nanorods coated with porous silica (GNR@p-SiO2), were successfully fabricated by surface-protected etching. The nanostructures, photothermal effects, drug loading and drug release behaviors, cellular uptake, and combined chemo-photothermal therapy were investigated. The results showed that the as-prepared GNR@p-SiO2 had a uniform porous silica outer layer. Etching process could be modulated by adjusting the etching time, concentrations of etching agents, and concentrations of protective agents. With doxorubicin (DOX) as the model drug, the drug loading capacity reached 18.9%, which was dependent on the DOX concentrations. The drug release profiles were dual stimulus-responsive to pH and laser irradiation. In addition, the GNR@p-SiO2 nanoparticles were biocompatible and effectively internalized by cancer cells. Compared with chemotherapy or photothermal therapy administered individually, combined chemo-photothermal therapy using GNR@p-SiO2 exhibited higher efficiency in killing cancer cells both in vitro and in vivo. Therefore, surface-protected etching is a powerful method for preparing core-shell nanostructures capped with mesoporous silica for combined cancer chemo-photothermal therapy.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Pharmacy , Affiliated Hospital of Nantong University , Nantong 226001 , P. R. China
| | - Wei Zhang
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| | - Shuhuan Li
- Department of Food Science and Engineering , Shandong Agriculture and Engineering University , Jinan 251100 , P. R. China
| | - Dandan Miao
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| | - Guopei Qian
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| | - Gaoxing Su
- School of Pharmacy , Nantong University , Nantong 226001 , P. R. China
| |
Collapse
|