1
|
Zhang H, Zhong X, Wen J, Xi J, Feng Z, Liu Z, Ye L. Hydrogel coating containing heparin and cyclodextrin/paclitaxel inclusion complex for retrievable vena cava filter towards high biocompatibility and easy removal. Int J Biol Macromol 2024; 277:134509. [PMID: 39111508 DOI: 10.1016/j.ijbiomac.2024.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Aiming to improve the retrieval rate of retrievable vena cava filters (RVCF) and extend its dwelling time in vivo, a novel hydrogel coating loaded with 10 mg/mL heparin and 30 mg/mL cyclodextrin/paclitaxel (PTX) inclusion complex (IC) was prepared. The drug-release behavior in the phosphate buffer solution demonstrated both heparin and PTX could be sustainably released over approximately two weeks. Furthermore, it was shown that the hydrogel-coated RVCF (HRVCF) with 10 mg/mL heparin and 30 mg/mL PTX IC effectively extended the blood clotting time to above the detection limit and inhibited EA.hy926 and CCC-SMC-1 cells' proliferation in vitro compared to the commercially available bare RVCF. Both the HRVCF and the bare RVCF were implanted into the vena cava of sheep and retrieved at at 2nd and 4th week after implantation, revealing that the HRVCF had a significantly higher retrieval rate of 67 % than the bare RVCF (0 %) at 4th week. Comprehensive analyses, including histological, immunohistological, and immunofluorescent assessments of the explanted veins demonstrated the HRVCF exhibited anti-hyperplasia and anticoagulation properties in vivo, attributable to the hydrogel coating, thereby improving the retrieval rate in sheep. Consequently, the as-prepared HRVCF shows promising potential for clinical application to enhance the retrieval rates of RVCFs.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xuanshu Zhong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Wen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Li Y, Sun Q, Hao L, Shan H, Jiang Z, Wang Y, Chen Z, Zhu W, Zhao S. Liposomes Loaded with 5-Fluorouracil Can Improve the Efficacy in Pathological Scars. Int J Nanomedicine 2024; 19:7353-7365. [PMID: 39050869 PMCID: PMC11268756 DOI: 10.2147/ijn.s466221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Pathological scars, such as hypertrophic scars and keloids, are characterized by the proliferation of fibroblasts and the deposition of collagen that often cause pruritus, pain, and disfigurement. Due to their high incidence and deformity, pathological scars have resulted in severe physical and psychological trauma for patients. Intralesional injection of 5-fluorouracil (5-Fu) is a recommended option for treating pathological scars. However, the efficacy of 5-Fu injection was limited and unstable due to limited drug penetration and short retention time. Methods Liposomes are promising carriers that have advantages, such as high biocompatibility, controlled release property, and enhanced clinical efficacy. Here, we constructed a transdermal 5-Fu-loaded liposome (5-Fu-Lip) to provide a more effective and safer modality to scar treatment. Results Compared to 5-Fu, 5-Fu-Lip showed superior ability in inhibiting primary keloid fibroblasts proliferation, migration, and collagen deposition, and also significantly inhibited human umbilical vein endothelial cells (HUVECs) proliferation and microvessel construction. In vivo experiments demonstrated that 5-Fu-Lip can significantly reduce the severity of hypertrophic scars in a rabbit ear wounding model. Discussion 5-Fu-Lip provides a promising strategy to improve drug efficacy, which has great potential in the treatment of pathological scars.
Collapse
Affiliation(s)
- Yixin Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Qi Sun
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Lingjia Hao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410083, People’s Republic of China
| | - Han Shan
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zeyu Chen
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- School of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Furong Laboratory (Precision Medicine), Changsha, 410008, People’s Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
3
|
Zhang SY, Guo SX, Chen LL, Zhu JY, Hou MS, Lu JK, Shen XX. Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking. World J Clin Cases 2024; 12:3505-3514. [PMID: 38983404 PMCID: PMC11229930 DOI: 10.12998/wjcc.v12.i18.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hypertrophic scar (HTS) is dermal fibroproliferative disorder, which may cause physiological and psychological problems. Currently, the potential mechanism of WuFuYin (WFY) in the treatment of HTS remained to be elucidated. AIM To explore the potential mechanism of WFY in treating HTS. METHODS Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. HTS-related genes were obtained from the GeneCards, DisGeNET, and National Center for Biotechnology Information. The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome (KEGG) enrichment analysis. A protein + IBM-protein interaction (PPI) network was developed using STRING database and Cytoscape. To confirm the high affinity between compounds and targets, molecular docking was performed. RESULTS A total of 65 core genes, which were both related to compounds and HTS, were selected from multiple databases. PPI analysis showed that CKD2, ABCC1, MMP2, MMP9, glycogen synthase kinase 3 beta (GSK3B), PRARG, MMP3, and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG) were the hub targets and MOL004941, MOL004935, MOL004866, MOL004993, and MOL004989 were the key compounds of WFY against HTS. The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway. Moreover, by performing molecular docking, we confirmed that GSK3B and 8-prenylated eriodictyol shared the highest affinity. CONCLUSION The current findings showed that the GSK3B and cyclin dependent kinase 2 were the potential targets and MOL004941, MOL004989, and MOL004993 were the main compounds of WFY in HTS treatment.
Collapse
Affiliation(s)
- Shu-Yang Zhang
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Song-Xue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Lei-Lei Chen
- Hand and Plastic Surgery, The first People’s Hospital of Linping District, Hangzhou 311013, Zhejiang Province, China
| | - Jia-Yan Zhu
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Ming-Sheng Hou
- Department of Pathology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| | - Jia-Ke Lu
- Department of Traumatology, Yuyao Hospital of Traditional Chinese Medicine, Ningbo 315400, Zhejiang Province, China
| | - Xue-Xiang Shen
- Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China
| |
Collapse
|
4
|
Song Z, Li W, He Q, Xie X, Wang X, Guo J. Natural products - Dawn of keloid treatment. Fitoterapia 2024; 175:105918. [PMID: 38554887 DOI: 10.1016/j.fitote.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Keloids are prevalent pathological scars, often leading to cosmetic deformities and hindering joint mobility.They cause discomfort, including burning and itching, while gradually expanding and potentially posing a risk of cancer.Developing effective drugs and treatments for keloids has been a persistent challenge in the medical field. Natural products are an important source of innovative drugs and a breakthrough for many knotty disease.Herein, keywords of "natural, plant, compound, extract" were combined with "keloid" and searched in PubMed and Google Scholar, respectively. A total of 32 natural products as well as 9 extracts possessing the potential for treating keloids were ultimately identified.Current research in this field faces a significant challenge due to the lack of suitable animal models, resulting in a predominant reliance on in vitro studies.In vivo and clinical studies are notably scarce as a result.Moreover, there is a notable deficiency in research focusing on the role of nutrients in keloid formation and treatment.The appropriate dosage form (oral, topical, injectable) is crucial for the development of natural product drugs. Finally, the conclusion was hereby made that natural products, when used as adjuncts to other treatments, hold significant potential in the management of keloids.By summarizing the natural products and elucidating their mechanisms in keloid treatment, the present study aims to stimulate further discoveries and research in drug development for effectively addressing this challenging condition.
Collapse
Affiliation(s)
- Zongzhou Song
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Wenquan Li
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Qingying He
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Xin Xie
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Xurui Wang
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China
| | - Jing Guo
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610036, China.
| |
Collapse
|
5
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
6
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
7
|
Boo YC. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int J Mol Sci 2024; 25:1235. [PMID: 38279232 PMCID: PMC10816582 DOI: 10.3390/ijms25021235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Liu Y, Xiong X, Cao N, Zhao Y. Diagnosis and Treatment of Keloid: Method Summary and Effect Evaluation. Clin Cosmet Investig Dermatol 2023; 16:3775-3783. [PMID: 38170138 PMCID: PMC10759814 DOI: 10.2147/ccid.s446018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Keloid is a prevalent skin disorder characterized by the abnormal growth of keloid tissue, which usually occurs following wound healing or surgical incisions. It typically progresses through several stages: the inflammatory stage, the proliferative stage, collagen remodeling, and ultimately the formation of keloid. This review aims to summarize the diagnostic and therapeutic methods for keloid, and evaluate their effectiveness. The diagnosis of keloid is usually based on medical history and clinical manifestations such as pain, itching, erythema, and induration. Other commonly used diagnostic methods include tissue biopsy and ultrasound examination. Various treatment options for keloid exist, including physical therapy, medication, surgical treatment, and radiation therapy. Physical therapy includes pressure therapy, laser therapy, such as silicone sheets, elastic bandages, and laser irradiation. Medication treatment mainly involves the application of topical medications or intralesional injections, such as topical corticosteroids, 5-fluorouracil, and others. Radiation therapy can be administered using applicators and superficial radiation therapy, among other methods. The treatment outcomes of keloid vary from person to person and recurrence is common. Therefore, a comprehensive treatment approach may be the most effective strategy. Individualized treatment plans should consider factors such as the patient's age, gender, medical history, and the severity of the condition. In conclusion, the diagnosis and treatment of keloid require consideration of multiple factors and the implementation of individualized treatment plans. Future research should focus on identifying the molecular mechanisms underlying the occurrence and progression of keloid in order to develop more effective treatment methods.
Collapse
Affiliation(s)
- Yu Liu
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Xiaoliang Xiong
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Nan Cao
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Yinlong Zhao
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
9
|
Myofibroblasts Are Not Characteristic Features of Keloid Lesions. Plast Reconstr Surg Glob Open 2022; 10:e4680. [PMID: 36448015 PMCID: PMC9699581 DOI: 10.1097/gox.0000000000004680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 01/25/2023]
Abstract
UNLABELLED Keloids are disfiguring, scar-like lesions that are challenging to treat, with low response rates to current interventions and frequent recurrence. It has been widely reported that keloids are characterized by myofibroblasts, specialized contractile fibroblasts that express alpha-smooth muscle actin (α-SMA). However, evidence supporting a role for myofibroblasts in keloid pathology is inconclusive, with conflicting reports in the literature. This complicates development of more effective therapies, as the benefit of interventions targeting myofibroblasts is unclear. This study was undertaken to determine whether myofibroblasts can be considered characteristic of keloids. METHODS Myofibroblasts in tissue sections from keloids, hypertrophic scars (HTSs), and normal skin were localized by α-SMA immunostaining. Expression of α-SMA mRNA (ACTA2 gene) in normal skin and keloid tissue, and in fibroblasts from normal skin, keloid, and HTSs, was measured using quantitative polymerase chain reaction. RESULTS Normal skin did not exhibit α-SMA-expressing myofibroblasts, but myofibroblasts were identified in 50% of keloids and 60% of HTSs. No significant differences in ACTA2 expression between keloid and normal skin tissue were observed. Mean ACTA2 expression was higher in HTS (2.54-fold, P = 0.005) and keloid fibroblasts (1.75-fold, P = 0.046) versus normal fibroblasts in vitro. However, α-SMA expression in keloids in vivo was not associated with elevated ACTA2 in keloid fibroblasts in vitro. CONCLUSIONS Despite elevated ACTA2 in cultured keloid fibroblasts, myofibroblast presence is not a consistent feature of keloids. Therefore, therapies that target myofibroblasts may not be effective for all keloids. Further research is required to define the mechanisms driving keloid formation for development of more effective therapies.
Collapse
|
10
|
Li Q, Luo F, Jiang P, Feng C, He F, Dong L, Xu D, Shi J. Application of traditional Chinese medicine in film drug delivery system. Front Pharmacol 2022; 13:956264. [DOI: 10.3389/fphar.2022.956264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Film drug delivery systems have the advantages of precise administration, simple process and easy portability, compared with other traditional drug delivery systems such as tablets, capsules, syrups, ointments, etc. The traditional Chinese medicine (TCM) are normally developed in four categories of film agent like patch film, coating, spray film and gel film, which are applied to the treatment of oral ulcers, chronic diseases of lower limbs, burns, scalds, gynecological disease and body care. So the TCM film has great research value and prominent market prospect. In this review, we summarized the research progress of the material composition, pharmaceutical production, clinical application and pharmacology mechanism of various TCM film agents. It may provide a comprehensive reference for further development and utilization of TCM film agents.
Collapse
|
11
|
Cao Y, Yang Y, Feng S, Wan Y. Biomimetic cancer cell-coated albumin nanoparticles for enhanced colloidal stability and homotypic targeting of breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Long non-coding RNA HOXA11-AS contributes to the formation of keloid by relieving the inhibition of miR-182-5p on ZNF217. Burns 2022:S0305-4179(22)00192-9. [DOI: 10.1016/j.burns.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
|
13
|
Ud-Din S, Bayat A. Controlling Inflammation Pre-Emptively or at the Time of Cutaneous Injury Optimises Outcome of Skin Scarring. Front Immunol 2022; 13:883239. [PMID: 35711461 PMCID: PMC9197255 DOI: 10.3389/fimmu.2022.883239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation plays an active role during the wound healing process. There is a direct association between the extent of injury as well as inflammation and the amount of subsequent cutaneous scarring. Evidence to date demonstrates that high levels of inflammation are associated with excessive dermal scarring and formation of abnormal pathological scars such as keloids and hypertrophic scars. In view of the multiple important cell types being involved in the inflammatory process and their influence on the extent of scar formation, many scar therapies should aim to target these cells in order to control inflammation and by association help improve scar outcome. However, most current treatment strategies for the management of a newly formed skin scar often adopt a watch-and-wait approach prior to commencing targeted anti-inflammatory therapy. Moreover, most of these therapies have been evaluated in the remodelling phase of wound healing and the evaluation of anti-inflammatory treatments at earlier stages of healing have not been fully explored and remain limited. Taken together, in order to minimise the risk of developing a poor scar outcome, it is clear that adopting an early intervention prior to skin injury would be optimal, however, the concept of pre-emptively priming the skin prior to injury has not yet been thoroughly evaluated. Therefore, the aim of this review was to evaluate the available literature regarding scar therapies that aim to target inflammation which are commenced prior to when a scar is formed or immediately after injury, with a particular focus on the role of pre-emptive priming of skin prior to injury in order to control inflammation for the prevention of poor scarring outcome.
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, University of Manchester, Manchester, United Kingdom.,Medical Research Council - South Africa (MRC-SA) Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Liu W, Han Y, Xin X, Chen L, Liu Y, Liu C, Zhang X, Jin M, Jin J, Gao Z, Huang W. Biomimetic and temporal-controlled nanocarriers with ileum transporter targeting for achieving oral administration of chemotherapeutic drugs. J Nanobiotechnology 2022; 20:281. [PMID: 35705976 PMCID: PMC9199201 DOI: 10.1186/s12951-022-01460-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oral chemotherapy is preferred for patients with cancer owing to its multiple advantages, including convenience, better patient compliance, and improved safety. Nevertheless, various physical barriers exist in this route that hamper the development of oral chemotherapeutic formulations, including destruction of drugs in the gastrointestinal tract (GIT), low permeability in enterocytes, and short residence time in the intestine. To overcome these limitations, it is necessary to design an efficient oral drug delivery system with high efficacy and improved safety. RESULTS Herein, we designed novel glycocholic acid (GCA)-functionalized double layer nanoparticles (GCA-NPs), which can act via an endogenous pathway and in a temporally controlled manner in the intestine, to enhance the oral bioavailability of hydrophobic chemotherapeutic drugs such as paclitaxel (PTX). GCA-NPs were composed of quercetin (Qu)-modified liposomes (QL) coated with GCA-chitosan oligosaccharide conjugate (GCOS). The GCA-NPs thus prepared showed prolonged intestinal retention time and good GIT stability due to the presence of chitosan oligosaccharide (COS) and enhanced active transportation via intestinal apical sodium-dependent bile acid transporter (ASBT) due to the presence of GCA. GCA-NPs also efficiently inhibited intestinal P-gp induced by Qu. PTX-loaded GCA-NPs (PTX@GCA-NPs) had a particle size of 84 nm and an entrapment efficiency of 98% with good stability. As a result, the oral bioavailability of PTX was increased 19-fold compared to that of oral Taxol® at the same dose. Oral PTX@GCA-NPs displayed superior antitumor efficacy and better safety than Taxol® when administered intravenously. CONCLUSIONS Our novel drug delivery system showed remarkable efficacy in overcoming multiple limitations and is a promising carrier for oral delivery of multiple drugs, which addresses several challenges in oral delivery in the clinical context.
Collapse
Affiliation(s)
- Wei Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Ying Han
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xin Xin
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Liqing Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Yanhong Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Chao Liu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Xintong Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Mingji Jin
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Jingzhe Jin
- Department of Oncology, The First Hospital of Dandong City, Dandong, Liaoning 118000 People’s Republic of China
| | - Zhonggao Gao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| | - Wei Huang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China ,grid.506261.60000 0001 0706 7839Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050 People’s Republic of China
| |
Collapse
|
15
|
Gao H, Hu Z, Zhang X. Circular RNA hsa_circ_0057452 facilitates keloid progression by targeting the microRNA-1225-3p/AF4/FMR2 family member 4 axis. Bioengineered 2022; 13:13815-13828. [PMID: 35706403 PMCID: PMC9275943 DOI: 10.1080/21655979.2022.2084460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circular RNA, hsa_circ_0057452, is highly expressed in keloids, but its specific mechanism of action remains unknown. The levels of hsa_circ_0057452, microRNA (miR)-1225-3p, and AF4/FMR2 family member 4 (AFF4) in keloid tissues and keloid fibroblasts (KFs) were determined using quantitative reverse transcription-polymerase chain reaction. Changes in KFs viability, proliferation, apoptosis, and migration were investigated using the cell counting kit-8, bromodeoxyuridine, flow cytometry, and Transwell assays. Luciferase, RNA immunoprecipitation, and RNA pull-down assays were performed to identify the binding relationship among hsa_circ_0057452, miR-1225-3p, and AFF4. We found that hsa_circ_0057452 and AFF4 expression levels were upregulated, whereas miR-1225-3p expression levels were downregulated in keloids. Knockdown of hsa_circ_0057452 or AFF4 suppressed the viability, proliferation, and migration of KFs and induced apoptosis, whereas hsa_circ_0057452 overexpression and miR-1225-3p knockdown showed the opposite trend. Furthermore, hsa_circ_0057452 affected the biological behavior of KFs by releasing AFF4 via sponging of miR-1225-3p. Therefore, our results show that hsa_circ_0057452 promotes keloid progression by targeting miR-1225-3p and regulating AFF4 levels.
Collapse
Affiliation(s)
- Hu Gao
- Wound Repair & Rehabilitation Centre, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Zhen Hu
- Department of Dermatology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Xiangming Zhang
- Wound Repair & Rehabilitation Centre, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| |
Collapse
|
16
|
Lu J, Yu L, Shi J. Low-dose paclitaxel modulates the cross talk between the JNK and Smad signaling in primary biliary fibroblasts. Rev Assoc Med Bras (1992) 2022; 68:159-164. [PMID: 35239875 DOI: 10.1590/1806-9282.20210777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The objective of this study was to explore the molecular mechanism underlying the occurrence of benign bile duct stricture and the target of low-dose paclitaxel in the prevention of benign bile duct stricture. METHODS Under the stimulation of transforming growth factor beta 1, the expression of collagen type I and connective tissue growth factor were detected on isolated primary fibroblasts. The phosphorylation levels of JNK and Smad2L were detected using Western blot. The effect of low-dose paclitaxel on the transforming growth factor beta 1-induced inhibition of type I collagen and connective tissue growth factor expression and JNK and Smad2L phosphorylation was also observed. RESULTS Transforming growth factor beta 1 induced the secretion of type I collagen and connective tissue growth factor as well as JNK phosphorylation in biliary fibroblasts. The JNK inhibitor or siRNA-Smad2 inhibited the transforming growth factor beta 1-induced secretion of type I collagen and connective tissue growth factor. Low-dose paclitaxel inhibited the expression of type I collagen induced by transforming growth factor beta 1 and may inhibit the secretion of collagen in biliary fibroblasts. CONCLUSION The activation of JNK/Smad2L induced by transforming growth factor beta 1 is involved in the occurrence of benign bile duct stricture that is mediated by the overexpression of type I collagen and connective tissue growth factor, and low-dose paclitaxel may inhibit the phosphorylation of JNK/Smad2L.
Collapse
Affiliation(s)
- Jiamei Lu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Department of Nephrology - Xi'an, China
| | - Liang Yu
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Hepatobiliary Surgery - Xi'an, China
| | - Jianhua Shi
- The First Affiliated Hospital of Xi'an Jiaotong University, Department of Hepatobiliary Surgery - Xi'an, China
| |
Collapse
|
17
|
Xin X, Liu W, Zhang ZA, Han Y, Qi LL, Zhang YY, Zhang XT, Duan HX, Chen LQ, Jin MJ, Wang QM, Gao ZG, Huang W. Efficient Anti-Glioma Therapy Through the Brain-Targeted RVG15-Modified Liposomes Loading Paclitaxel-Cholesterol Complex. Int J Nanomedicine 2021; 16:5755-5776. [PMID: 34471351 PMCID: PMC8403987 DOI: 10.2147/ijn.s318266] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most common primary malignant brain tumor with a dreadful overall survival and high mortality. One of the most difficult challenges in clinical treatment is that most drugs hardly pass through the blood–brain barrier (BBB) and achieve efficient accumulation at tumor sites. Thus, to circumvent this hurdle, developing an effectively traversing BBB drug delivery nanovehicle is of significant clinical importance. Rabies virus glycoprotein (RVG) is a derivative peptide that can specifically bind to nicotinic acetylcholine receptor (nAChR) widely overexpressed on BBB and glioma cells for the invasion of rabies virus into the brain. Inspired by this, RVG has been demonstrated to potentiate drugs across the BBB, promote the permeability, and further enhance drug tumor-specific selectivity and penetration. Methods Here, we used the RVG15, rescreened from the well-known RVG29, to develop a brain-targeted liposome (RVG15-Lipo) for enhanced BBB permeability and tumor-specific delivery of paclitaxel (PTX). The paclitaxel-cholesterol complex (PTX-CHO) was prepared and then actively loaded into liposomes to acquire high entrapment efficiency (EE) and fine stability. Meanwhile, physicochemical properties, in vitro and in vivo delivery efficiency and therapeutic effect were investigated thoroughly. Results The particle size and zeta potential of PTX-CHO-RVG15-Lipo were 128.15 ± 1.63 nm and −15.55 ± 0.78 mV, respectively. Compared with free PTX, PTX-CHO-RVG15-Lipo exhibited excellent targeting efficiency and safety in HBMEC and C6 cells, and better transport efficiency across the BBB in vitro model. Furthermore, PTX-CHO-RVG15-Lipo could noticeably improve the accumulation of PTX in the brain, and then promote the chemotherapeutic drugs penetration in C6luc orthotopic glioma based on in vivo imaging assays. The in vivo antitumor results indicated that PTX-CHO-RVG15-Lipo significantly inhibited glioma growth and metabasis, therefore improved survival rate of tumor-bearing mice with little adverse effect. Conclusion Our study demonstrated that the RVG15 was a promising brain-targeted specific ligands owing to the superior BBB penetration and tumor targeting ability. Based on the outstanding therapeutic effect both in vitro and in vivo, PTX-CHO-RVG15-Lipo was proved to be a potential delivery system for PTX to treat glioma in clinic.
Collapse
Affiliation(s)
- Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhe-Ao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ling-Ling Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ying-Ying Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Xin-Tong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Hong-Xia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Li-Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ming-Ji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhong-Gao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
18
|
Wnt Signaling Pathway Proteins in Scar, Hypertrophic Scar, and Keloid: Evidence for a Continuum? Am J Dermatopathol 2021; 42:842-847. [PMID: 32310858 DOI: 10.1097/dad.0000000000001661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypertrophic scars and keloids are fibroproliferative lesions characterized by excessive collagen deposition. It is unclear whether these entities represent distinct disorders or share a common pathogenesis and the molecular underpinnings of these lesions are poorly understood. Accumulating evidence suggests that the Wnt signaling pathway is a key regulator of wound healing. In this study, tissue microarray was used to evaluate the protein expression profile for Wnt3a, phosphorylated glycogen synthase kinase 3 alpha (pGSK-3α), WNT1-inducible-signaling pathway protein 1 (WISP1), and WISP2 in normal skin, scars, hypertrophic scars, and keloids. Analysis revealed significantly increased fibroblast expression of pGSK-3α in scars (27.2%), hypertrophic scars (30.4%), and keloids (57.3%) compared with normal skin (16.4%) (all differences statistically significant; P < 0.01). Analysis of WISP2 showed 94% of fibroblasts in normal skin expressing WISP2 and significantly decreased expression in scars (46.8%), hypertrophic scars (27.0%), and keloids (61.3%) (all differences statistically significant; P < 0.01). The parallel patterns of expression of pGSK-3α and WISP2 in scars and hypertrophic scars and significantly increased expression in keloids may support the notion that keloids are a truly distinct fibrosing disorder and may provide further evidence for targeting the Wnt signaling pathway in the treatment of keloids.
Collapse
|
19
|
Zhang D, Li B, Zhao M. Therapeutic Strategies by Regulating Interleukin Family to Suppress Inflammation in Hypertrophic Scar and Keloid. Front Pharmacol 2021; 12:667763. [PMID: 33959031 PMCID: PMC8093926 DOI: 10.3389/fphar.2021.667763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction, psychological stress, and patient frustration. The unclear pathogenesis behind HS and keloid is partially responsible for the clinical treatment stagnancy. However, there are now increasing evidences suggesting that inflammation is the initiator of HS and keloid formation. Interleukins are known to participate in inflammatory and immune responses, and play a critical role in wound healing and scar formation. In this review, we summarize the function of related interleukins, and focus on their potentials as the therapeutic target for the treatment of HS and keloid.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Li
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Muxin Zhao
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Peng F, Chen Y, Liu J, Xing Z, Fan J, Zhang W, Qiu F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J Colloid Interface Sci 2021; 591:314-325. [PMID: 33621783 DOI: 10.1016/j.jcis.2021.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Recently, many kinds of gemini-type amphiphilic peptides have been designed and shown their advantage as self-assembling nanomaterials. In this study, we proposed a simple strategy to design gemini surfactant-like peptides, which are only composed of natural amino acids and can be easily obtained by conventional peptide sythnesis. Taking two prolines as the turn-forming units, a peptide named APK was designed. The petide has a linear sequence but naturally takes the conformation like a gemini surfactant. Compared with a single-tailed surfactant-like peptide A6K, APK showed much stronger ability to undergo self-assembly and to encapsulate hydrophobic pyrene. Several hydrophobic drugs including paclitaxel, doxorubicin, etomidate and propofol were encapsulated by APK, and the corresponding formulations showed anti-tumor or anesthetic efficacy comparable to their respective clinical formulations. Furthermore, APK could inhibit the growth of different microorganisms including E. coli, S. aureus and C. albicans. Etomidate and propofol formulations encapsulated by APK also showed strong antimicrobial activity. Taking APK as an example, our study indicated a straightforward strategy to design gemini surfactant-like peptides, which could be potential nanomaterials for exploring hydrophobic drug formulations with efficacy, safety and self-antimicrobial activity.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongzhu Chen
- Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Fan
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Wang ZC, Zhao WY, Cao Y, Liu YQ, Sun Q, Shi P, Cai JQ, Shen XZ, Tan WQ. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol 2020; 11:603187. [PMID: 33343575 PMCID: PMC7746641 DOI: 10.3389/fimmu.2020.603187] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/06/2020] [Indexed: 01/13/2023] Open
Abstract
The underlying mechanisms of wound healing are complex but inflammation is one of the determining factors. Besides its traditional role in combating against infection upon injury, the characteristics and magnitude of inflammation have dramatic impacts on the pathogenesis of scar. Keloids and hypertrophic scars are pathological scars that result from aberrant wound healing. They are characterized by continuous local inflammation and excessive collagen deposition. In this review, we aim at discussing how dysregulated inflammation contributes to the pathogenesis of scar formation. Immune cells, soluble inflammatory mediators, and the related intracellular signal transduction pathways are our three subtopics encompassing the events occurring in inflammation associated with scar formation. In the end, we enumerate the current and potential medicines and therapeutics for suppressing inflammation and limiting progression to scar. Understanding the initiation, progression, and resolution of inflammation will provide insights into the mechanisms of scar formation and is useful for developing effective treatments.
Collapse
Affiliation(s)
- Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Cao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Qi Liu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qihang Sun
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Qin Cai
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Chello C, Nenna A, Chello M, Satriano UM, Cardetta F, Lusini M, Nappi F, Dianzani C. Statin treatment and hypertrophic scarring after cardiac surgery. Wound Repair Regen 2020; 29:129-133. [PMID: 33236817 DOI: 10.1111/wrr.12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
Wound healing process after surgical procedure plays a crucial role to prevent blood loss and infections. Hypertrophic scars might occur after surgery and are generally associated with an inflammatory burden. Cardiac surgery is intrinsically related to a strong systemic inflammatory state that might favor hypertrophic scarring. Besides lipid-lowering effects, statins are known for their pleiotropic and anti-inflammatory activity. The aim of this study was to investigate the impact of statins in the healing process after median sternotomy in patients undergoing cardiac surgery. All patients undergoing major cardiac surgery with median sternotomy and cardiopulmonary bypass, and subsequently evaluated in the outpatient clinic after discharge, were included in this study. A total of 930 Caucasian patients were retrospectively reviewed. At outpatient visit, 276 patients (29.7%) showed the formation of hypertrophic scars. Patients with hypertrophic scars tended to be younger (P = .001) and nonstatin users (P = .001). Logistic regression analysis confirmed the protective role of statins (odds ratio 0.39, 95% confidence interval 0.29-0.53, P = .001), after adjustment for age. A dose-dependent effect was confirmed, showing a more intensive protective effect for higher doses of statins. Statin use might be correlated with reduced hypertrophic scars after cardiac surgery through median sternotomy. A dose-dependent effect has been shown, and statin effect seems to be independent of age in a selected population undergoing surgery with an elevated inflammatory burden. Although further studies are warranted to elucidate the biologic mechanisms, the concept of using statins as anti-scarring agents is novel and should be investigated with tailored studies.
Collapse
Affiliation(s)
- Camilla Chello
- Department of Dermatology, Università La Sapienza di Roma, Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Cardetta
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | - Caterina Dianzani
- Department of Reconstructive Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
23
|
The Efficacy of Cholesterol-Based Carriers in Drug Delivery. Molecules 2020; 25:molecules25184330. [PMID: 32971733 PMCID: PMC7570546 DOI: 10.3390/molecules25184330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Several researchers have reported the use of cholesterol-based carriers in drug delivery. The presence of cholesterol in cell membranes and its wide distribution in the body has led to it being used in preparing carriers for the delivery of a variety of therapeutic agents such as anticancer, antimalarials and antivirals. These cholesterol-based carriers were designed as micelles, nanoparticles, copolymers, liposomes, etc. and their routes of administration include oral, intravenous and transdermal. The biocompatibility, good bioavailability and biological activity of cholesterol-based carriers make them potent prodrugs. Several in vitro and in vivo studies revealed cholesterol-based carriers potentials in delivering bioactive agents. In this manuscript, a critical review of the efficacy of cholesterol-based carriers is reported.
Collapse
|
24
|
Affiliation(s)
- Pengfei Sun
- Department of Plastic Surgery, Zibo Central Hospital, Zibo, China
| | - Zhensheng Hu
- Department of Plastic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Pan
- Department of Plastic Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosheng Lu
- Department of Plastic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|