1
|
Waliaveettil FA, Jose J, Anila EI. PEGylated Platinum Nanoparticles: A Comprehensive Study of Their Analgesic and Anti-Inflammatory Effects. ACS APPLIED BIO MATERIALS 2025; 8:628-641. [PMID: 39746938 DOI: 10.1021/acsabm.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent. The average particle size of these Pt nanospheres was determined to be 3.26 nm using TEM analysis, and X-ray diffraction confirmed their face-centered cubic crystalline structure. Fourier transform infrared and UV-visible spectroscopy confirm that Pt-NPs are coated with the PEG-400 molecule. The significantly negative zeta potential value (-26.8 mV) indicates the stability of the produced nanoparticles. In vitro cytotoxicity studies on normal cell lines show nontoxic behavior with over 96% cell viability at 100 μg/mL of the test sample. In vitro assays of inhibition of protein denaturation and DPPH free radical scavenging elucidated the anti-inflammatory and antioxidant properties of PEGylated Pt NPs with promising EC50 values 57.99 and 9.324 μg/mL, respectively. In vivo animal trials confirmed that PEG-capped Pt-NPs are more effective than conventional medicines. The in vivo hot plate assay for the analgesic study shows a maximum response time of 14.5 ± 1.22 s (92.54% analgesia) at a dosage of 50 mg/kg and 13.8 ± 0.71 s (86.05% analgesia) at a dosage of 25 mg/kg after 180 and 240 min of administration, respectively. In the rat paw edema model for anti-inflammatory activity, the PEG-capped Pt NPs exhibit significant inhibitory action, with the maximum percentage of edema inhibition at a dosage of 50 mg/kg identical to that of the aspirin-based standard medication administered at a higher dosage of 100 mg/kg, resulting in 42% inhibition, suggesting a versatile solution for inflammation and persistent pain.
Collapse
Affiliation(s)
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala 683104, India
| | - E I Anila
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029
| |
Collapse
|
2
|
Sharma H, Narayanan KB, Ghosh S, Singh KK, Rehan P, Amist AD, Bhaskar R, Sinha JK. Nanotherapeutics for Meningitis: Enhancing Drug Delivery Across the Blood-Brain Barrier. Biomimetics (Basel) 2025; 10:25. [PMID: 39851741 PMCID: PMC11762342 DOI: 10.3390/biomimetics10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Meningitis is the acute or chronic inflammation of the protective membranes, surrounding the brain and spinal cord, and this inflammatory process spreads throughout the subarachnoid space. The traditional drug delivery methods pose a disadvantage in limiting the capacity of crossing the blood-brain barrier (BBB) to reach the central nervous system (CNS). Hence, it is imperative to develop novel approaches that can overcome these constraints and offer efficient therapy for meningitis. Nanoparticle (NP)-based therapeutic approaches have the potential to address the limitations such as penetrating the BBB and achieving targeted drug release in specific cells and tissues. This review highlights recent advancements in nanotechnology-based approaches, such as functionalized polymeric nanoparticles, solid lipid nanoparticles (SLNs), nanostructured lipid carriers, nanoemulsions, liposomes, transferosomes, and metallic NPs for the treatment of meningitis. Recently, bionics has emerged as a next-generation technology in the development of novel ideas from biological principles, structures, and interactions for neurological and neuroinfectious diseases. Despite their potential, more studies are needed to ensure the safety and efficacy of NP-based drug delivery systems focusing on critical aspects such as toxicity, immunogenicity, and pharmacokinetics. Therefore, this review addresses current treatment strategies and innovative nanoparticle approaches, and it discusses future directions for efficient and targeted meningitis therapies.
Collapse
Affiliation(s)
- Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Hinjawadi, Pune 411057, Maharashtra, India
| | - Prarthana Rehan
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India
| | - Aparajita Dasgupta Amist
- Amity University Uttar Pradesh (AUUP), Sector 125, Gautam Buddha Nagar, Noida 201303, Uttar Pradesh, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | | |
Collapse
|
3
|
Li Z, Niu K, Zhou C, Wang F, Lu K, Liu Y, Xuan L, Wang X. Multifunctional cardiac microphysiological system based on transparent ITO electrodes for simultaneous optical measurement and electrical signal monitoring. LAB ON A CHIP 2024; 24:1903-1917. [PMID: 38385159 DOI: 10.1039/d3lc00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Drug-induced cardiotoxicity is a significant contributor to drug recalls, primarily attributed to limitations in existing drug screening platforms. Traditional heart-on-a-chip platforms often employ metallic electrodes to record cardiomyocyte electrical signals. However, this approach hinders direct cardiomyocyte morphology observation and typically yields limited functionality. Consequently, this limitation may lead to an incomplete understanding of cardiomyocyte characteristics. To address these challenges, we introduce a multifunctional cardiac microphysiological system featuring transparent indium tin oxide electrodes. This innovative design aims to overcome the limitations of conventional heart-on-a-chip systems where metal electrodes interfere with the observation of cells and increase the difficulty of subsequent image processing of cell images. In addition to facilitating optical measurement combined with image processing capabilities, this system integrates a range of electrodes with diverse functionalities. These electrodes can realize cellular electrical stimulation, field potential monitoring, and impedance change tracking, enabling a comprehensive investigation of various cardiomyocyte traits. To demonstrate its versatility, we investigate the effects of four cardiac drugs with distinct pharmacological profiles on cardiomyocytes using this system. This platform provides a means for quantitatively and predictively assessing cardiac toxicity, which could be applied to conduct a comprehensive evaluation during the drug discovery process.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kai Niu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feifan Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Xiang Y, Shi K, Li Y, Xue J, Tong Z, Li H, Li Z, Teng C, Fang J, Hu N. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording. NANO-MICRO LETTERS 2024; 16:132. [PMID: 38411852 PMCID: PMC10899154 DOI: 10.1007/s40820-024-01336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024]
Abstract
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale. In this paper, we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electro-excitable cells, focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals. Looking forward to the possibilities, challenges, and wide prospects of active micro-nano-devices, we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China
| | - Zhicheng Tong
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Huiming Li
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, 523059, People's Republic of China.
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, Dongguan, 523059, People's Republic of China.
| | - Chong Teng
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322005, People's Republic of China.
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
5
|
Kanithi M, Kumari L, Yalakaturi K, Munjal K, Jimitreddy S, Kandamuri M, Veeramachineni P, Chopra H, Junapudi S. Nanoparticle Polymers Influence on Cardiac Health: Good or Bad for Cardiac Physiology? Curr Probl Cardiol 2024; 49:102145. [PMID: 37852559 DOI: 10.1016/j.cpcardiol.2023.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death and morbidity worldwide. Lifestyle modifications, medications, and addressing epidemiological factors have long been at the forefront of targeting therapeutics for CVD. Treatments can be further complicated given the intersection of gender, age, unique comorbidities, and healthcare access, among many other factors. Therefore, expanding treatment and diagnostic modalities for CVD is absolutely necessary. Nanoparticles and nanomaterials are increasingly being used as therapeutic and diagnostic modalities in various disciplines of biomedicine. Nanoparticles have multiple ways of interacting with the cardiovascular system. Some of them alter cardiac physiology by impacting ion channels, whereas others influence ions directly or indirectly, improving cellular death via decreasing oxidative stress. While embedding nanoparticles into therapeutics can help enhance healthy cardiovascular function in other scenarios, they can also impair physiology by increasing reactive oxidative species and leading to cardiotoxicity. This review explores different types of nanoparticles, their effects, and the applicable dosages to create a better foundation for understanding the current research findings.
Collapse
Affiliation(s)
- Manasa Kanithi
- Michigan State University College of Osteopathic Medicine, East Lansing, MI
| | - Lata Kumari
- People University of Medical and Health Sciences, Nawab Shah, Sindh, Pakistan
| | | | - Kavita Munjal
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sunil Junapudi
- Geethanjali College of Pharmacy, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Filippov AG, Alexandrin VV, Ivanov AV, Paltsyn AA, Sviridkina NB, Virus ED, Bulgakova PO, Burmiy JP, Kubatiev AA. Neuroprotective Effect of Platinum Nanoparticles Is Not Associated with Their Accumulation in the Brain of Rats. J Funct Biomater 2023; 14:348. [PMID: 37504843 PMCID: PMC10381480 DOI: 10.3390/jfb14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mechanisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavailability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter) were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced aminothiols level in plasma, and the glutathione redox status in the brain, which were induced by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation, and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a promising trend in the treatment of acute disorders of CBF.
Collapse
Affiliation(s)
| | | | | | - Alexander Alexandrovich Paltsyn
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| | | | | | | | - Joanna Petrovna Burmiy
- Institute of Microelectronic Technology and Ultra-High-Purity Materials, Akademika Osip'yana Str., 6, 142432 Chernogolovka, Russia
| | - Aslan Amirkhanovich Kubatiev
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
- Russian Medical Academy for Continuing Professional Education, Barricadnaya St., 2/1 b. 1, 125993 Moscow, Russia
| |
Collapse
|
7
|
Electrolyzed-Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects. Int J Mol Sci 2022; 23:ijms232314750. [PMID: 36499079 PMCID: PMC9738607 DOI: 10.3390/ijms232314750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous benefits have been attributed to alkaline-electrolyzed-reduced water (ERW). Sometimes these claims are associated with easily debunked concepts. The observed benefits have been conjectured to be due to the intrinsic properties of ERW (e.g., negative oxidation-reduction potential (ORP), alkaline pH, H2 gas), as well enigmatic characteristics (e.g., altered water structure, microclusters, free electrons, active hydrogen, mineral hydrides). The associated pseudoscientific marketing has contributed to the reluctance of mainstream science to accept ERW as having biological effects. Finally, through many in vitro and in vivo studies, each one of these propositions was examined and refuted one-by-one until it was conclusively demonstrated that H2 was the exclusive agent responsible for both the negative ORP and the observed therapeutic effects of ERW. This article briefly apprised the history of ERW and comprehensively reviewed the sequential research demonstrating the importance of H2. We illustrated that the effects of ERW could be readily explained by the known biological effects of H2 and by utilizing conventional chemistry without requiring any metaphysical conjecture (e.g., microclustering, free electrons, etc.) or reliance on implausible notions (e.g., alkaline water neutralizes acidic waste). The H2 concentration of ERW should be measured to ensure it is comparable to those used in clinical studies.
Collapse
|
8
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
9
|
LeBaron TW, Sharpe R, Ohno K. Electrolyzed-Reduced Water: Review II: Safety Concerns and Effectiveness as a Source of Hydrogen Water. Int J Mol Sci 2022; 23:14508. [PMID: 36498838 PMCID: PMC9736533 DOI: 10.3390/ijms232314508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Many studies demonstrate the safety of alkaline-electrolyzed-reduced water (ERW); however, several animal studies have reported significant tissue damage and hyperkalemia after drinking ERW. The mechanism responsible for these results remains unknown but may be due to electrode degradation associated with the production of higher pH, in which platinum nanoparticles and other metals that have harmful effects may leach into the water. Clinical studies have reported that, when ERW exceeds pH 9.8, some people develop dangerous hyperkalemia. Accordingly, regulations on ERW mandate that the pH of ERW should not exceed 9.8. It is recommended that those with impaired kidney function refrain from using ERW without medical supervision. Other potential safety concerns include impaired growth, reduced mineral, vitamin, and nutrient absorption, harmful bacterial overgrowth, and damage to the mucosal lining causing excessive thirst. Since the concentration of H2 in ERW may be well below therapeutic levels, users are encouraged to frequently measure the H2 concentration with accurate methods, avoiding ORP or ORP-based H2 meters. Importantly, although, there have been many people that have used high-pH ERW without any issues, additional safety research on ERW is warranted, and ERW users should follow recommendations to not ingest ERW above 9.8 pH.
Collapse
Affiliation(s)
- Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
10
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
11
|
Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Mitrevska K, Cernei N, Michalkova H, Rodrigo MAM, Sivak L, Heger Z, Zitka O, Kopel P, Adam V, Milosavljevic V. Platinum-based drug-induced depletion of amino acids in the kidneys and liver. Front Oncol 2022; 12:986045. [PMID: 36212465 PMCID: PMC9535364 DOI: 10.3389/fonc.2022.986045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- *Correspondence: Vedran Milosavljevic,
| |
Collapse
|
13
|
Alsaleh NB. Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102421. [PMID: 34166839 DOI: 10.1016/j.nano.2021.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022]
Abstract
Nanotechnology is spanning multiple fields of study from materials science to computer engineering and drug discovery. Since the early 21st century, nanotechnology and nano-enabled research have received great attention and governmental funding accompanied with interest to ensure human and environmental safety of engineered nanomaterials (ENMs). Optimal functioning of the cardiovascular (CV) system is of utmost importance for the overall health of the body. Following exposure, ENMs essentially end up in the circulation (at least partially) and hence it is key to assess any associated adverse CV consequences. Accumulating research suggests that exposure to ENMs (different compositions and physicochemical properties) has the capacity to directly and indirectly interact with CV components resulting in adverse events and worsening of CV complications. However, the underlying molecular mechanisms driving these events remain to be elucidated. In this article, we review state-of-art literature on ENM-associated adverse CV responses and discuss the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Mukherjee S, Bollu VS, Roy A, Nethi SK, Madhusudana K, Kumar JM, Sistla R, Patra CR. Acute Toxicity, Biodistribution, and Pharmacokinetics Studies of Pegylated Platinum Nanoparticles in Mouse Model. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sudip Mukherjee
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vishnu Sravan Bollu
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arpita Roy
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Susheel Kumar Nethi
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuncha Madhusudana
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
| | - Jerald Mahesh Kumar
- CSIR – Centre for Cellular and Molecular Biology Hyderabad 500007 Telangana India
| | - Ramakrishna Sistla
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Chitta Ranjan Patra
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
16
|
Application of Selected Nanomaterials and Ozone in Modern Clinical Dentistry. NANOMATERIALS 2021; 11:nano11020259. [PMID: 33498453 PMCID: PMC7909445 DOI: 10.3390/nano11020259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
This review is an attempt to summarize current research on ozone, titanium dioxide (TiO2), silver (Ag), copper oxide CuO and platinum (Pt) nanoparticles (NPs). These agents can be used in various fields of dentistry such as conservative dentistry, endodontic, prosthetic or dental surgery. Nanotechnology and ozone can facilitate the dentist’s work by providing antimicrobial properties to dental materials or ensuring a decontaminated work area. However, the high potential of these agents for use in medicine should be confirmed in further research due to possible side effects, especially in long duration of observation so that the best way to apply them can be obtained.
Collapse
|
17
|
Citrate-Coated Platinum Nanoparticles Exhibit a Primary Particle-Size Dependent Effect on Stimulating Melanogenesis in Human Melanocytes. COSMETICS 2020. [DOI: 10.3390/cosmetics7040088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypopigmentation disorders due to an underproduction of the pigment melanin by melanocytes cause uneven skin coloration, while in hair follicles they cause grey hair. There is a need for novel materials which can stimulate melanogenesis in the skin and hair for personal care use. While titanium dioxide, gold and silver nanoparticles have been extensively used for applications in cosmetic and personal-care products (PCP), the use of relatively inert platinum nanoparticles (PtNPs) has remained underappreciated. PtNPs have been reported to be a mimetic of the enzyme catechol oxidase with small size PtNPs reported to exhibit a higher catechol oxidase activity in a cell-free system, but no testing has been conducted in melanocytes to date. Herein, we have investigated if PtNPs of two sizes (SPtNP: 5 nm; LPtNP: 50 nm) might have an effect on melanogenesis. To this end, we have used MNT-1 human melanoma cells and primary human melanocytes from moderately-pigmented skin (HEMn-MP). Both SPtNP and LPtNP were nontoxic over a concentration range 6.25–25 μg/mL, hence these concentrations were used in further experiments. Both PtNPs stimulated higher extracellular melanin levels than control; SPtNP at concentrations 12.5 and 25 μg/mL significantly stimulated higher levels of extracellular melanin as compared to similar concentrations of LPtNP in MNT-1 cells, in the absence of ROS generation. The effects of PtNPs on melanin secretion were reversible upon removal of PtNPs from the culture medium. The results of primary particle size-specific augmentation of extracellular melanin by SPtNPs were also validated in HEMn-MP cells. Our results thus provide a proof-of-principle that SPtNP might hold potential as a candidate for the treatment of white skin patches, for sunless skin-tanning and for use in anti-greying hair products in cosmetics.
Collapse
|
18
|
Aleksandrova G, Lesnichaya M, Dolmaa G, Sukhov B, Regdel D. The effect of organic matter humification (aromaticity and oxidation degree) on structural and nanomorphological characteristics of humic nanocomposites of metallic platinum. ENVIRONMENTAL RESEARCH 2020; 190:109878. [PMID: 32739625 DOI: 10.1016/j.envres.2020.109878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND It has been previously found that humic substances (HSs) can serve as the environmentally benign non-toxic agent for the preparation of magnetic and noble metals nanoparticles that are increasingly used in biomedicine. The structure of HSs and, hence, their synthetic potential depend on the source of their origin. Thus, humification character, determined by conditions and duration of complex transformation of organic remains in HSs can evidence their structure, in particular their aromaticity and oxidation degree. The incorporation of platinum nanoparticles in a shell of HSs allows obtaining aggregate-stable nanomaterials with directly controlled structural and nanomorphological characteristics, which combine the properties of platinum nanoparticles (selective cytotoxicity, anti-inflammatory activity, etc. And a complex of biological properties of HSs (antioxidant, immunomodulatory and anti-inflammatory activity. At the same time, the expression of valuable properties of platinum nanoparticles can be varied directly by changing their nanomorphological characteristics that strongly depend on the conditions of synthesis, in particular on the HSs type which is used for the synthesis. AIM To study the effect of humification (aromaticity and oxidation degree) of three types of humic substances extracted from natural Mongolia sources (therapeutic muds of Gurvan Nuur Lake, brown coal of Baganuur coal deposit and shale of Shine Hudag deposit) on structural and nanomorphological characteristics of Pt0-containing nanocomposites produced on their basis. METHODS Nanocomposites with Pt0 content 1.2-6.5% were synthesized by reduction of hydrogen hexachloroplatinate with HSs in an aqueous-alkaline medium upon heating (90 °C). The yield of nanocomposites varied depending on type of HSs in the range 75-96%. The structure, composition and morphology of obtained nanocomposites were characterized by complex of modern physical and chemical methods (elemental analysis, XRD, SEM, TEM, IR- and optical-spectroscopy, DLS). RESULTS The platinum-containing nanocomposites have been synthesized using the reduction and stabilizing potentials of HSs with different degrees of humification (aromaticity and oxidation degree) and isolated from three natural Mongolian sources. The effect of functional composition, including oxidation and aromaticity degrees of HSs on the yield, quantitative and nanomorphological characteristics of produced platinum nanocomposites has been found. It is established that under the same reaction conditions platinum nanoparticles with face-centered cubic lattice and the smallest average size (9-15 nm) are formed from humic substances extracted from coal, while HSs derived from mud and shale afford the nanoparticles of larger size (18-28 and 16-26 nm respectively). The increase of platinum content in nanocomposites enlarges their average size, decreases their aggregate stability, as well as augments oxidation degree of HSs macromolecules. The reduction of platinum from precursor to the zero-valent state occurs due to oxidation of the phenolic and alcoholic hydroxyl groups, which are major components of HSs, as well as carbonyl groups. At the same time, HSs cover individual platinum nanoparticles, making them water soluble and preventing their aggregation. CONCLUSION Thus, we have synthesized a series Pt0-containing nanocomposites containing 1.2-6.5% with use as reducing and stabilizing matrix of natural available HSs with different humification characteristics (aromaticity and oxidation degree) and isolated from three natural Mongolia sources It is found that obtained nanocomposites are formed in form of platinum nanoparticles mainly of spherical shape and size of 3-42 nm distributed in a matrix of HSs. Polyfunctional composition of HSs is determined by conditions of their transformation and degree of humification, which provides their reducing and stabilizing properties during the synthesis of platinum metallic nanocomposites. It is established that Pt0 nanoparticles with the smallest average size and the highest aggregate stability are generated from HSs-coal with the lowest oxidation degree. These data contribute significantly to understanding of possible control of the nanomaterials synthesis and prediction of their properties.
Collapse
Affiliation(s)
- Galina Aleksandrova
- A.E. Favorsky Irkutsk Institute of Chemistry of Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Favorsky Street, 1, Russia.
| | - Marina Lesnichaya
- A.E. Favorsky Irkutsk Institute of Chemistry of Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Favorsky Street, 1, Russia
| | - Gania Dolmaa
- Institute of Chemistry аnd Chemical Technology of Mongolian Academy of Sciences, 13330, Ulaan-Baatar, Mongolia
| | - Boris Sukhov
- A.E. Favorsky Irkutsk Institute of Chemistry of Siberian Branch of Russian Academy of Sciences, 664033, Irkutsk, Favorsky Street, 1, Russia
| | - Duger Regdel
- Institute of Chemistry аnd Chemical Technology of Mongolian Academy of Sciences, 13330, Ulaan-Baatar, Mongolia
| |
Collapse
|
19
|
Liu YQ, Xue SM, Zhang P, Xu LN, Wang DP, Li G, Cao JM. Silica Nanoparticles Disturb Ion Channels and Transmembrane Potentials of Cardiomyocytes and Induce Lethal Arrhythmias in Mice. Int J Nanomedicine 2020; 15:7397-7413. [PMID: 33116478 PMCID: PMC7547143 DOI: 10.2147/ijn.s261692] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background The toxicity of silica nanoparticles (SiNPs) on cardiac electrophysiology has seldom been evaluated. Methods Patch-clamp was used to investigate the acute effects of SiNP-100 (100 nm) and SiNP-20 (20 nm) on the transmembrane potentials (TMPs) and ion channels in cultured neonatal mouse ventricular myocytes. Calcium mobilization in vitro, cardiomyocyte ROS generation, and LDH leakage after exposure to SiNPs in vitro and in vivo were measured using a microplate reader. Surface electrocardiograms were recorded in adult mice to evaluate the arrhythmogenic effects of SiNPs in vivo. SiNP endocytosis was observed using transmission electron microscopy. Results Within 30 min, both SiNPs (10-8-10-6 g/mL) did not affect the resting potential and IK1 channels. SiNP-100 increased the action potential amplitude (APA) and the INa current density, but SiNP-20 decreased APA and INa density. SiNP-100 prolonged the action potential duration (APD) and decreased the Ito current density, while SiNP-20 prolonged or shortened the APD, depending on exposure concentrations and increased Ito density. Both SiNPs (10-6 g/mL) induced calcium mobilization but did not increase ROS and LDH levels and were not endocytosed within 10 min in cardiomyocytes in vitro. In vivo, SiNP-100 (4-10 mg/kg) and SiNP-20 (4-30 mg/kg) did not elevate myocardial ROS but increased LDH levels depending on dose and exposure time. The same higher dose of SiNPs (intravenously injected) induced tachyarrhythmias and lethal bradyarrhythmias within 90 min in adult mice. Conclusion SiNPs (i) exert rapid toxic effects on the TMPs of cardiomyocytes in vitro largely owing to their direct interfering effects on the INa and Ito channels and Ca2+ homeostasis but not IK1 channels and ROS levels, and (ii) induce tachyarrhythmias and lethal bradyarrhythmias in vivo. SiNP-100 is more toxic than SiNP-20 on cardiac electrophysiology, and the toxicity mechanism is likely more complicated in vivo.
Collapse
Affiliation(s)
- Ya-Qin Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Si-Meng Xue
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Lin-Na Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ji-Min Cao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| |
Collapse
|
20
|
Shi X, Liu Z, Li J. Protective effects of dexmedetomidine on hypoxia/reoxygenation injury in cardiomyocytes by regulating the CHOP signaling pathway. Mol Med Rep 2020; 22:3307-3315. [PMID: 32945482 PMCID: PMC7453597 DOI: 10.3892/mmr.2020.11442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) injury in myocardial cells occurs frequently during cardiac surgery and affects the prognosis of patients. The present study aimed to investigate the protective effects of dexmedetomidine (Dex) on H/R injury and its association with the C/EBP-homologous protein (CHOP) signaling pathway. An H/R model was constructed in H9C2 cells to investigate the effects of Dex on H/R injury. Cell viability, apoptosis and lactate dehydrogenase (LDH) levels were determined by MTT, flow cytometry and 2,4-dinitrophenylhydrazine colorimetric assays, respectively. The expression levels of inflammatory factors were measured by reverse transcription-quantitative PCR (RT-qPCR), and CHOP and glucose-regulated protein-78 (Grp78) expression levels were detected by RT-qPCR and western blotting. CHOP was overexpressed or knocked down to detect the cell viability, apoptosis, LDH level and the expression levels of inflammatory factors and Grp78. The results demonstrated that in the H/R group, cell viability was lower and apoptosis was higher, and that higher levels of LDH and inflammatory factors were present compared with those in the Dex+H/R group. Silencing of CHOP significantly reversed the H/R-reduced cell viability, high apoptotic rate and LDH levels, as well as the elevated expression levels of inflammatory factors and Grp78 caused by H/R injury, whereas the overexpression of CHOP inhibited cell viability and promoted apoptosis, elevated LDH level and expression of inflammatory factors and Grp78 compared with the negative control. Additionally, pretreatment with Dex significantly alleviated the H/R injury; thus, Dex may protect H9C2 cells against H/R induced cell injury, possibly by suppressing the CHOP signaling pathway.
Collapse
Affiliation(s)
- Xiaoqiao Shi
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhiwen Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Junwei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
21
|
Panov V, Minigalieva I, Bushueva T, Fröhlich E, Meindl C, Absenger-Novak M, Shur V, Shishkina E, Gurvich V, Privalova L, Katsnelson BA. Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose Response 2020; 18:1559325820914180. [PMID: 32231470 PMCID: PMC7088228 DOI: 10.1177/1559325820914180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity.
Collapse
Affiliation(s)
- Vladimir Panov
- Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.,Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Ilzira Minigalieva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Tatiana Bushueva
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Eleonore Fröhlich
- Center for Medical Research of the Medical University of Graz, Austria
| | - Claudia Meindl
- Center for Medical Research of the Medical University of Graz, Austria
| | | | - Vladimir Shur
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Ekaterina Shishkina
- School of Natural Sciences and Mathematics, the Ural Federal University, Ekaterinburg, Russia
| | - Vladimir Gurvich
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Larisa Privalova
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - Boris A Katsnelson
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
22
|
Li X, Bian Y, Pang P, Yu S, Wang X, Gao Y, Liu K, Liu Q, Yuan Y, Du W. Inhibition of Dectin-1 in mice ameliorates cardiac remodeling by suppressing NF-κB/NLRP3 signaling after myocardial infarction. Int Immunopharmacol 2020; 80:106116. [PMID: 31978804 DOI: 10.1016/j.intimp.2019.106116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/16/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
The myocardial inflammatory response is a consequence of myocardial infarction (MI), which may deteriorate cardiac remodeling and lead to dysfunction in the heart post-MI. Dectin-1 is a c-type lectin, which has been shown to regulate innate immune responses to pathogens. However, the role of Dectin-1 in the heart diseases remains largely unknown. In this study, we aimed to investigate the effects of Dectin-1 on cardiac remodeling post-MI. We found that cardiac Dectin-1 mRNA and protein expressions were significantly elevated in C57BL/6 mice after MI. In vitro, hypoxia induced cardiomyocyte injury in parallel with increased Dectin-1 protein expression. Knockdown of Dectin-1 remarkably attenuated cardiomyocyte death under hypoxia and lipopolysaccharide (LPS) stimulation. In vivo administration of adeno-associated virus serotype 9 mediated silencing of Dectin-1, which significantly decreased cardiac fibrosis, dilatation, and improved cardiac function in the mice post-MI. At the molecular level, downregulation of Dectin-1 dramatically suppressed up-regulation of nuclear factor-κB (NF-κB), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), and the inflammatory genes involved in fibrogenesis and cardiac remodeling after MI. Furthermore, treatment with BAY11-7082, an inhibitor of NF-κB, repressed the activation of NF-κB, and attenuated LPS induced elevation of NLRP3 and cell death in cardiomyocytes. Collectively, upregulation of Dectin-1 in cardiomyocytes post-MI contributes to cardiac remodeling and cardiac dysfunction at least partially by activating NF-κB and NLRP3. This study identified Dectin-1 as a promising therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Yu Bian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ping Pang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Shuting Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiuzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Yuelin Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Kuiwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Qian Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ye Yuan
- Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150086, China.
| | - Weijie Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, PR China.
| |
Collapse
|