1
|
Das T, Kumar P, Kumar S, Mal S, Kumar S, Rajana VK, Singh S, Dasgupta A, Mandal D, Das S. Design, Synthesis, and Biological Studies of C-5-Substituted Diazenyl Derivatives of Uracil as Potent and Selective Antileishmanial Agents Targeting Uridine Biosynthesis Pathway Enzymes. ACS Infect Dis 2024. [PMID: 39485929 DOI: 10.1021/acsinfecdis.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we describe the design and synthesis of a series of C-5-substituted diazenyl derivatives of uracil, exhibiting selective and potent antileishmanial but not antibacterial or antifungal activity. The formation of the substituted derivatives was confirmed by using FTIR, 1H, 13C NMR, and HRMS analysis. Among all of the sets of tested compounds, only three [4a, 6b, and 8b] showed the highest activity against Leishmania donovani (LD) promastigote and amastigote models of LD infections. Further, the cytotoxicity assays performed using three different cell lines, Vero cells, J774 cells, and THP1 cells, along with erythrocyte hemolysis assay showed the highest biocompatibility for the 4a, making it a lead compound for further biological assays. The LD cell death associated with 4a was not linked with ergosterol depletion, a common mechanism of action of antileishmanial drugs like amphotericin B (AmB). However, the LD cell death in the presence of 4a was reversed significantly through supplementation of uridine monophosphate (UMP), indicating the specific role of uridine biosynthesis pathway as the target of 4a. Furthermore, the in silico studies predicted orotidine monophosphate decarboxylase enzyme (OMPDCase) from LD as the plausible target for 4a. The proteomics analysis showed stronger downregulation of the aforementioned OMPDCase and also for a few other enzymes that are involved in the UMP biosynthesis pathway. This indicates that OMPDCase and other enzymes that regulate the UMP biosynthesis may be the target of 4a. Overall, the C-5-substituted diazenyl derivatives of uracil are presented here as novel and potent antileishmanial agents that can be used for treating visceral leishmaniasis (VL) wherein at present drug resistance and side effects of existing drugs demand a look for safer alternatives.
Collapse
Affiliation(s)
- Tushar Das
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Sachin Kumar
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| | - Susital Mal
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector-10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Road, Sector-10, Jankipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India
| | - Subrata Das
- Applied Chemistry Laboratory, Department of Chemistry, National Institute of Technology Patna, Ashok Rajpath 800005, Bihar, India
| |
Collapse
|
2
|
Sharma K, Shah J, Singh S, Sengupta S. Development of Amphotericin B Decorated Gold Nanoparticles as a Promising Antileishmanial Nanoconjugate. ACS APPLIED BIO MATERIALS 2024; 7:6239-6248. [PMID: 39155492 DOI: 10.1021/acsabm.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Leishmaniasis, attributed to the protozoan parasite Leishmania, manifests in diverse clinical forms, including cutaneous, mucocutaneous, and visceral leishmaniasis; VL constitutes a significant global health menace. Prevalent in tropical and subtropical regions, this affliction disproportionately impacts individuals below the poverty threshold, transmitted through the bite of female sandflies. Existing treatments, such as pentavalent antimony, miltefosine, and Amphotericin B, exhibit limitations. Despite the emergence of liposomal Amphotericin B (AmBisome) as a promising antileishmanial agent, its utility is impeded by adverse effects, elevated production expenses, and cytotoxicity. To address these challenges, our investigation introduces a potential remedy─a citrate-coated gold Amphotericin B nanoparticle formulation. Characterized using dynamic light scattering and transmission electron microscopy, this pioneering formulation exhibited efficacy against L. donovani Ag83 promastigotes as demonstrated by MTT cell viability testing. Evaluating internal reactive oxygen species (ROS) levels and dual staining with acridine orange and ethidium bromide unveiled its consequential impact on cell death. Significantly, our study discloses this novel nanoformulation's unprecedented inhibition of the trypanothione reductase enzyme. The findings posit the citrate-coated gold Amphotericin B nanoformulation as a promising and targeted antileishmanial agent, representing potential advancements in leishmaniasis therapeutics.
Collapse
Affiliation(s)
- Kikku Sharma
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Juhi Shah
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad - 500032, Telangana, India
| | - Souvik Sengupta
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
3
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
4
|
Zadeh Mehrizi T, Mosaffa N, Vodjgani M, Ebrahimi Shahmabadi H. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): a systematic review. Nanotoxicology 2024; 18:231-258. [PMID: 38646931 DOI: 10.1080/17435390.2024.2340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Amphotericin B (AmB) is a broad-spectrum therapeutic and effective drug, but it has serious side effects of toxicity and solubility. Therefore, reducing its toxicity should be considered in therapeutic applications. Nanotechnology has paved the way to improve drug delivery systems and reduce toxicity. The present study, for the first time, comprehensively reviews the studies from 2011 to 2023 on reducing the in vitro toxicity of AmB. The findings showed that loading AmB with micellar structures, nanostructured lipid carriers, liposomes, emulsions, poly lactide-co-glycolide acid, chitosan, dendrimers, and other polymeric nanoparticles increases the biocompatibility and efficacy of the drug and significantly reduces toxicity. In addition, modified carbon nanoparticles (including graphene, carbon nanotubes, and carbon dots) with positively charged amine groups, PEI, and other components showed favorable drug delivery properties. Uncoated and coated magnetic nanoparticles and silver NPs-AmB composites had less cytotoxicity and more antifungal activity than free AmB. Citrate-reduced GNPs and lipoic acid-functionalized GNPs were also effective nanocarriers to reduce AmB cytotoxicity and improve anti-leishmania efficacy. In addition, zinc oxide-NPs and PEGylated zinc oxide-NPs showed favorable antifungal activity and negligible toxicity. According to a review study, carbon-based nanoparticles, metal nanoparticles, and especially polymer nanoparticles caused some reduction in the toxicity and improved solubility of AmB in water. Overall, considering the discussed nanocarriers, further research on the application of nanotechnology as a cost-effective candidate to improve the efficiency and reduce the cytotoxicity of AmB is recommended.
Collapse
Affiliation(s)
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
6
|
Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opin Drug Deliv 2024; 21:187-210. [PMID: 38243810 DOI: 10.1080/17425247.2024.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Amphotericin B (AmB), a promising antifungal and antileishmanial drug, acts on the membrane of microorganisms. The clinical use of AmB is limited due to issues associated with its delivery including poor solubility and bioavailability, instability in acidic media, poor intestinal permeability, dose and aggregation state dependent toxicity, parenteral administration, and requirement of cold chain for transport and storage, etc. AREAS COVERED Scientists have formulated and explored various covalent conjugates of AmB to reduce its toxicity with increase in solubility, oral bioavailability, and payload or loading of AmB by using various polymers, lipids, carbon-based nanocarriers, metallic nanoparticles, and vesicular carriers, etc. In this article, we have reviewed various conjugates of AmB with polymers and nanomaterials explored for its delivery to give a deep insight regarding further exploration in future. EXPERT OPINION Covalent conjugates of AmB have been investigated by scientists, and preliminary in vitro and animal investigations have given successful results, which are required to be validated further with systematic investigation on safety and therapeutic efficacy in animals followed by clinical trials.
Collapse
Affiliation(s)
- Vineet Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
7
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
8
|
Das T, Das S, Kumar P, C A B, Mandal D. Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies. NANOSCALE 2023; 15:17861-17878. [PMID: 37885430 DOI: 10.1039/d3nr04259f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with εmax ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The Km for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD (Kd of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| |
Collapse
|
9
|
Boudier A, Mammari N, Lamouroux E, Duval RE. Inorganic Nanoparticles: Tools to Emphasize the Janus Face of Amphotericin B. Antibiotics (Basel) 2023; 12:1543. [PMID: 37887244 PMCID: PMC10604816 DOI: 10.3390/antibiotics12101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Amphotericin B is the oldest antifungal molecule which is still currently widely used in clinical practice, in particular for the treatment of invasive diseases, even though it is not devoid of side effects (particularly nephrotoxicity). Recently, its redox properties (i.e., both prooxidant and antioxidant) have been highlighted in the literature as mechanisms involved in both its activity and its toxicity. Interestingly, similar properties can be described for inorganic nanoparticles. In the first part of the present review, the redox properties of Amphotericin B and inorganic nanoparticles are discussed. Then, in the second part, inorganic nanoparticles as carriers of the drug are described. A special emphasis is given to their combined redox properties acting either as a prooxidant or as an antioxidant and their connection to the activity against pathogens (i.e., fungi, parasites, and yeasts) and to their toxicity. In a majority of the published studies, inorganic nanoparticles carrying Amphotericin B are described as having a synergistic activity directly related to the rupture of the redox homeostasis of the pathogen. Due to the unique properties of inorganic nanoparticles (e.g., magnetism, intrinsic anti-infectious properties, stimuli-triggered responses, etc.), these nanomaterials may represent a new generation of medicine that can synergistically enhance the antimicrobial properties of Amphotericin B.
Collapse
Affiliation(s)
| | - Nour Mammari
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
| | - Emmanuel Lamouroux
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
- ABC Platform, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
10
|
Hassan A, Saritha C, Rajana VK, Mandal D, Das N. Rationally Designed Ionic Covalent Organic Networks (iCONs) with Efficient Antimicrobial Activities. ACS Macro Lett 2023; 12:376-381. [PMID: 36848661 DOI: 10.1021/acsmacrolett.2c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Two unique ionic covalent organic networks (iCONs) incorporated with guanidinium motifs were obtained and characterized by various techniques. Upon 8 h of treatment with iCON-HCCP (250 μg/mL), >97% killing of Staphylococcus aureus, Candida albicans, and Candida glabrata strains was observed. Antimicrobial efficacies against bacteria and fungi were also evident from FE-SEM studies. High antifungal efficacies also correlated well with >60% reduction of ergosterol content, high lipid peroxidation, and membrane damage leading to necrosis.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801106 Bihar, India
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Vinod K Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, 801106 Bihar, India
| |
Collapse
|
11
|
Registre C, Soares RDOA, Rubio KTS, Santos ODH, Carneiro SP. A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infect Dis 2023; 9:423-449. [PMID: 36795604 DOI: 10.1021/acsinfecdis.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Leishmaniasis is an infectious disease responsible for a huge rate of morbidity and mortality in humans. Chemotherapy consists of the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, these drugs are associated with some drawbacks such as high toxicity, administration by parenteral route, and most seriously the resistance of some strains of the parasite to them. Several strategies have been used to increase the therapeutic index and reduce the toxic effects of these drugs. Among them, the use of nanosystems that have great potential as a site-specific drug delivery system stands out. This review aims to compile results from studies that were carried out using first- and second-line antileishmanial drug-carrying nanosystems. The articles referred to here were published between 2011 and 2021. This study shows the promise of effective applicability of drug-carrying nanosystems in the field of antileishmanial therapeutics, with the perspective of providing better patient adherence to treatment, increased therapeutic efficacy, reduced toxicity of conventional drugs, as well as the potential to efficiently improve the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Rodrigo D O A Soares
- Immunopathology Laboratory, Research Center in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina T S Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Orlando D H Santos
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| |
Collapse
|
12
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
13
|
Jamal F, Altaf I, Ahmed G, Asad S, Ahmad H, Zia Q, Azhar A, Farheen S, Shafi T, Karim S, Zubair S, Owais M. Amphotericin B Nano-Assemblies Circumvent Intrinsic Toxicity and Ensure Superior Protection in Experimental Visceral Leishmaniasis with Feeble Toxic Manifestation. Vaccines (Basel) 2023; 11:vaccines11010100. [PMID: 36679946 PMCID: PMC9866558 DOI: 10.3390/vaccines11010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In spite of its high effectiveness in the treatment of both leishmaniasis as well as a range of fungal infections, the free form of the polyene antibiotic amphotericin B (AmB) does not entertain the status of the most preferred drug of choice in clinical settings. The high intrinsic toxicity of the principal drug could be considered the main impedance in the frequent medicinal use of this otherwise very effective antimicrobial agent. Taking into consideration this fact, the pharma industry has introduced many novel dosage forms of AmB to alleviate its toxicity issues. However, the limited production, high cost, requirement for a strict cold chain, and need for parenteral administration are some of the limitations that explicitly compel professionals to look for the development of an alternate dosage form of this important drug. Considering the fact that the nano-size dimensions of drug formulation play an important role in increasing the efficacy of the core drug, we employed a green method for the development of nano-assemblies of AmB (AmB-NA). The as-synthesized AmB-NA manifests desirable pharmacokinetics in the treated animals. The possible mechanistic insight suggested that as-synthesized AmB-NA induces necrosis-mediated cell death and severe mitochondrial dysfunction in L. donovani promastigotes by triggering depolarization of mitochondrial membrane potential. In vivo studies demonstrate a noticeable decline in parasite burden in the spleen, liver, and bone marrow of the experimental BALB/c mice host. In addition to successfully suppressing the Leishmania donovani, the as-formed AmB-NA formulation also modulates the host immune system with predominant Th1 polarization, a key immune defender that facilitates the killing of the intracellular parasite.
Collapse
Affiliation(s)
- Fauzia Jamal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ishrat Altaf
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ghufran Ahmed
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sheikh Asad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Hira Ahmad
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Qamar Zia
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Azhar
- Neat Meatt Biotech Private Limited, Bio-NEST-UDSC, University of Delhi (South Campus), New Delhi 110021, India
| | - Saba Farheen
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Taj Shafi
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Shabana Karim
- Department of Botany, Anugrah Narayan College, Patliputra University, Patna 800013, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
- Correspondence:
| |
Collapse
|
14
|
Kumar P, Kumar P, Singh N, Khajuria S, Patel R, Rajana VK, Mandal D, Velayutham R. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review. Front Bioeng Biotechnol 2022; 10:1016925. [PMID: 36588956 PMCID: PMC9794769 DOI: 10.3389/fbioe.2022.1016925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most lethal of all leishmaniasis diseasesand the second most common parasiticdisease after malaria and,still, categorized as a neglected tropical disease (NTD). According to the latest WHO study, >20 Leishmania species spread 0.7-1.0 million new cases of leishmaniasis each year. VL is caused by the genus, Leishmania donovani (LD), which affects between 50,000 and 90,000 people worldwide each year. Lack of new drug development, increasing drug resistance, toxicity and high cost even with the first line of treatmentof Amphotericin B (AmB), demands new formulation for treatment of VLFurther the lack of a vaccine, allowedthe researchers to develop nanofomulation-based AmB for improved delivery. The limitation of AmB is its kidney and liver toxicity which forced the development of costly liposomal AmB (AmBisome) nanoformulation. Success of AmBisome have inspired and attracted a wide range of AmB nanoformulations ranging from polymeric, solid lipid, liposomal/micellar, metallic, macrophage receptor-targetednanoparticles (NP) and even with sophisticated carbon/quantum dot-based AmBnano delivery systems. Notably, NP-based AmB delivery has shown increased efficacy due to increased uptake, on-target delivery and synergistic impact of NP and AmB. In this review, we have discussed the different forms of leishmaniasis disease and their current treatment options with limitations. The discovery, mechanism of action of AmB, clinical status of AmB and improvement with AmBisome over fungizone (AmB-deoxycholate)for VL treatment was further discussed. At last, the development of various AmB nanoformulation was discussed along with its adavantages over traditional chemotherapy-based delivery.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Nidhi Singh
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Rahul Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India,National Institute of Pharmaceutical Education and Research, Kolkata, India,*Correspondence: Ravichandiran Velayutham, ; Debabrata Mandal,
| |
Collapse
|
15
|
Sunoqrot S, Al-Bakri AG, Ibrahim LH, Aldaken N. Amphotericin B-Loaded Plant-Inspired Polyphenol Nanoparticles Enhance Its Antifungal Activity and Biocompatibility. ACS APPLIED BIO MATERIALS 2022; 5:5156-5164. [PMID: 36241585 DOI: 10.1021/acsabm.2c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Amphotericin B (AmB) is one of the first-line treatments for systemic fungal infections, yet it suffers from dose-limiting systemic toxicity and high cost of less toxic lipid-based formulations. Here, we report on a facile approach to synthesize an AmB-loaded nanomedicine by leveraging plant-inspired oxidative self-polymerization of the ubiquitous polyphenol quercetin (QCT). Polymerized QCT nanoparticles (pQCT NPs) were formed, loaded with AmB, and functionalized with poly(ethylene glycol) (PEG) to impart steric stability in a simple procedure that relied on mixing followed by dialysis. The AmB-loaded NPs (AmB@pQCT-PEG NPs) were characterized by a drug loading efficiency of more than 90%, a particle size of around 160 nm, a polydispersity index of 0.07, and a partially negative surface charge. AmB release from the NPs was sustained over several days and followed the Korsmeyer-Peppas model with a release exponent (n) value >0.85, denoting drug release by polymer relaxation and swelling. A hemolysis assay revealed the NPs to be highly biocompatible, with negligible hemolytic activity and 30-60% hemolysis after 1 and 24 h of incubation with erythrocytes, respectively, across a wide concentration range (6.25-100.00 μg/mL). Conversely, equivalent concentrations of free AmB caused 90-100% hemolysis within the same timeframe. Importantly, AmB@pQCT-PEG NPs outperformed free AmB in microbial susceptibility assays on Candida albicans, achieving a minimum inhibitory concentration of 62.5 ng/mL after 48 h of incubation, which was 2-fold lower than the free drug. Our results demonstrate that pQCT NPs may serve as a viable AmB delivery platform for the treatment of fungal infections and potentially other AmB-susceptible pathogens.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman11733, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman11942, Jordan
| | - Lina Hasan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman11733, Jordan
| | - Neda'a Aldaken
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman11942, Jordan
| |
Collapse
|
16
|
Nayak S, Kumar P, Shankar R, Mukhopadhyay AK, Mandal D, Das P. Biomass derived self-assembled DNA-dot hydrogels for enhanced bacterial annihilation. NANOSCALE 2022; 14:16097-16109. [PMID: 36226636 DOI: 10.1039/d2nr03810b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanotization of biomass for interesting biomedical applications is still in the nascent stage with no visible market available products. While products derived from biomass DNA and protein have unquestionable biocompatibility, induction of desired properties needs careful manipulation of the biomolecules. Herein, for the first time, we report the transformation of onion derived biomass DNA into DNA-dots through its partial hydrothermal pyrolysis to induce improved mechanical and photophysical properties. The DNA-dots were further used as crosslinkers to create a hydrogel through hybridization-mediated self-assembly with untransformed genomic DNA. The DNA dot-DNA hydrogel sustainably delivers the ciprofloxacin antibiotic as well as produces on-demand reactive oxygen species (ROS) with visible light irradiation. This prompted us to explore the hydrogel as a topical formulation for combination antibiotic Antibacterial-Photodynamic Therapy (APDT) applications. Remarkable annihilation of E. coli and S. aureus, and most importantly two drug-resistant strains of E. coli, shows the success of our sustainable approach.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Patna-801103, Bihar, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur-844102, Bihar, India
| | - Ravi Shankar
- Department of Chemistry, Indian Institute of Technology Patna, Patna-801103, Bihar, India.
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur-844102, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna-801103, Bihar, India.
| |
Collapse
|
17
|
Prasad SR, Kumar P, Mandal S, Mohan A, Chaurasia R, Shrivastava A, Nikhil P, Aishwarya D, Ramalingam P, Gajbhiye R, Singh S, Dasgupta A, Chourasia M, Ravichandiran V, Das P, Mandal D. Mechanistic insight into the role of mevalonate kinase by a natural fatty acid-mediated killing of Leishmania donovani. Sci Rep 2022; 12:16453. [PMID: 36180490 PMCID: PMC9525708 DOI: 10.1038/s41598-022-20509-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
We evaluated the anti-leishmanial efficacy of different saturated medium-chain fatty acids (FAs, C8–C18) where FA containing C8 chain, caprylic acid (CA), was found to be most potent against Leishmania donovani, the causative agent for visceral leishmaniasis (VL). Different analogs of CA with C8 linear chain, but not higher, along with a carboxyl/ester group showed a similar anti-leishmanial effect. Ergosterol depletion was the major cause of CA-mediated cell death. Molecular docking and molecular dynamic simulation studies indicated the enzyme mevalonate kinase (MevK) of the ergosterol biosynthesis pathway as a possible target of CA. Enzyme assays with purified recombinant MevK and CA/CA analogs confirmed the target with a competitive inhibition pattern. Using biochemical and biophysical studies; strong binding interaction between MevK and CA/CA analogs was established. Further, using parasites with overexpressed MevK and proteomics studies of CA-treated parasites the direct role of MevK as the target was validated. We established the mechanism of the antileishmanial effect of CA, a natural product, against VL where toxicity and drug resistance with current chemotherapeutics demand an alternative. This is the first report on the identification of an enzymatic target with kinetic parameters and mechanistic insights against any organism for a natural medium-chain FA.
Collapse
Affiliation(s)
- Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna Bihta, Bihar, 801106, India
| | - Anu Mohan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Radhika Chaurasia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, 201314, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - P Ramalingam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Rahul Gajbhiye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Rd, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Rd, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Chourasia
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201301, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India.,National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna Bihta, Bihar, 801106, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India.
| |
Collapse
|
18
|
Orally Administered Amphotericin B Nanoformulations: Physical Properties of Nanoparticle Carriers on Bioavailability and Clinical Relevance. Pharmaceutics 2022; 14:pharmaceutics14091823. [PMID: 36145572 PMCID: PMC9505005 DOI: 10.3390/pharmaceutics14091823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Amphotericin B is an effective polyene antifungal considered as a “gold standard” in the management of fungal infections. Currently, it is administered mainly by IV due to poor aqueous solubility, which precludes its delivery orally. Paradoxically, IV administration is akin to side effects that have not been fully eliminated even with more recent IV formulations. Thus, the need for alternative formulations/route of administration for amphotericin B remains crucial. The oral route offers the possibility of delivering amphotericin B systemically and with diminished side effects; however, enterocyte permeation remains a constraint. Cellular phagocytosis of submicron particles can be used to courier encapsulated drugs. In this regard, nanoparticulate delivery systems have received much attention in the past decade. This review examines the trajectory of orally delivered amphotericin B and discusses key physical factors of nanoformulations that impact bioavailability. The review also explores obstacles that remain and gives a window into the possibility of realizing an oral nanoformulation of amphotericin B in the near future.
Collapse
|
19
|
Das SS, Dubey AK, Verma PRP, Singh SK, Singh SK. Therapeutic Potential of Quercetin-Loaded Nanoemulsion against Experimental Visceral Leishmaniasis: In Vitro/ Ex Vivo Studies and Mechanistic Insights. Mol Pharm 2022; 19:3367-3384. [PMID: 35980291 DOI: 10.1021/acs.molpharmaceut.2c00492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis (VL) is one of the most fatal and neglected tropical diseases caused by Leishmania donovani (L. donovani). The applications of currently available chemotherapy (amphotericin B, miltefosine, and others) in VL treatment have been limited due to their poor bioavailability, unfavorable toxicity profile, and prolonged parenteral dosing. Quercetin (QT), a potent natural antioxidant, is a prominent target when conducting investigations on alternative therapies against L. donovani infections. However, the therapeutic applications of QT have been restricted due to its low solubility and bioavailability. In the present study, we developed and evaluated the antileishmanial activity (ALA) of quercetin-loaded nanoemulsion (QTNE) against L. donovani clinical strains. In vitro anti-promastigote assay results demonstrated that QTNE (IC50 6.6 μM, 48 h) significantly inhibited the growth of parasites more efficiently than the pure QT suspension in a dose- and time-dependent manner. Results of the anti-amastigote assay revealed that the infected macrophages (%) of QTNE were significantly more than those of the pure QT suspension at all concentrations (6.6, 26.4, and 52.8 μM; p < 0.05, p < 0.01 compared to the control). Moreover, the results of in vitro and ex vivo studies assisted in determining the mechanistic insights associated with the ALA of QTNE. The overall findings suggested that QTNE exhibited potential ALA by enhancing the intracellular ROS and nitric oxide levels, inducing distortion of membrane integrity and phosphatidylserine release (AV/PI), rupturing the parasite DNA (late apoptosis/necrosis process), and upregulating the immunomodulatory effects (IFN-γ and IL-10 levels). Additionally, QTNE showed superior biocompatibility against all of the treated healthy cells (PBMCs, PECs, and BMCs) as compared to the control. In conclusion, QTNE acts as a potential antileishmanial agent targeting both promastigote and intracellular amastigote forms of L. donovani, which thus opens a new avenue for the use of QTNE in VL therapy.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Amit Kumar Dubey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Vaishali 844102, Bihar, India.,Parasite Immunology Lab, Division of Microbiology, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna 800007, Bihar, India
| | - Priya Ranjan Prasad Verma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Shubhankar Kumar Singh
- Parasite Immunology Lab, Division of Microbiology, Indian Council of Medical Research (ICMR)-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna 800007, Bihar, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
20
|
Assolini JP, Carloto ACM, Bortoleti BTDS, Gonçalves MD, Tomiotto Pellissier F, Feuser PE, Cordeiro AP, Hermes de Araújo PH, Sayer C, Miranda Sapla MM, Pavanelli WR. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. Eur J Pharmacol 2022; 923:174934. [PMID: 35367420 DOI: 10.1016/j.ejphar.2022.174934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.
Collapse
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Universidade Alto Vale do Rio Peixe, Caçador, SC, Brazil.
| | | | | | | | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil.
| |
Collapse
|
21
|
Chen H, Wang W, Yu S, Wang H, Tian Z, Zhu S. Procyanidins and Their Therapeutic Potential against Oral Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092932. [PMID: 35566283 PMCID: PMC9104295 DOI: 10.3390/molecules27092932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Procyanidins, as a kind of dietary flavonoid, have excellent pharmacological properties, such as antioxidant, antibacterial, anti-inflammatory and anti-tumor properties, and so they can be used to treat various diseases, including Alzheimer’s disease, diabetes, rheumatoid arthritis, tumors, and obesity. Given the low bioavailability of procyanidins, great efforts have been made in drug delivery systems to address their limited use. Nowadays, the heavy burden of oral diseases such as dental caries, periodontitis, endodontic infections, etc., and their consequences on the patients’ quality of life indicate a strong need for developing effective therapies. Recent years, plenty of efforts are being made to develop more effective treatments. Therefore, this review summarized the latest researches on versatile effects and enhanced bioavailability of procyanidins resulting from innovative drug delivery systems, particularly focused on its potential against oral diseases.
Collapse
Affiliation(s)
- Huan Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shiyang Yu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Huimin Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Zilu Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
| | - Song Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130012, China; (H.C.); (S.Y.); (H.W.); (Z.T.)
- Correspondence: ; Tel.: +86-135-7878-5725
| |
Collapse
|
22
|
Raj S, Sasidharan S, Tripathi T, Saudagar P. Biofunctionalized Chrysin-conjugated gold nanoparticles neutralize Leishmania parasites with high efficacy. Int J Biol Macromol 2022; 205:211-219. [PMID: 35183598 DOI: 10.1016/j.ijbiomac.2022.02.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Current treatments for leishmaniasis involve various drugs, including miltefosine and amphotericin B, which are associated with several side effects and high costs. Long-term use of these drugs may lead to the development of resistance, thereby reducing their efficiency. Chrysin (CHY) is a well-known, non-toxic flavonoid with antioxidant, antiviral, anti-inflammatory, anti-cancer, hepatoprotective, and neuroprotective properties. Recently we have shown that CHY targets the MAP kinase 3 enzyme of Leishmania and neutralizes the parasite rapidly. However, CHY is associated with low bioavailability, poor absorption, and rapid excretion issues, limiting its usage. In this study, we developed and tested a novel CHY-gold nanoformulation with improved efficacy against the parasites. The reducing power of CHY was utilized to reduce and conjugate with gold nanoparticles. Gold nanoparticles, which are already known for their anti-leishmanial properties, along with conjugated CHY, exhibited a decreased parasite burden in mammalian macrophages. Our findings showed that this biofunctionalized nanoformulation could be used as a potential therapeutic tool against leishmaniasis.
Collapse
Affiliation(s)
- Shweta Raj
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal 506004, India.
| |
Collapse
|
23
|
Gouveia ALA, Santos FAB, Alves LC, Cruz-Filho IJ, Silva PR, Jacob ITT, Soares JCS, Santos DKDN, Souza TRCL, Oliveira JF, Lima MDCA. Thiazolidine derivatives: In vitro toxicity assessment against promastigote and amastigote forms of Leishmania infantum and ultrastructural study. Exp Parasitol 2022; 236-237:108253. [PMID: 35381223 DOI: 10.1016/j.exppara.2022.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Neglected diseases, such as Leishmaniasis, constitute a group of communicable diseases that occur mainly in tropical countries. Considered a public health problem with limited treatment. Therefore, there is a need for new therapies. In this sense, our proposal was to evaluate in vitro two series of thiazolidine compounds (7a-7e and 8a-8e) against Leishmania infantum. We performed in vitro evaluations through macrophage cytotoxicity assays (J774) and nitric oxide production, activity against promastigotes and amastigotes, as well as ultrastructural analyzes in promastigotes. In the evaluation of cytotoxicity, the thiazolidine compounds presented CC50 values between 8.52 and 126.83 μM. Regarding the evaluation against the promastigote forms, the IC50 values ranged between 0.42 and 142.43 μM. Compound 7a was the most promising, as it had the lowest IC50. The parasites treated with compound 7a showed several changes, such as cell body shrinkage, shortening and loss of the flagellum, intense mitochondrial edema and cytoplasmic vacuolization, leading the parasite to cell inviability. In assays against the amastigote forms, the compound showed a low IC50 (0.65 μM). These results indicate that compound 7a was efficient for both evolutionary forms of the parasite. In silico studies suggest that the compound has good oral bioavailability. These results show that compound 7a is a potential drug candidate for the treatment of Leishmaniasis.
Collapse
Affiliation(s)
- Allana L A Gouveia
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Fábio A B Santos
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Luiz C Alves
- Aggeu Magalhães Institut. Oswaldo Cruz Foundation (IAM-FIOCRUZ), 50670-420, Recife, PE, Brazil
| | - Iranildo José Cruz-Filho
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Paula R Silva
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Iris T T Jacob
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - José Cleberson S Soares
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Dayane K D N Santos
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil
| | - Tulio Ricardo C L Souza
- Rural University of Pernambuco, Academic Unit of Belo Jardim, 55156-580, Belo Jardim, PE, Brazil
| | - Jamerson F Oliveira
- University for the International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-970, Redenção, CE, Brazil
| | - Maria do Carmo A Lima
- Federal University of Pernambuco, Department of Antibiotics, Center for Biosciences, 50.670-420, Recife, PE, Brazil.
| |
Collapse
|
24
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
25
|
Want MY, Yadav P, Khan R, Chouhan G, Islamuddin M, Aloyouni SY, Chattopadhyay AP, AlOmar SY, Afrin F. Critical Antileishmanial in vitro Effects of Highly Examined Gold Nanoparticles. Int J Nanomedicine 2021; 16:7285-7295. [PMID: 34737566 PMCID: PMC8560327 DOI: 10.2147/ijn.s268548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The current therapeutic armory for visceral leishmaniasis (VL) caused by Leishmania donovani complex is inadequate, coupled with serious limitations. Combination therapy has proved ineffective due to mounting resistance; however, the search for safe and effective drugs is desirable, in the absence of any vaccine. There is a growing interest in the application of nanoparticles for the therapeutic effectiveness of leishmaniasis. Aimed in this direction, we assessed the antileishmanial effect of gold nanoparticles (GNP) against L. donovani in vitro. Methods GNP were synthesized and characterized for particle size by dynamic light scattering (DLS) and atomic force microscopy (AFM) and for optical properties by UV-visible spectroscopy. Cytotoxicity of GNP was measured by the MTT proliferation assay. The antileishmanial activity of the nanoparticles was evaluated against L. donovani promastigotes and macrophage-infected amastigotes in vitro. Results GNP showed a strong SPR peak at 520 nm and mean particle size, polydispersity index (PDI), and zeta potential of 56.0 ± 10 nm, 0.3 ± 0.1 and −27.0 ± 3 mV, respectively. The GNPs were smooth and spherical with a mean particle diameter of 20 ± 5 nm. Nanoparticles [1.2–100 µM] did not reveal any cytotoxicity on RAW 264.7 murine macrophage cell line, but exerted significant activity against both promastigotes and amastigote stages of L. donovani with 50% inhibitory concentrations (IC50) of 18.4 ± 0.4 µM and 5.0 ± 0.3 µM, respectively. GNP showed significant antileishmanial activity with deformed morphology of parasites and the least number of surviving promastigotes after growth reversibility analysis. Conclusion GNP may provide a platform to conjugate antileishmanial drugs onto the surface of nanoparticles to enhance their therapeutic effectiveness against VL. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.
Collapse
Affiliation(s)
- Muzamil Yaqub Want
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Priya Yadav
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rakin Khan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Garima Chouhan
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Molecular Virology and Vaccinology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | | | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Farhat Afrin
- Parasite Immunology Laboratory, Department of Biotechnology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, 41477, Saudi Arabia
| |
Collapse
|
26
|
Kumari D, Perveen S, Sharma R, Singh K. Advancement in leishmaniasis diagnosis and therapeutics: An update. Eur J Pharmacol 2021; 910:174436. [PMID: 34428435 DOI: 10.1016/j.ejphar.2021.174436] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is regarded as a neglected tropical disease by World Health Organization (WHO) and is ranked next to malaria as the deadliest protozoan disease. The primary causative agents of the disease comprise of diverse leishmanial species sharing clinical features ranging from skin abrasions to lethal infection in the visceral organs. As several Leishmania species are involved in infection, the role of accurate diagnosis becomes pivotal in adding new dimensions to anti-leishmanial therapy. Diagnostic methods must be fast, reliable, easy to perform, highly sensitive, and specific to differentiate among similar parasitic diseases. Herein, we present the conventional and recent approaches impended for the disease diagnosis and their sensitivity, specificity, and clinical application in parasite detection. Furthermore, we have also elaborated various new methods to cure leishmaniasis, which include host-directed therapies, drug repurposing, nanotechnology, and combinational therapy. This review addresses novel techniques and innovations in leishmaniasis, which can aid in unraveling new strategies to fight against the deadly infection.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
27
|
Prasanna P, Kumar P, Mandal S, Payal T, Kumar S, Hossain SU, Das P, Ravichandiran V, Mandal D. 7,8-dihydroxyflavone-functionalized gold nanoparticles target the arginase enzyme of Leishmania donovani. Nanomedicine (Lond) 2021; 16:1887-1903. [PMID: 34397295 DOI: 10.2217/nnm-2021-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To analyze the efficacy and possible mechanism of action of 7,8-dihydroxyflavone (DHF) and DHF synthesized gold nanoparticles (GNPs) against the parasite Leishmania donovani. Methods: GNPs were synthesized using DHF and characterized by dynamic light scattering, ζ potential, Fourier transform infrared spectroscopy, transmission electron microscopy and x-ray diffraction. The efficacy of DHF and DHF-GNP were tested against sensitive and drug-resistant parasites. GNP uptake was measured on macrophages by atomic absorption spectroscopy. Results: DHF and DHF-GNP (∼35 nm) were equally effective against sensitive and drug-resistant strains and inhibited the arginase activity of parasites. Increased IFN-γ and reduced IL-12 cytokine response showed a Th1/Th2-mediated cell death in macrophages. Conclusion: The low cytotoxicity and high biological activity of DHF-GNP may be useful for chemotherapy of leishmaniasis.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - Tanvi Payal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,Cognizant Technology Solution, Hyderabad, 800051, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sk Ugir Hossain
- Department of Clinical and Translational Medicine, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna, 801106, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India.,National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, 700054, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| |
Collapse
|
28
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
29
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
30
|
Jafari M, Abolmaali SS, Tamaddon AM, Zomorodian K, Sarkari BS. Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine (Lond) 2021; 16:857-877. [PMID: 33890492 DOI: 10.2217/nnm-2020-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amphotericin B (AMB), with widespread antifungal and anti-parasitic activities and low cross-resistance with other drugs, has long been identified as a potent antimicrobial drug. However, its clinical toxicities, especially nephrotoxicity, have limited its use in clinical practice. Lately, nano-based systems have been the subject of serious research and becoming an effective strategy to improve toxicity and antimicrobial potency. Commercial AMB lipid formulations have been developed in order to improve the therapeutic index and nephrotoxicity, while limited use is mainly due to their high cost. The review aimed to highlight the updated information on nanotechnology-based approaches to the development of AMB delivery and targeting systems for treatment of fungal diseases and leishmaniasis, regarding therapeutic challenges and achievements of various delivery systems.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz PO Box 71345-1583, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| | - Bahador Shahriarirad Sarkari
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran.,Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, PO Box 7134845794, Iran
| |
Collapse
|
31
|
Matha K, Calvignac B, Gangneux JP, Benoit JP. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin Drug Deliv 2020; 18:471-487. [PMID: 33217254 DOI: 10.1080/17425247.2021.1853701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Although life-threatening if left untreated, visceral leishmaniasis (VL) is still a neglected endemic disease in 98 countries worldwide. The number of drugs available is low and few are in clinical trials. In the last decades, efforts have been made on the development of nanocarriers as drug delivery systems to treat VL. Given the preferential intracellular location of the parasite in the liver and spleen macrophages, the rationale is sturdy. In a clinical setting, liposomal amphotericin B displays astonishing cure rates.Areas covered: A literature search was performed through PubMed and Google Scholar. We critically reviewed the main literature highlighting the success of nanomedicine in VL. We also reviewed the hurdles and yet unfulfilled promises rising awareness of potential drawbacks of nanomedicine in VL.Expert opinion: VL is a disease where nanomedicines successes shine through. However, there are a lot of obstacles on the road to developing more efficient strategies such as targeting functionalization, oral formulations, or combined therapies. And those strategies raise many questions.
Collapse
Affiliation(s)
- Kevin Matha
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| | - Brice Calvignac
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset , (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Laboratoire de Parasitologie-Mycologie, CHU de Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Jean-Pierre Benoit
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| |
Collapse
|
32
|
Hryniewicka A, Niemirowicz-Laskowska K, Wielgat P, Car H, Hauschild T, Morzycki JW. Dehydroepiandrosterone derived imidazolium salts and their antimicrobial efficacy. Bioorg Chem 2020; 108:104550. [PMID: 33353805 DOI: 10.1016/j.bioorg.2020.104550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Hybrid molecules consisting of steroid-imidazolium salts reveal interesting biological properties, especially regarding antimicrobial activities. Novel dehydroepiandrosterone derived imidazolium salts (11 salts) with side chains of different lengths were obtained in an efficient and straightforward synthetic route. Antimicrobial properties of new salts were examined by determining their minimum inhibitory concentrations (MICs). They were studied against several strains of bacteria, including clinical isolates of MRSA, and fungi. New compounds showed high activity against Gram-positive bacteria and Candida albicans as well as good compatibility with the representatives of the host cells when applied at concentrations corresponding to MIC value. The studies indicated high antimicrobial efficacy of imidazolium salts against the above-mentioned microorganisms with low hemolytic activity at a concentration that restricts the growth of the microorganisms. The interference of salts with the immune defense system, the influence on the biological activity of monocytes/macrophages measured by their viability and metabolic activity was also studied. The new compounds have shown immunoprotective properties.
Collapse
Affiliation(s)
- Agnieszka Hryniewicka
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | | | - Przemysław Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Białystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland; Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Białystok, Poland
| | - Tomasz Hauschild
- Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Jacek W Morzycki
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| |
Collapse
|
33
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
34
|
Marena GD, Ramos MADS, Bauab TM, Chorilli M. A Critical Review of Analytical Methods for Quantification of Amphotericin B in Biological Samples and Pharmaceutical Formulations. Crit Rev Anal Chem 2020; 52:555-576. [PMID: 32880190 DOI: 10.1080/10408347.2020.1811947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amphotericin B (AmB) is an important antifungal agent available in the clinical practice with the action mechanism related to the inhibition of ergosterol molecule present in the fungal cell wall. Given this, in order to expand AmB knowledge, this review article gathers important information of the AmB physical, chemical, and biological properties. In addition, the main analytical methods for quantifying and determining the AmB were also reported in this review, such as high-performance liquid chromatography (HPLC), liquid chromatography, tandem mass spectrophotometry (LC-MS/MS), immunoenzymatic assay (ELISA), capillary zone electrophoresis (CE) stands out and among others. Based in this review article, the scientific community will have important information to choose the best method for analysis in their scientific or clinical research, providing greater security and reliability in the obtained results.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
35
|
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020; 104:8965-8977. [PMID: 32875362 DOI: 10.1007/s00253-020-10856-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important tropical neglected diseases according to the World Health Organization. Even after more than a century, we still have few drugs for the disease therapy and their great toxicity and side effects put in check the treatment control program around the world. Moreover, the emergence of strains resistant to conventional drugs, co-infections such as HIV/Leishmania spp., the small therapeutic arsenal (pentavalent antimonials, amphotericin B and formulations, and miltefosine), and the low investment for the discovery/development of new drugs force researchers and world health agencies to seek new strategies to combat and control this important neglected disease. In this context, the aim of this review is to summarize new advances and new strategies used on leishmaniasis therapy addressing alternative and innovative treatment paths such as physical and local/topical therapies, combination or multi-drug uses, immunomodulation, drug repurposing, and the nanotechnology-based drug delivery systems.Key points• The treatment of leishmaniasis is a challenge for global health agencies.• Toxicity, side effects, reduced therapeutic arsenal, and drug resistance are the main problems.• New strategies and recent advances on leishmaniasis treatment are urgent.• Immunomodulators, nanotechnology, and drug repurposing are the future of leishmaniasis treatment.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rory Cristiane Fortes De Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Rodrigo Dian de Oliveira Aguiar-Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil.
| |
Collapse
|
36
|
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta 2020; 1143:250-266. [PMID: 33384122 DOI: 10.1016/j.aca.2020.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Development of state-of-the-art assays for sensitive and specific detection of disease biomarkers has received significant interest for early detection and prevention of various diseases. Enzyme Linked Immunosorbent assays (ELISA) and Polymerase Chain Reaction (PCR) are two examples of proteins and nucleic acid detection assays respectively, which have been widely used for the sensitive detection of target analytes in biological fluids. Recently, immuno-PCR has emerged as a sensitive detection method, where high specificity of sandwich ELISA assays is combined with high sensitivity of PCR for trace detection of biomarkers. However, inherent disadvantages of immuno-PCR assays limit their application as rapid and sensitive detection method in clinical settings. With advances in nanomaterials, nanoparticles-based immunoassays have been widely used to improve the sensitivity and simplicity of traditional immunoassays. Owing to facile synthesis, surface functionalization, and superior optical and electronic properties, gold nanoparticles have been at the forefront of sensing and detection technologies and have been extensively studied to improve the efficacies of immunoassays. This review provides a brief history of immuno-PCR assays and specifically focuses on the role of gold nanoparticles to improve the sensitivity and specificity of ELISA, PCR and immuno-PCR assays.
Collapse
Affiliation(s)
| | - Rafiq Islam
- Somru BioScience Inc., 19 Innovation Way, BioCommons Research Park.Charlottetown, PE, C1E 0B7, Canada
| | - Marya Ahmed
- Department of Chemistry, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
37
|
Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control 2020; 10:e00156. [PMID: 32566773 PMCID: PMC7298521 DOI: 10.1016/j.parepi.2020.e00156] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a widespread disease that causes 20,000 to 30,000 deaths annually, making it a major health problem in endemic areas. Because of low-performance medications, drug delivery poses a great challenge for better treatment of leishmaniasis. The present study's purpose was to review the application of nanoparticles as a new method in leishmaniasis treatment. To identify all relevant literature, we searched Web of Sciences, Scopus, PubMed, NCBI, Scielo, and Google Scholar, and profiled studies published between 1986 and 2019. In the present study, we tried to identify different research efforts in different conditions that examined the influence of various nanoparticles on different forms of leishmaniasis. In this way, we could compare their results and obtain a reliable conclusion from the most recent studies on this subject. Our review's results indicate that incorporating nanoparticles with chemical drugs improves the quality, efficiency, and sustainability of drugs and reduces their costs. Finally, considering the use of nanoparticles in the destruction of parasites, their inhibitory effect (making drugs more effective and less harmful), and their utility in making effective vaccines to prevent and fight against parasites, further research on this issue is highly recommended.
Collapse
Affiliation(s)
- Amir Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghazal Shahrokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esraa Gabal
- Agricultural Science and Resource Management in the Tropics and Subtropics, Bonn University, Germany
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
38
|
Singh A, Sharma S, Yadagiri G, Parvez S, Gupta R, Singhal NK, Koratkar N, Singh OP, Sundar S, Shanmugam V, Mudavath SL. Sensible graphene oxide differentiates macrophages and Leishmania: a bio-nano interplay in attenuating intracellular parasite. RSC Adv 2020; 10:27502-27511. [PMID: 35516949 PMCID: PMC9055620 DOI: 10.1039/d0ra04266h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
Leishmania is an obligate intracellular protozoan parasite, which resides in human macrophage vacuoles that are referred to as parasitophorus vacuoles. Amphotericin B (AmB) is the first-line drug with 99% cure rates; however, overdose-induced toxic side effects are a major limitation. To improve the efficacy at lower dose and subsequently to avoid toxicity and to further investigate the role of charge dynamics on the efficacy, a graphene oxide (GO)-based composite of AmB was developed with native negatively charged GO and amine-conjugated positively charged AGO. The AGO composite resulted in enhanced uptake as confirmed by confocal and FACS analysis. Thus, AGO caused a strong inhibition of amastigotes, with IC50 values 5-fold lower than free AmB. The parasitophorus vacuoles harbour a hydrolytic and acidic environment, which is favourable for the parasites, as they don't attenuate this condition. AGO-AmB was able to modify the intracellular pH of the Leishmania donovani-infected macrophages, generating unfavourable conditions for the amastigote, and thus improving its efficacy.
Collapse
Affiliation(s)
- Aakriti Singh
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector-64 Mohali Punjab 160062 India
| | - Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector-64, Mohali Punjab 160062 India
| | - Ganesh Yadagiri
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector-64 Mohali Punjab 160062 India
| | - Shabi Parvez
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector-64 Mohali Punjab 160062 India
| | - Ritika Gupta
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute Mohali Punjab India
| | - Nitin Kumar Singhal
- Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute Mohali Punjab India
| | - Nikhil Koratkar
- Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute 110, 8th Street Troy New York 12180 USA
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector-64, Mohali Punjab 160062 India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector-64 Mohali Punjab 160062 India
| |
Collapse
|