1
|
Homer NA, Hanafy MS, Baer SC, Watson AH, Somogyi M, Shore JW, Blaydon S, Durairaj VD, Cui Z, Nakra T. 5-Fluorouracil With Microneedling Modulates Wound Healing in a Murine Model: An Immunohistochemical Analysis of Mechanism and Dose Efficacy. Ophthalmic Plast Reconstr Surg 2022; 38:596-601. [PMID: 35604385 DOI: 10.1097/iop.0000000000002227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study is to assess the dose-dependent immunohistopathological effects of intradermal microneedle-delivered 5-fluorouracil (5-FU) for postincisional wound healing in a murine model. METHODS A prospective experimental study was performed. Twelve hairless mice were randomized into 4 treatment groups for postincisional wound treatment: microneedling with topical saline, or microneeding with topically-applied 5-FU at concentrations of 25 mg/ml, 50 mg/ml, or 100 mg/ml. Two surgical wounds were created on each animal. Combination wound treatments were performed on postoperative days 14 and 28, and cutaneous biopsies were obtained on day 56. Specimens were analyzed by a dermatopathologist, blinded to the treatment group, for collagen thickness, lymphocytic infiltration, histiocytic response, sub-epidermal basement membrane zone thickness, and myofibroblast density. RESULTS Histopathologic evaluation showed increased collagen thickness, lymphocyte infiltration, and granuloma density in the groups undergoing microneedling treatment with 5-FU, compared to saline. Immunohistochemical analysis revealed a trend toward thicker basement membranes with higher concentrations of 5-FU used, reaching statistical significance between controls and those treated with 100 mg/ml 5-FU ( p = 0.0493). A trend toward decreasing myofibroblast density with increasing doses of 5-FU was noted. No postincisional or treatment complications were observed. CONCLUSIONS Our results demonstrate that microneedling is an effective topical subepithelial drug delivery system, and further suggest a beneficial dose-dependent immunomodulatory effect of 5-FU on intermediate wound healing when used in combination with microneedling. We recommend a 5-FU dose at the mid-range 50 mg/ml concentration to simultaneously maximize efficacy and minimize complication risk.
Collapse
Affiliation(s)
- Natalie A Homer
- Division of Ophthalmic Plastic and Orbital Surgery, Department of Ophthalmology, UC Davis Eye Center, Sacramento, California
| | - Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | | | - Alison H Watson
- Oculoplastic and Orbital Surgery Service, Wills Eye Hospital, Philadelphia, Pennsylvania
| | - Marie Somogyi
- TOC Eye and Face, Austin, Texas
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - John W Shore
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sean Blaydon
- TOC Eye and Face, Austin, Texas
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Vikram D Durairaj
- TOC Eye and Face, Austin, Texas
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Tanuj Nakra
- TOC Eye and Face, Austin, Texas
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
2
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Tambunlertchai S, Geary SM, Salem AK. Skin Penetration Enhancement Strategies Used in the Development of Melanoma Topical Treatments. AAPS JOURNAL 2021; 23:19. [PMID: 33404992 DOI: 10.1208/s12248-020-00544-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer for which there is currently no reliable therapy and is considered one of the leading health issues in the USA. At present, surgery is the most effective and acceptable treatment; however, surgical excision can be impractical in certain circumstances. Topical skin delivery of drugs using topical formulations is a potential alternative approach which can have many advantages aside from being a non-invasive delivery route. Nevertheless, the presence of the stratum corneum (SC) limits the penetration of drugs through the skin, lowering their treatment efficacy and raising concerns among physicians and patients as to their effectiveness. Currently, research groups are trying to circumvent the SC barrier by using skin penetration enhancement (SPE) strategies. The SPE strategies investigated include chemical skin penetration enhancers (CPEs), physical skin penetration enhancers (PPEs), nanocarrier systems, and a combination of SPE strategies (cream). Of these, PPEs and cream are the most advanced approaches in terms of preclinical and clinical studies, respectively.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
4
|
Dsouza L, Ghate VM, Lewis SA. Derma rollers in therapy: the transition from cosmetics to transdermal drug delivery. Biomed Microdevices 2020; 22:77. [PMID: 33104926 PMCID: PMC7588378 DOI: 10.1007/s10544-020-00530-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Derma roller, a device rolled onto the skin to form micropores, is extensively used for cosmetic purposes. The pores thus created are utilized to either result in the induction of collagen production, leading to glowing and wrinkle-free skin or for permeating the applied formulations to the site of action within the skin. Recent studies have shown the benefits of using derma rollers for transdermal delivery of drugs. In the nascent stage, this approach paves a way to successfully breach the stratum corneum and aid in the movement of medications directed towards the dermis and the hair follicles. The review essentially summarizes the evidence of the use of derma rollers in cosmetic setup, their designing, and the preclinical and clinical reports of efficacy, safety, and concerns when translated for pharmaceutical purposes and transdermal drug delivery.
Collapse
Affiliation(s)
- Leonna Dsouza
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek M Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|
6
|
Mahmoud NN, Alhusban AA, Ali JI, Al-Bakri AG, Hamed R, Khalil EA. Preferential Accumulation of Phospholipid-PEG and Cholesterol-PEG Decorated Gold Nanorods into Human Skin Layers and Their Photothermal-Based Antibacterial Activity. Sci Rep 2019; 9:5796. [PMID: 30962476 PMCID: PMC6453979 DOI: 10.1038/s41598-019-42047-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/21/2019] [Indexed: 02/03/2023] Open
Abstract
Herein, a library of gold nanorods (GNR) decorated with polyethylene glycol-thiol (PEG-SH) containing different functionalities were synthesized and characterized by optical absorption spectroscopy, zeta potential, dynamic light scattering (DLS), transmission electron microscope (TEM) and proton nuclear magnetic resonance (1H-NMR). The colloidal stability of GNR when exposed to skin, and their preferential accumulation into excised human skin layers were investigated. Confocal laser scanning microscopy, transmission electron microscope (TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were utilized to track the penetration of GNR into different skin layers. The results demonstrated that cholesterol-PEG coated GNR were preferentially loaded up in the upper layers of skin (stratum corneum), while phospholipid-PEG coated counterparts were drastically deposited in skin dermis. Neutral methoxy-PEG-coated GNR were distributed in both SC and dermis skin layers, while charged GNR (anionic-carboxylic acid-PEG-GNR and cationic-amine-PEG-GNR) revealed a minimal accumulation into skin. DSPE-PEG-GNR and Chol-PEG-GNR demonstrated antibacterial activities against Staphylococcus aureus (S aureus) at MIC values of 0.011 nM and 0.75 nM, respectively. Photothermal treatment for S. aureus at sub-MIC concentrations resulted in a significant bactericidal effect when using Chol-PEG-GNR but not DSPE-PEG-GNR. Gold-based nanoscale systems have great value as a promising platform for skin diseases therapy.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Jamila Isabilla Ali
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Enam A Khalil
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
7
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
8
|
Bhatnagar S, Chawla SR, Kulkarni OP, Venuganti VVK. Zein Microneedles for Transcutaneous Vaccine Delivery: Fabrication, Characterization, and in Vivo Evaluation Using Ovalbumin as the Model Antigen. ACS OMEGA 2017; 2:1321-1332. [PMID: 30023631 PMCID: PMC6044761 DOI: 10.1021/acsomega.7b00343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 05/28/2023]
Abstract
Transcutaneous antigen administration provides an alternative to invasive syringe injections. The objective of this study was to investigate the feasibility of fabrication and antigen delivery using microneedles made from corn protein, zein. Micromolding technique was used to cast cone-shaped zein microneedles (ZMNs). The insertion of ZMNs and the delivery of the model antigen, ovalbumin (OVA), into the skin was confirmed by histological examination and confocal microscopy. In addition, a significantly (p < 0.05) lower bacterial skin penetration was observed after ZMN application compared with hypodermic syringe application. OVA coated on ZMNs was stable after storage under ambient and refrigerator conditions. Transcutaneous immunization studies showed significantly (p < 0.001) greater antibody titers (total IgG, IgG1, and IgG2a) after the application of OVA-coated ZMNs and OVA intradermal injection compared with the control group. Taken together, antigen-coated ZMNs can be developed for transcutaneous vaccine delivery.
Collapse
Affiliation(s)
- Shubhmita Bhatnagar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India
| | | | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, Telangana, India
| |
Collapse
|
9
|
Sanjay ST, Dou M, Fu G, Xu F, Li X. Controlled Drug Delivery Using Microdevices. Curr Pharm Biotechnol 2016; 17:772-87. [PMID: 26813304 PMCID: PMC5135015 DOI: 10.2174/1389201017666160127110440] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - XiuJun Li
- Department of Chemistry, Faculty of University of Texas at El Paso, 500 West University Ave, El Paso, Texas 79968, USA.
| |
Collapse
|
10
|
Abstract
This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN.
Collapse
|
11
|
Deng Y, Chen J, Zhao Y, Yan X, Zhang L, Choy K, Hu J, Sant HJ, Gale BK, Tang T. Transdermal Delivery of siRNA through Microneedle Array. Sci Rep 2016; 6:21422. [PMID: 26888011 PMCID: PMC4757825 DOI: 10.1038/srep21422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/22/2016] [Indexed: 01/07/2023] Open
Abstract
Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.
Collapse
Affiliation(s)
- Yan Deng
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| | - Jiao Chen
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| | - Yi Zhao
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohui Yan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwongwai Choy
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| | - Jun Hu
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Himanshu J Sant
- State of Utah Centre of Excellence for Biomedical Microfluidics, Departments of Bioengineering and Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Bruce K Gale
- State of Utah Centre of Excellence for Biomedical Microfluidics, Departments of Bioengineering and Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tao Tang
- Department of Obstetrics &Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
12
|
Kumar A, Naguib YW, Shi YC, Cui Z. A method to improve the efficacy of topical eflornithine hydrochloride cream. Drug Deliv 2014; 23:1495-501. [PMID: 25182303 DOI: 10.3109/10717544.2014.951746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CONTEXT Facial hirsutism is a cosmetic concern for women and can lead to significant anxiety and lack of self-esteem. Eflornithine cream is indicated for the treatment of facial hirsutism. However, limited success rate and overall patient's satisfaction, even with a long-term and high-frequency application, leave room for improvement. OBJECTIVE The objective of this study is to test the effect of microneedle treatment on the in vitro skin permeation and the in vivo efficacy of eflornithine cream in a mouse model. MATERIALS AND METHOD In vitro permeation study of eflornithine was performed using Franz diffusion cell. In vivo efficacy study was performed in a mouse model by monitoring the re-growth of hair in the lower dorsal skin of mice after the eflornithine cream was applied onto an area pretreated with microneedles. The skin and the hair follicles in the treated area were also examined histologically. RESULTS AND DISCUSSION The hair growth inhibitory activity of eflornithine was significantly enhanced when the eflornithine cream was applied onto a mouse skin area pretreated with microneedles, most likely because the micropores created by microneedles allowed the permeation of eflornithine into the skin, as confirmed in an in vitro permeation study. Immunohistochemistry data revealed that cell proliferation in the skin and hair follicles was also significantly inhibited when the eflornithine cream was applied onto a skin area pretreated with microneedles. CONCLUSION The integration of microneedle treatment into topical eflornithine therapy represents a potentially viable approach to increase eflornithine's ability to inhibit hair growth.
Collapse
Affiliation(s)
- Amit Kumar
- a Pharmaceutics Division , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA and
| | - Youssef W Naguib
- a Pharmaceutics Division , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA and
| | - Yan-Chun Shi
- b Research Center of Molecular Biology, College of Basic Medical Sciences, Inner Mongolia Medical University , Hohhot , Inner Mongolia , China
| | - Zhengrong Cui
- a Pharmaceutics Division , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA and.,b Research Center of Molecular Biology, College of Basic Medical Sciences, Inner Mongolia Medical University , Hohhot , Inner Mongolia , China
| |
Collapse
|
13
|
van der Maaden K, Sekerdag E, Jiskoot W, Bouwstra J. Impact-insertion applicator improves reliability of skin penetration by solid microneedle arrays. AAPS J 2014; 16:681-4. [PMID: 24760438 PMCID: PMC4070271 DOI: 10.1208/s12248-014-9606-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Koen van der Maaden
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| | - Emine Sekerdag
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Naguib YW, Kumar A, Cui Z. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil. Acta Pharm Sin B 2014; 4:94-99. [PMID: 25313350 PMCID: PMC4193954 DOI: 10.1016/j.apsb.2013.12.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Topical 5-fluorouracil (5-FU) is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter). In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5%) was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy.
Collapse
Affiliation(s)
| | | | - Zhengrong Cui
- Corresponding author at: The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA. Tel.: +1 512 495 4758; fax: +1 512 471 7474.
| |
Collapse
|
15
|
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547-68. [PMID: 22575858 DOI: 10.1016/j.addr.2012.04.005] [Citation(s) in RCA: 1043] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.
Collapse
|
16
|
Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles. J Control Release 2012; 163:230-9. [PMID: 22921518 DOI: 10.1016/j.jconrel.2012.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/25/2012] [Accepted: 08/13/2012] [Indexed: 01/26/2023]
Abstract
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells.
Collapse
|
17
|
Gomaa YA, El-Khordagui LK, Garland MJ, Donnelly RF, McInnes F, Meidan VM. Effect of microneedle treatment on the skin permeation of a nanoencapsulated dye. ACTA ACUST UNITED AC 2012; 64:1592-602. [PMID: 23058046 DOI: 10.1111/j.2042-7158.2012.01557.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the effect of microneedle (MN) pretreatment on the transdermal delivery of a model drug (Rhodamine B, Rh B) encapsulated in polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) focusing on the MN characteristics and application variables. METHODS Gantrez MNs were fabricated using laser-engineered silicone micro-mould templates. PLGA NPs were prepared using a modified emulsion-diffusion-evaporation method and characterised in vitro. Permeation of encapsulated Rh B through MN-treated full thickness porcine skin was performed using Franz diffusion cells with appropriate controls. KEY FINDINGS In-vitro skin permeation of the nanoencapsulated Rh B (6.19 ± 0.77 µg/cm²/h) was significantly higher (P < 0.05) compared with the free solution (1.66 ± 0.53 µg/cm²/h). Mechanistic insights were supportive of preferential and rapid deposition of NPs in the MN-created microconduits, resulting in accelerated dye permeation. Variables such as MN array configuration and application mode were shown to affect transdermal delivery of the nanoencapsulated dye. CONCLUSIONS This dual MN/NP-mediated approach offers potential for both the dermal and transdermal delivery of therapeutic agents with poor passive diffusion characteristics.
Collapse
Affiliation(s)
- Yasmine A Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
18
|
Kochhar JS, Zou S, Chan SY, Kang L. Protein encapsulation in polymeric microneedles by photolithography. Int J Nanomedicine 2012; 7:3143-54. [PMID: 22787403 PMCID: PMC3392142 DOI: 10.2147/ijn.s32000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recent interest in biocompatible polymeric microneedles for the delivery of biomolecules has propelled considerable interest in fabrication of microneedles. It is important that the fabrication process is feasible for drug encapsulation and compatible with the stability of the drug in question. Moreover, drug encapsulation may offer the advantage of higher drug loading compared with other technologies, such as drug coating. METHODS AND RESULTS In this study, we encapsulated a model protein drug, namely, bovine serum albumin, in polymeric microneedles by photolithography. Drug distribution within the microneedle array was found to be uniform. The encapsulated protein retained its primary, secondary, and tertiary structural characteristics. In vitro release of the encapsulated protein showed that almost all of the drug was released into phosphate buffered saline within 6 hours. The in vitro permeation profile of encapsulated bovine serum albumin through rat skin was also tested and shown to resemble the in vitro release profile, with an initial release burst followed by a slow release phase. The cytotoxicity of the microneedles without bovine serum albumin was tested in three different cell lines. High cell viabilities were observed, demonstrating the innocuous nature of the microneedles. CONCLUSION The microneedle array can potentially serve as a useful drug carrier for proteins, peptides, and vaccines.
Collapse
|
19
|
Vrdoljak A, McGrath MG, Carey JB, Draper SJ, Hill AVS, O'Mahony C, Crean AM, Moore AC. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J Control Release 2011; 159:34-42. [PMID: 22245683 DOI: 10.1016/j.jconrel.2011.12.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/04/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022]
Abstract
Vaccines are sensitive biologics that require continuous refrigerated storage to maintain their viability. The vast majority of vaccines are also administered using needles and syringes. The need for cold chain storage and the significant logistics surrounding needle-and-syringe vaccination is constraining the success of immunization programs. Recombinant live viral vectors are a promising platform for the development of vaccines against a number of infectious diseases, however these viruses must retain infectivity to be effective. Microneedles offer an effective and painless method for delivery of vaccines directly into skin that in the future could provide solutions to current vaccination issues. Here we investigated methods of coating live recombinant adenovirus and modified vaccinia virus Ankara (MVA) vectors onto solid microneedle arrays. An effective spray-coating method, using conventional pharmaceutical processes, was developed, in tandem with suitable sugar-based formulations, which produces arrays with a unique coating of viable virus in a dry form around the shaft of each microneedle on the array. Administration of live virus-coated microneedle arrays successfully resulted in virus delivery, transcutaneous infection and induced an antibody or CD8(+) T cell response in mice that was comparable to that obtained by needle-and-syringe intradermal immunization. To our knowledge, this is the first report of successful vaccination with recombinant live viral vectored vaccines coated on microneedle delivery devices.
Collapse
Affiliation(s)
- Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|