1
|
Kahil N, Abouzeinab NS, Hussein MAA, Khalil MI. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Nanotoxicology 2024; 18:583-598. [PMID: 39319754 DOI: 10.1080/17435390.2024.2407352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
Collapse
Affiliation(s)
- Nour Kahil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Noura S Abouzeinab
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mohamed A A Hussein
- Department of Internal Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud I Khalil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Karaboduk H, Adiguzel C, Apaydin FG, Kalender S, Kalender Y. Investigating the impact of different routes of nano and micro nickel oxide administration on rat kidney architecture, apoptosis markers, oxidative stress, and histopathology. J Mol Histol 2024; 55:675-686. [PMID: 38990468 DOI: 10.1007/s10735-024-10221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Although the production and use of nickel oxide nanoparticles (NiONP) are widespread, environmental and public health problems are associated with it. The kidney is the primary organ in excretion and is among the target organs in nanoparticle toxicity. This study aimed to compare the renal toxicity of nickel oxide (NiO) microparticles and nickel oxide nanoparticles by different routes of administration, such as oral, intraperitoneal (IP), and intravenous (IV). Seven groups were formed, with 42 male rats and six animals in each group. NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg) was administered for 21 days. After NiO and NiONP administration, a decrease in antioxidant activities and an increase in lipid peroxidation occurred in the kidney tissue of rats. Increased kidney urea, uric acid, and creatinine levels were observed. Inhibition of acetylcholinesterase activity and an increase in interleukin 1 beta were detected. Apoptotic markers, Bax, caspase-3, and p53 up-regulation and Bcl-2 down-regulation were observed. In addition, histopathological changes occurred in the kidney tissue. In general, it was observed that nickel oxide microparticles and nickel oxide nanoparticles cause inflammation by causing oxidative stress in the kidney tissue, and NiONP IV administration is more effective in renal toxicity.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | | | - Suna Kalender
- Department of Science, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
3
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
Fernández-Sanz H, Perrault JR, Stacy NI, Mancini A, Reyes-Bonilla H, Reséndiz E. Blood analyte reference intervals and correlations with trace elements of immature and adult Eastern Pacific green turtles (Chelonia mydas) in coastal lagoons of Baja California Sur, México. MARINE POLLUTION BULLETIN 2023; 195:115547. [PMID: 37717495 DOI: 10.1016/j.marpolbul.2023.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Sea turtles can bioaccumulate high concentrations of potentially toxic contaminants. To better understand trace element effects on sea turtles' health, we established reference intervals for hematological and plasma biochemical analytes in 40 in-water, foraging immature and adult Eastern Pacific green turtles (Chelonia mydas) from two coastal lagoons in Baja California Sur, quantified whole blood concentrations of eight trace elements, and assessed their correlations. Rank-order trace element concentrations in both immature and adult turtles was zinc > selenium > nickel > arsenic > copper > cadmium > lead > manganese. Immature turtles had significantly higher copper and lower nickel and zinc concentrations. Additionally, a number of relationships between trace elements and blood analytes were identified. These data provide baseline information useful for future investigations into this population, or in other geographic regions and various life-stage classes.
Collapse
Affiliation(s)
- Helena Fernández-Sanz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico; Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL 33408, USA.
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, USA.
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C., Calle Seis 141, Azaleas, 23098 La Paz, Baja California Sur, Mexico.
| | - Héctor Reyes-Bonilla
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| | - Eduardo Reséndiz
- Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico; Laboratorio de Investigación y Medicina de Organismos Acuáticos, Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
6
|
Huang M, Chen Z, Xu J, Wu Q. [5-Bromo-2-(2-(dimethylamino)ethyliminomethyl)phenolato-κ 3
N, N′, O]-isothiocyanato-nickel(II), C 12H 14BrN 3NiOS. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
C12H14BrN3NiOS, monoclinic, P21/c (no. 14), a = 7.0191(5) Å, b = 10.8476(7) Å, c = 19.0237(12) Å, β = 95.564(2), V = 1441.65(17) Å3, Z = 4, R
gt
(F) = 0416, wR
ref
(F
2) = 0.1007, T = 148 K.
Collapse
Affiliation(s)
- Meifen Huang
- Department of Chemical Science and Technology , Kunming University , Yunnan , Kunming 65200 , P.R. China
| | - Zhizheng Chen
- Department of Chemical Science and Technology , Kunming University , Yunnan , Kunming 65200 , P.R. China
| | - Jiajun Xu
- Department of Chemical Science and Technology , Kunming University , Yunnan , Kunming 65200 , P.R. China
| | - Qiong Wu
- Department of Chemical Science and Technology , Kunming University , Yunnan , Kunming 65200 , P.R. China
| |
Collapse
|
7
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
8
|
Singh M, Verma Y, Rana SVS. Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent study with special reference to antioxidant defence system. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - S. V. S. Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| |
Collapse
|
9
|
Bhattacharya S, Halder M, Sarkar A, Pal P, Das A, Kundu S, Mandal DP, Bhattacharjee S. Investigating in vitro and in vivo anti-tumor activity of Curvularia-based Platinum nanoparticles. J Environ Pathol Toxicol Oncol 2022; 41:13-32. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022039940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int J Mol Sci 2021; 22:ijms222312789. [PMID: 34884592 PMCID: PMC8657944 DOI: 10.3390/ijms222312789] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Nanomedical research necessarily involves the study of the interactions between nanoparticulates and the biological environment. Transmission electron microscopy has proven to be a powerful tool in providing information about nanoparticle uptake, biodistribution and relationships with cell and tissue components, thanks to its high resolution. This article aims to overview the transmission electron microscopy techniques used to explore the impact of nanoconstructs on biological systems, highlighting the functional value of ultrastructural morphology, histochemistry and microanalysis as well as their fundamental contribution to the advancement of nanomedicine.
Collapse
|
11
|
Kong L, Dong J, Lu W, Wu Y, Liu L, Tang M. Exposure effects of inhaled nickel nanoparticles on the male reproductive system via mitochondria damage. NANOIMPACT 2021; 23:100350. [PMID: 35559828 DOI: 10.1016/j.impact.2021.100350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/25/2021] [Accepted: 08/08/2021] [Indexed: 05/28/2023]
Abstract
Nickel nanoparticles (Ni NPs) have a wide range of application prospects, however there is still a lack of their safety evaluation for the reproductive system. Nowadays, male reproductive health has been widely concerned for the increasing incidence of male infertility. To investigate the male reproductive toxicity induced by Ni NPs and its relation with the mitochondrial fission and mitophagy, male mice were administered with or without 5, 15, and 45 mg/kg of Ni NPs by intratracheal instillation. At the end of intervention, sex hormone level, sperm abnormality rate, pathological morphology of testis, cell apoptosis and the expression levels of Drp1, Pink1 and Parkin proteins in testis tissues were detected. The results indicated that the rate of sperm deformity and serum levels of reproductive hormones increased obviously with the increasing concentrations of Ni NPs. Testicular spermatogenic cells were damaged and the number of apoptotic cells increased significantly. Furthermore, the expressions of key proteins (Drp1, Pink1 and Parkin) related to mitochondrial fission/autophagy in testis tissues also increased after exposure to Ni NPs. Collectively, mitochondria damage may play an important role in male mice reproductive toxicity induced by the intratracheal instillation of Ni NPs.
Collapse
Affiliation(s)
- Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Jiahui Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Wenjuan Lu
- Nanjing Central Hospital, Nanjing 210018, PR China
| | - Yongya Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lin Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
12
|
In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients. Sci Rep 2021; 11:2536. [PMID: 33510426 PMCID: PMC7843626 DOI: 10.1038/s41598-021-82244-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
This study was carried out to assess the impact of nickel nanoparticles (NiNPs) as well as scorpion venom on colorectal cancer (CRC) cells in the presence and/or absence of 5-fluorouracil (5-FU), hydrogen sulfide (H2S), and nitric oxide (NO) donors and to determine alterations in endothelial NO synthase (eNOS) and cystathionine γ-lyase (CSE) enzyme-producing genes in CRC patients. The IC50 of both H2S and NO donors, along with NiNPs, were determined. The CRC cells were treated for 24hrs, and the cytotoxic activities were assessed using the MTT test. Moreover, the apoptosis was determined after 24hrs and 48hrs using TUNEL assay. Furthermore, the mutations in the eNOS gene (intron 4, -786T>C and 894 G>T) and CSE gene (1364GT) were determined using direct sequencing. The IC50 values for sodium disulfide (Na2S) and sodium nitroprusside (SNP) at 24hrs treatment were found to be 5 mM and 10−6 M, respectively, while the IC50 value for 5-FU was reached after 5-days of treatment in CRC cell line. Both black and yellow scorpion venoms showed no inhibition of cell proliferation after 24hrs treatment. Furthermore, Na2S showed a significant decrease in cell proliferation and an increase in apoptosis. Moreover, a co-treatment of SNP and 5-FU resulted in inhibition of the cytotoxic effect of 5-FU, while a combination treatment of NiNPs with Na2S, SNP, and 5-FU caused highly significant cytotoxicity. Direct sequencing reveals new mutations, mainly intronic variation in eNOS gene that has not previously been described in the database. These findings indicate that H2S promotes the anticancer efficiency of 5-FU in the presence of NiNPs while NO has antiapoptotic activity in CRC cell lines.
Collapse
|
13
|
Kheirallah DAM, El-Samad LM, Abdel-Moneim AM. DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141743. [PMID: 32891989 DOI: 10.1016/j.scitotenv.2020.141743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Nickel oxide nanoparticles (NiO-NPs) have extensively used in industrial and consumer products. The present study conducted to gain more knowledge about the safe use of NiO-NPs and also to understand their impact on the environment and biological systems. Herein, we examined the genotoxic and ultra-structural effects of a sublethal dose of NiO-NPs (0.03 mg/g) on the ovarian tissues of the ground beetle, Blaps polycresta. The mean diameter of NiO-NPs was 24.49 ± 3.88 nm, as obtained through transmission electron microscopy (TEM). In terms of DNA damage levels, the frequency of micronucleus (MN) formation was highly significant in the NiO-NPs treated group versus the controls. Besides, NiO-NPs treatment resulted in a significant increase in the tail length of comets. Further, electron microscopy revealed a progressive increase in chromatin condensation of the ovarian nurse and follicular cells, in addition to the accumulation of lysosomes and endo-lysosomes in their cytoplasm. In conclusion, NiO-NPs are capable of gaining access to the ovary of B. polycresta and causing DNA damage and a high degree of cellular toxicity in the ovarian cells. The present study highlights, for the first time, the adverse effects of these NPs to female gonads of insects and raised the concern of its genotoxic potential. It would be of interest to investigate NiO-NPs mediated intracellular ROS generation in future studies.
Collapse
|
14
|
Moore CL, Savenka AV, Basnakian AG. TUNEL Assay: A Powerful Tool for Kidney Injury Evaluation. Int J Mol Sci 2021; 22:ijms22010412. [PMID: 33401733 PMCID: PMC7795088 DOI: 10.3390/ijms22010412] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay is a long-established assay used to detect cell death-associated DNA fragmentation (3'-OH DNA termini) by endonucleases. Because these enzymes are particularly active in the kidney, TUNEL is widely used to identify and quantify DNA fragmentation and cell death in cultured kidney cells and animal and human kidneys resulting from toxic or hypoxic injury. The early characterization of TUNEL as an apoptotic assay has led to numerous misinterpretations of the mechanisms of kidney cell injury. Nevertheless, TUNEL is becoming increasingly popular for kidney injury assessment because it can be used universally in cultured and tissue cells and for all mechanisms of cell death. Furthermore, it is sensitive, accurate, quantitative, easily linked to particular cells or tissue compartments, and can be combined with immunohistochemistry to allow reliable identification of cell types or likely mechanisms of cell death. Traditionally, TUNEL analysis has been limited to the presence or absence of a TUNEL signal. However, additional information on the mechanism of cell death can be obtained from the analysis of TUNEL patterns.
Collapse
Affiliation(s)
- Christopher L. Moore
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (C.L.M.); (A.V.S.)
| | - Alena V. Savenka
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (C.L.M.); (A.V.S.)
| | - Alexei G. Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (C.L.M.); (A.V.S.)
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, 4300 West 7th Street, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-352-2870
| |
Collapse
|
15
|
Maseko PB, van Rooy M, Taute H, Venter C, Serem JC, Oberholzer HM. Whole blood ultrastructural alterations by mercury, nickel and manganese alone and in combination: An ex vivo investigation. Toxicol Ind Health 2020; 37:98-111. [PMID: 33357111 DOI: 10.1177/0748233720983114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The distribution of metals across the environment is increasingly becoming a major concern as they not only pollute the environment but also pose a danger to humans and animals. Human exposure to heavy metals often occurs as a combination of metals the synergistic effects of which can be more toxic than a single metal. The aim of this study was to investigate the effects that the metals mercury (Hg), nickel (Ni) and manganese (Mn) alone and in combination have on erythrocyte morphology and other components of the coagulation system using the haemolysis assay, scanning electron microscopy (SEM), and confocal laser scanning microscopy. Human blood was exposed to the heavy metals ex vivo, and percentage haemolysis was determined. Ultrastructural analysis of erythrocytes, platelets and fibrin networks was performed using SEM. Analysis of phosphatidylserine (PS) flip-flop was determined using confocal laser scanning microscopy. At the highest concentration of 10,000× the World Health Organization safety limit, all the metals caused haemolysis. The results showed that the exposure of erythrocytes to Hg alone and in combination with other metals displayed more haemolysis compared to Ni and Mn alone and in combination. Components of the coagulation system showed ultrastructural changes, including the formation of echinocytes and the activation of platelets with all single metals as well as the combinations. Confocal laser scanning microscopy analysis showed the presence of PS on the outer surface of the echinocytes that were exposed to metals alone and in combination. It can, therefore, be concluded that these heavy metals have a negative impact on erythrocytes and the coagulation system.
Collapse
Affiliation(s)
- P B Maseko
- Department of Anatomy, 72042Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M van Rooy
- Department of Physiology, 72042Faculty of Health Sciences, University of Pretoria, Pretoria,South Africa
| | - H Taute
- Department of Anatomy, 72042Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - C Venter
- Laboratory for Microscopy and Microanalysis, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - J C Serem
- Department of Anatomy, 72042Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - H M Oberholzer
- Department of Anatomy, 72042Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Wezynfeld NE, Frączyk T, Bonna A, Bal W. Peptide bond cleavage in the presence of Ni-containing particles. Metallomics 2020; 12:649-653. [PMID: 32393924 DOI: 10.1039/d0mt00070a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiO nanoparticles and non-stoichiometric black NiO were shown to be effective sources of Ni2+ ions causing sequence-selective peptide bond hydrolysis. NiO nanoparticles were as effective in this reaction as their molar equivalent of soluble Ni(ii) salt. These findings highlight the efficacy of delivery of toxic Ni2+ by these environmentally available particles.
Collapse
Affiliation(s)
- Nina Ewa Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
17
|
Gamasaee NA, Muhammad HA, Tadayon E, Ale-Ebrahim M, Mirpour M, Sharifi M, Salihi A, Shekha MS, Alasady AAB, Aziz FM, Akhtari K, Hasan A, Falahati M. The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. J Biomol Struct Dyn 2019; 38:3676-3686. [PMID: 31476976 DOI: 10.1080/07391102.2019.1662850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24 hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niusha Abbasi Gamasaee
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hawzheen A Muhammad
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Elahe Tadayon
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Pathological Analysis, College of Science, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Asaad A B Alasady
- Anatomy, Histology, and Embryology Unit, College of Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.,Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|