1
|
Jin J, Chen Y, Li H, Xu Y, Wang L. Loading polyaniline (PANI) nanoparticles to mesoporous hydroxyapatite (HAp) spheres for near infrared (NIR) induced doxorubicin (DOX) drug delivery and colon cancer treatment. Phys Chem Chem Phys 2024; 26:23277-23287. [PMID: 39196348 DOI: 10.1039/d4cp02509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In response to the pressing need for more efficient and targeted cancer therapies, this study presents the development of biodegradable hydroxyapatite/polyaniline (HAp/PANI) nanocomposite drug carriers for near-infrared (NIR)-induced drug delivery. The synthesis involved loading polyaniline onto mesoporous hydroxyapatite spheres, resulting in high drug loading capacity and tunable NIR responsiveness. The HAp/PANI spheres exhibited superior photothermal properties compared to pristine HAp under NIR irradiation, along with excellent biocompatibility. Importantly, the drug release behavior could be precisely controlled by adjusting NIR power and irradiation time, leading to enhanced anticancer efficacy against HCT-116 colorectal cancer cells. These findings highlight the potential of HAp/PANI mesoporous spheres as promising drug carriers for NIR-responsive cancer therapy.
Collapse
Affiliation(s)
- Jiamin Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China.
- School of Bioengineering, Dalian University of Technology, Liaoning, Dalian 116024, P. R. China.
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, P. R. China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Yujing Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Houzhong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, P. R. China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Liaoning, Dalian 116024, P. R. China.
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, P. R. China
| | - Liyan Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, P. R. China.
| |
Collapse
|
2
|
Jermy BR, Khan F, Ravinayagam V, Almessiere M, Slimani Y, Hassan M, Homeida A, Al-Suhaimi E, Baykal A. Multifunctional CoCe/silica and CoMnCe/silica spinel ferrite nanocomposite: in vitro and in vivo evaluation for cancer therapy. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101251. [DOI: 10.1016/j.nanoso.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
3
|
Yi J, Liu L, Gao W, Zeng J, Chen Y, Pang E, Lan M, Yu C. Advances and perspectives in phototherapy-based combination therapy for cancer treatment. J Mater Chem B 2024; 12:6285-6304. [PMID: 38895829 DOI: 10.1039/d4tb00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), has the advantages of spatiotemporal selectivity, non-invasiveness, and negligible drug resistance. Phototherapy has been approved for treating superficial epidermal tumors. However, its therapeutic efficacy is limited by the hypoxic tumor microenvironment and the highly expressed heat shock protein. Moreover, poor tissue penetration and focused irradiation laser region in phototherapy make treating deep tissues and metastatic tumors challenging. Combination therapy strategies, which integrate the advantages of each treatment and overcome their disadvantages, can significantly improve the therapeutic efficacy. Recently, many combination therapy strategies have been reported. Our study summarizes the strategies used for combining phototherapy with other cancer treatments such as chemotherapy, immunotherapy, sonodynamic therapy, gas therapy, starvation therapy, and chemodynamic therapy. Some research cases were selected to analyze the combination therapy effect, delivery platform feature, and synergetic anticancer mechanisms. Moreover, additional research cases are summarized in the tables. This review provides strong evidence that phototherapy-based combination strategies can enhance the anticancer effect compared with phototherapy alone. Additionally, the challenges and future perspectives associated with these combinational therapies are discussed.
Collapse
Affiliation(s)
- Jianing Yi
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Luyao Liu
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Jie Zeng
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Yongzhi Chen
- Department of Hepatobiliary surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
4
|
Sun L, Li Z, Lan J, Wu Y, Zhang T, Ding Y. Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front Pharmacol 2024; 15:1389922. [PMID: 38831883 PMCID: PMC11144913 DOI: 10.3389/fphar.2024.1389922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Gutierrez-Romero L, Díez P, Montes-Bayón M. Bioanalytical strategies to evaluate cisplatin nanodelivery systems: From synthesis to incorporation in individual cells and biological response. J Pharm Biomed Anal 2024; 237:115760. [PMID: 37839264 DOI: 10.1016/j.jpba.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Cisplatin metallodrugs have been widely used in the treatment of multiple cancers over the last years. Nevertheless, its limited effectiveness, development of acquired drug resistances, and toxic effects decrease nowadays their application in clinical settings. Aiming at improving their features, investigations have been oriented towards the coupling of cisplatin to nanocarriers, like liposomes or inorganic nanoparticles. Moreover, these systems can be further developed to allow targeted co-delivery of drugs. In this review, we describe the major nanosystems and the optimal analytical strategies for their assessment. Finally, we describe the main biological effects of these metallodrug conjugates and the available approaches for their study.
Collapse
Affiliation(s)
- Lucia Gutierrez-Romero
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Paula Díez
- Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Maria Montes-Bayón
- Department of Physical and Analytical Chemistry. Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain.
| |
Collapse
|
6
|
Nair GG, Linster ED, Ray P, Quadir MA, Reindl KM. Extracellular Signal-Regulated Kinase Inhibitor SCH772984 Augments the Anti-Cancer Effects of Gemcitabine in Nanoparticle Form in Pancreatic Cancer Models. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:220-233. [PMID: 39493509 PMCID: PMC11530947 DOI: 10.22088/ijmcm.bums.13.3.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 11/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor response to the limited treatment options currently available. Hence, there is a need to identify new agents that could enhance the efficacy of existing treatments. This study investigated a combination therapy using gemcitabine (GEM) and SCH772984, an extracellular signal-regulated kinase (ERK) inhibitor, in both free form and nanoparticle-encapsulated form for PDAC treatment. Cell viability and Matrigel growth assays were used to determine the anti-proliferative and cytotoxic effects of GEM and SCH772984 on PDAC cells. Additionally, western blotting was used to determine the degree to which SCH772984 engaged ERK in PDAC cells. Lastly, immunohistochemistry and hematoxylin and eosin (H&E) staining were used to determine how GEM and SCH772984 affected expression of Ki-67 cell proliferation marker in PDX (patient derived xenograft) PDAC tissues. PDAC cell lines (MIA PaCa-2 and PANC-1) treated with the combination of free GEM and SCH772984 showed reduction in cell viability compared to cells treated with free GEM or SCH772984 administered as a single agent. Encapsulated forms of GEM and SCH772984 caused a greater reduction in cell viability than the free forms. Interestingly, co-administration of GEM and SCH772984 in separate nanoparticle (NP) systems exhibited the highest reduction in cell viability. Western blotting analysis confirmed ERK signaling was inhibited by both free and encapsulated SCH772984. Importantly, GEM did not interfere with the inhibitory effect of SCH772984 on phosphorylated ERK (pERK). Collectively, our studies suggest that combination therapy with GEM and SCH772984 effectively reduced PDAC cell viability and growth, and co-administration of NP encapsulated GEM and SCH772984 in separate NP systems is an effective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Gauthami G Nair
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Elena D Linster
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Mohiuddin A Quadir
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Katie M Reindl
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| |
Collapse
|
7
|
Araujo HC, Pessan JP, Caldeirão ACM, Sampaio C, Oliveira MJDS, Sales DH, Teixeira SR, Constantino CJL, Delbem ACB, Oliveira SHP, Ramage G, Monteiro DR. Dual nanocarrier of chlorhexidine and fluconazole: Physicochemical characterization and effects on microcosm biofilms and oral keratinocytes. J Dent 2023; 138:104699. [PMID: 37716636 DOI: 10.1016/j.jdent.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study assembled and characterized a dual nanocarrier of chlorhexidine (CHX) and fluconazole (FLZ), and evaluated its antibiofilm and cytotoxic effects. METHODS CHX and FLZ were added to iron oxide nanoparticles (IONPs) previously coated by chitosan (CS) and characterized by physical-chemical analyses. Biofilms from human saliva supplemented with Candida species were grown (72 h) on glass discs and treated (24 h) with IONPs-CS carrying CHX (at 39, 78, or 156 µg/mL) and FLZ (at 156, 312, or 624 µg/mL) in three growing associations. IONPs and CS alone, and 156 µg/mL CHX + 624 µg/mL FLZ (CHX156-FLZ624) were tested as controls. Next, microbiological analyses were performed. The viability of human oral keratinocytes (NOKsi lineage) was also determined (MTT reduction assay). Data were submitted to ANOVA or Kruskal-Wallis, followed by Fisher's LSD or Tukey's tests (α=0.05). RESULTS Nanocarriers with spherical-like shape and diameter around 6 nm were assembled, without compromising the crystalline property and stability of IONPs. Nanocarrier at the highest concentrations was the most effective in reducing colony-forming units of Streptococcus mutans, Lactobacillus spp., Candida albicans, and Candida glabrata. The other carriers and CHX156-FLZ624 showed similar antibiofilm effects, and significantly reduced lactic acid production (p<0.001). Also, a dose-dependent cytotoxic effect against oral keratinocytes was observed for the dual nanocarrier. IONPs-CS-CHX-FLZ and CHX-FLZ significantly reduced keratinocyte viability at CHX and FLZ concentrations ≥7.8 and 31.25 µg/mL, respectively (p<0.05). CONCLUSION The nanotherapy developed outperformed the effect of the combination CHX-FLZ on microcosm biofilms, without increasing the cytotoxic effect of the antimicrobials administered. CLINICAL SIGNIFICANCE The dual nanocarrier is a promising topically-applied therapy for the management of oral candidiasis considering that its higher antibiofilm effects allow the use of lower concentrations of antimicrobials than those found in commercial products.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Juliano Pelim Pessan
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Anne Caroline Morais Caldeirão
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil
| | - Caio Sampaio
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Marcelo José Dos Santos Oliveira
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Douglas Henrique Sales
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Silvio Rainho Teixeira
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Carlos José Leopoldo Constantino
- São Paulo State University (Unesp), School of Technology and Applied Sciences (FCT), Department of Physics, 19060-900 Presidente Prudente/São Paulo, Brazil
| | - Alberto Carlos Botazzo Delbem
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Basic Sciences, 16015-050 Araçatuba/São Paulo, Brazil
| | - Gordon Ramage
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, Glasgow Caledonian University, Glasgow UK
| | - Douglas Roberto Monteiro
- São Paulo State University (Unesp), School of Dentistry, Araçatuba, Department of Preventive and Restorative Dentistry, 16015-050 Araçatuba/São Paulo, Brazil; School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil; Postgraduate Program in Health Sciences, University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
8
|
Vaezi-Kakhki A, Asoodeh A. Comparison of different methods for synthesis of iron oxide nanoparticles and investigation of their cellular properties, and antioxidant potential. Int J Pharm 2023; 645:123417. [PMID: 37714316 DOI: 10.1016/j.ijpharm.2023.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Iron oxide nanoparticles could play a useful role in lung cancer therapy. Iron oxide nanoparticles (NPs) were synthesized by plant mediated synthesis, chemical, and microbial mediated synthesis. iron oxide nanoparticle polyethylene glycol cis-diamminedichloroplatinum (Fe2O3@PEG@CDDP(, iron oxide nanoparticle polyethylene glycol (Fe2O3@PEG), and cis-diamminedichloroplatinum (CDDP) were evaluated for their antioxidant,and in vitro cytotoxicity tests. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), mapping, and zeta potential were used to characterize the synthesized iron oxides NPs. Cell toxicity was determined using A549 and HFF cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antioxidant scavenging activity of Fe2O3@PEG@CDDP, Fe2O3@PEG, and CDDP displayed IC50 values (11.96, 26.74, and 3.17 μg/ml) and (8.54, 11.4, and 1.14 μg/ml) in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Nanoparticles obtained from plant mediated synthesis method showed the great antioxidant activity. Results showed that, green-method synthesized nanoparticles were the most effective at killing cancer cells. Thus, the characteristics of nanoparticles from green synthesis are more valuable than the other methods. Green synthesis is environmental friendly cost-effective, and easy approach for synthesize NPs.
Collapse
Affiliation(s)
- Abbas Vaezi-Kakhki
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
10
|
Li M, Sun X, Yin M, Shen J, Yan S. Recent Advances in Nanoparticle-Mediated Co-Delivery System: A Promising Strategy in Medical and Agricultural Field. Int J Mol Sci 2023; 24:5121. [PMID: 36982200 PMCID: PMC10048901 DOI: 10.3390/ijms24065121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Drug and gene delivery systems mediated by nanoparticles have been widely studied for life science in the past decade. The application of nano-delivery systems can dramatically improve the stability and delivery efficiency of carried ingredients, overcoming the defects of administration routes in cancer therapy, and possibly maintaining the sustainability of agricultural systems. However, delivery of a drug or gene alone sometimes cannot achieve a satisfactory effect. The nanoparticle-mediated co-delivery system can load multiple drugs and genes simultaneously, and improve the effectiveness of each component, thus amplifying efficacy and exhibiting synergistic effects in cancer therapy and pest management. The co-delivery system has been widely reported in the medical field, and studies on its application in the agricultural field have recently begun to emerge. In this progress report, we summarize recent progress in the preparation and application of drug and gene co-delivery systems and discuss the remaining challenges and future perspectives in the design and fabrication.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaowei Sun
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
12
|
Mousavi M, Koosha F, Neshastehriz A. Chemo-radiation therapy of U87-MG glioblastoma cells using SPIO@AuNP-Cisplatin-Alginate nanocomplex. Heliyon 2023; 9:e13847. [PMID: 36873545 PMCID: PMC9976303 DOI: 10.1016/j.heliyon.2023.e13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/21/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Megavoltage radiotherapy and cisplatin-based chemotherapy are the primary glioblastoma treatments. Novel nanoparticles have been designed to reduce adverse effects and boost therapeutic effectiveness. In the present study, we synthesized the SPIO@AuNP-Cisplatin-Alginate (SACA) nanocomplex, composed of a SPIO core, a gold shell, and an alginate coating. SACA was characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). U87-MG human glioblastoma cells and the HGF cell line (a healthy primary gingival fibroblast) were treated in multiple groups by a combination of SACA, cisplatin, and 6 MV X-ray. The MTT assay was used to assess the cytotoxicity of cisplatin and SACA (at various concentrations and for 4 h). Following the treatments, apoptosis and cell viability were evaluated in each treatment group using flow cytometry and the MTT assay, respectively. The findings demonstrated that the combination of SACA and 6 MV X-rays (at the doses of 2 and 4 Gy) drastically decreased the viability of U87MG cells, whereas the viability of HGF cells remained unchanged. Moreover, U87MG cells treated with SACA in combination with radiation exhibited a significant increase in apoptosis, demonstrating that this nanocomplex effectively boosted the radiosensitivity of cancer cells. Even though additional in vivo studies are needed, these findings suggest that SACA might be used as a radiosensitizer nanoparticle in the therapy of brain tumors.
Collapse
Affiliation(s)
- Mahdie Mousavi
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, school of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| |
Collapse
|
13
|
Yang SJ, Pai JA, Shieh MJ, Chen JLY, Chen KC. Cisplatin-loaded gold nanoshells mediate chemo-photothermal therapy against primary and distal lung cancers growth. Biomed Pharmacother 2023; 158:114146. [PMID: 36584428 DOI: 10.1016/j.biopha.2022.114146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the most common cause of cancer mortality worldwide. The advances in surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs have progressed in the past decades, but the prognosis of lung cancer is still poor. In this study, we developed cisplatin (CDDP)-loaded human serum albumin (HSA)-based gold nanoshells (HCP@GNSs) for synergistic chemo-photothermal therapy (chemo-PTT). The HCP@GNSs not only acted as drug nanocarriers for chemotherapy but also serve as a superior mediator for PTT, which could exhibit a temperature increase upon a near infrared (NIR) laser exposure that was sufficient for photothermal ablation. HCP@GNSs were highly biocompatible and hemocompatible nanocarriers, while the synergistic chemo-PTT resulting from HCP@GNSs plus NIR exposure displayed stronger cytotoxicity effect than HCP@GNSs or PTT alone, especially at a low CDDP concentration. In vivo analysis demonstrated that HCP@GNSs-mediated chemo-PTT increased necrosis in tumors to achieve a high tumor clearance rate with no adverse side effects. Moreover, HCP@GNSs-medicated chemo-PTT induced the recruitment of dendritic cells, B-cells, and natural killer T-cells in distal tumors to inhibit the growth of the tumors. Therefore, the CDDP-loaded HCP@GNSs may be a potential nanomedicine candidate for curative lung cancer treatment in the future.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jui-An Pai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
14
|
Darroudi M, Elnaz Nazari S, Karimzadeh M, Asgharzadeh F, Khalili-Tanha N, Asghari SZ, Ranjbari S, Babaei F, Rezayi M, Khazaei M. Two-dimensional-Ti 3C 2 magnetic nanocomposite for targeted cancer chemotherapy. Front Bioeng Biotechnol 2023; 11:1097631. [PMID: 36761295 PMCID: PMC9905703 DOI: 10.3389/fbioe.2023.1097631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Cervical cancer is the leading cause of cancer-related death in women, so novel therapeutic approaches are needed to improve the effectiveness of current therapies or extend their activity. In recent decades, graphene analogs, such as Mxene, an emerging class of two-dimensional (2D) graphene analogs, have been drawing considerable attention based on their intrinsic physicochemical properties and performance as potential candidates for tumor therapy, particularly for therapeutic purposes. Here we explored the targeted drug delivery in cervical cancer in in vivo model. Mxene-based nanocarriers are not able to be precisely controlled in cancer treatment. Method: To solve this problem, the titanium carbide-magnetic core-shell nanocarrier (Ti3C2-Fe3O4@SiO2-FA) is also developed to provide synergetic anticancer with magnetic controlling ability along with pH-responsive drug release. A xenograft model of the cervix was used to investigate the effects of Cisplatin alone, or in combination with Ti3C2@FA and Ti3C2@ Fe3O4@SiO2-FA, on tumor growth following histological staining for evaluation of necrosis. Result and Discussion: A significant tumor-growth suppression effect is shown when the Ti3C2-Fe3O4@SiO2-FA nanocarrier is magnetically controlled Cisplatin drug release. It reveals a synergistic therapeutic efficacy used in conjunction with pharmaceuticals (p < .001). According to the in vivo study, the Ti3C2@FA@Cisplatin nanocomposite exhibits less tumor growth than the drug alone or Ti3C2@FA@Cisplatin via increasing necrosis effect (p < .001). Through this study, Mxene nanosheets are expanded for biomedical applications, not only through the fabrication of biocompatible magnetic Mxene nanocomposite but also through the development of functionalization strategies that enable the magnetic Ti3C2 nanocomposite to load high levels of Cisplatin for cervical cancer treatment (242.5%). Hence, Ti3C2-Fe3O4@SiO2-FA nanocarriers would be promising candidates to improve cancer treatment efficiency.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran,Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran,Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United states
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Karimzadeh
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyyedeh Zahra Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Babaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran,Metabolic Syndrome Research Centre, Mashhad University of Medical Science, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,*Correspondence: Majid Rezayi, ; Majid Khazaei,
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran,Metabolic Syndrome Research Centre, Mashhad University of Medical Science, Mashhad, Iran,*Correspondence: Majid Rezayi, ; Majid Khazaei,
| |
Collapse
|
15
|
Akhtar N, Mohammed HA, Yusuf M, Al-Subaiyel A, Sulaiman GM, Khan RA. SPIONs Conjugate Supported Anticancer Drug Doxorubicin's Delivery: Current Status, Challenges, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3686. [PMID: 36296877 PMCID: PMC9611558 DOI: 10.3390/nano12203686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Considerable efforts have been directed towards development of nano-structured carriers to overcome the limitations of anticancer drug, doxorubicin's, delivery to various cancer sites. The drug's severe toxicity to cardio and hepatic systems, low therapeutic outcomes, inappropriate dose-demands, metastatic and general resistance, together with non-selectivity of the drug have led to the development of superparamagnetic iron oxide nanoparticles (SPIONs)-based drug delivery modules. Nano-scale polymeric co-encapsulation of the drug, doxorubicin, with SPIONs, the SPIONs surface end-groups' cappings with small molecular entities, as well as structural modifications of the SPIONs' surface-located functional end-groups, to attach the doxorubicin, have been achieved through chemical bonding by conjugation and cross-linking of natural and synthetic polymers, attachments of SPIONs made directly to the non-polymeric entities, and attachments made through mediation of molecular-spacer as well as non-spacer mediated attachments of several types of chemical entities, together with the physico-chemical bondings of the moieties, e.g., peptides, proteins, antibodies, antigens, aptamers, glycoproteins, and enzymes, etc. to the SPIONs which are capable of targeting multiple kinds of cancerous sites, have provided stable and functional SPIONs-based nano-carriers suitable for the systemic, and in vitro deliveries, together with being suitable for other biomedical/biotechnical applications. Together with the SPIONs inherent properties, and ability to respond to magnetic resonance, fluorescence-directed, dual-module, and molecular-level tumor imaging; as well as multi-modular cancer cell targeting; magnetic-field-inducible drug-elution capacity, and the SPIONs' magnetometry-led feasibility to reach cancer action sites have made sensing, imaging, and drug and other payloads deliveries to cancerous sites for cancer treatment a viable option. Innovations in the preparation of SPIONs-based delivery modules, as biocompatible carriers; development of delivery route modalities; approaches to enhancing their drug delivery-cum-bioavailability have explicitly established the SPIONs' versatility for oncological theranostics and imaging. The current review outlines the development of various SPIONs-based nano-carriers for targeted doxorubicin delivery to different cancer sites through multiple methods, modalities, and materials, wherein high-potential nano-structured platforms have been conceptualized, developed, and tested for, both, in vivo and in vitro conditions. The current state of the knowledge in this arena have provided definite dose-control, site-specificity, stability, transport feasibility, and effective onsite drug de-loading, however, with certain limitations, and these shortcomings have opened the field for further advancements by identifying the bottlenecks, suggestive and plausible remediation, as well as more clear directions for future development.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry & Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Mohammed Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Mecca, Saudi Arabia
| | - Amal Al-Subaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Riaz A. Khan
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| |
Collapse
|
16
|
Theranostics platform of Abemaciclib using magnetite@silica@chitosan nanocomposite. Int J Biol Macromol 2022; 221:634-643. [PMID: 36087748 DOI: 10.1016/j.ijbiomac.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
The current study was designed to synthesize a nanoformula comprising of magnetite nanoparticles (MN) with mesoporous silica (MS), which was in turn coated with chitosan (CS) and further loaded with a chemotherapeutic agent, Abemaciclib (ABE). The prepared formula, MN@MS@CS@ABE, was characterized by XRD, FTIR, HRTEM, FESEM, DLS, VSM, BET, and BJH. The ABE loading capacity and entrapment efficiency were calculated, and an in vitro drug release experiment was conducted. Cytoxicity was studied by the MTT assay. The formula was investigated as an anticancer agent versus MCF-7 cells by performing Annexin V-FITC flow cytometry and cell cycle analysis. Furthermore, we examine the formula as a contrast agent in magnetic resonance imaging (MRI). ABE loading and encapsulation efficiency were 24.2 % and 63.4 %, respectively. The formula demonstrated sustained drug release behavior for 72 h. The MTT assay revealed a higher cytotoxicity of free ABE in MCF-7 cells compared to MN@MS@CS@ABE. Flow cytometry revealed early and late phases of apoptosis and necrosis with different percentages. The formula stimulated a reduction in signal intensity in the MR T2-weighted imaging technique. In conclusion, the current study developed a nanoformula which could be a promising theranostic agent in cancer therapy and diagnosis.
Collapse
|
17
|
Kohzadi S, Najmoddin N, Baharifar H, Shabani M. Functionalized SPION immobilized on graphene-oxide: Anticancer and antiviral study. DIAMOND AND RELATED MATERIALS 2022; 127:109149. [PMID: 35677893 PMCID: PMC9163046 DOI: 10.1016/j.diamond.2022.109149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
The progressive and fatal outbreak of some diseases such as cancer and coronavirus necessitates using advanced materials to bring such devastating illnesses under control. In this study, graphene oxide (GO) is decorated by superparamagnetic iron oxide nanoparticles (SPION) (GO/SPION) as well as polyethylene glycol functionalized SPION (GO/SPION@PEG), and chitosan functionalized SPION (GO/SPION@CS). Field emission scanning electron microscopic (FESEM) images show the formation of high density uniformly distributed SPION nanoparticles on the surface of GO sheets. The structural and chemical composition of nanostructures is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The saturation magnetization of GO/SPION, GO/SPION@PEG and GO- SPION@CS are found to be 20, 19 and 8 emu/g using vibrating sample magnetometer. Specific absorption rate (SAR) values of 305, 283, and 199 W/g and corresponding intrinsic loss power (ILP) values of 9.4, 8.7, and 6.2 nHm2kg-1 are achieved for GO/SPION, GO/SPION@PEG and GO/SPION@CS, respectively. The In vitro cytotoxicity assay indicates higher than 70% cell viability for all nanostructures at 100, 300, and 500 ppm after 24 and 72 h. Additionally, cancerous cell (EJ138 human bladder carcinoma) ablation is observed using functionalized GO/SPION under applied magnetic field. More than 50% cancerous cell death has been achieved for GO/SPION@PEG at 300 ppm concentration. Furthermore, Surrogate virus neutralization test is applied to investigate neutralizing property of the synthesized nanostructures through analysis of SARS-CoV-2 receptor-binding domain and human angiotensin-converting enzyme 2 binding. The highest level of SARS-CoV-2 virus inhibition is related to GO/SPION@CS (86%) due to the synergistic exploitation of GO and chitosan. Thus, GO/SPION and GO/SPION@PEG with higher SAR and ILP values could be beneficial for cancer treatment, while GO/SPION@CS with higher virus suppression has potential to use against coronaviruses. Thus, the developed nanocomposites have a potential in the efficient treatment of cancer and coronavirus.
Collapse
Affiliation(s)
- Shaghayegh Kohzadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
19
|
Liao L, Zhang Z, Guan X, Li H, Liu Y, Zhang M, Tang B, Valtchev V, Yan Y, Qiu S, Yao X, Fang Q. Three‐Dimensional
sp
2
Carbon‐Linked
Covalent Organic Frameworks as a Drug Carrier Combined with Fluorescence Imaging. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Liao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zerong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Minghao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216 Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District Qingdao Shandong 266101 P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
20
|
Cerqueira M, Belmonte-Reche E, Gallo J, Baltazar F, Bañobre-López M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022; 14:pharmaceutics14030506. [PMID: 35335882 PMCID: PMC8950239 DOI: 10.3390/pharmaceutics14030506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is currently a leading cause of death worldwide. The World Health Organization estimates an increase of 60% in the global cancer incidence in the next two decades. The inefficiency of the currently available therapies has prompted an urgent effort to develop new strategies that enable early diagnosis and improve response to treatment. Nanomedicine formulations can improve the pharmacokinetics and pharmacodynamics of conventional therapies and result in optimized cancer treatments. In particular, theranostic formulations aim at addressing the high heterogeneity of tumors and metastases by integrating imaging properties that enable a non-invasive and quantitative assessment of tumor targeting efficiency, drug delivery, and eventually the monitoring of the response to treatment. However, in order to exploit their full potential, the promising results observed in preclinical stages need to achieve clinical translation. Despite the significant number of available functionalization strategies, targeting efficiency is currently one of the major limitations of advanced nanomedicines in the oncology area, highlighting the need for more efficient nanoformulation designs that provide them with selectivity for precise cancer types and tumoral tissue. Under this current need, this review provides an overview of the strategies currently applied in the cancer theranostics field using magnetic nanoparticles (MNPs) and solid lipid nanoparticles (SLNs), where both nanocarriers have recently entered the clinical trials stage. The integration of these formulations into magnetic solid lipid nanoparticles—with different composition and phenotypic activity—constitutes a new generation of theranostic nanomedicines with great potential for the selective, controlled, and safe delivery of chemotherapy.
Collapse
Affiliation(s)
- Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Efres Belmonte-Reche
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: (F.B.); (M.B.-L.)
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (E.B.-R.); (J.G.)
- Correspondence: (F.B.); (M.B.-L.)
| |
Collapse
|
21
|
Kucuksayan E, Bozkurt F, Yilmaz MT, Sircan-Kucuksayan A, Hanikoglu A, Ozben T. A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Sci Rep 2021; 11:13027. [PMID: 34158544 PMCID: PMC8219778 DOI: 10.1038/s41598-021-92447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Some experimental and clinical studies have been conducted for the usage of chemotherapeutic drugs encapsulated into nanoparticles (NPs). However, no study has been conducted so far on the co-encapsulation of doxorubicin (Dox) and epoxomicin (Epo) into NPs as biocompatible drug delivery carriers. Therefore, we investigated if co-encapsulation of doxorubicin (Dox) and/or epoxomicin (Epo) into NPs enhance their anticancer efficiency and prevent drug resistance and toxicity to normal cells. We synthesized Dox and/or Epo loaded poly (lactic-co-glycolic acid) (PLGA) NPs using a multiple emulsion solvent evaporation technique and characterized them in terms of their particle size and stability, surface, molecular, thermal, encapsulation efficiency and in vitro release properties. We studied the effects of drug encapsulated NPs on cellular accumulation, intracellular drug levels, oxidative stress status, cellular viability, drug resistance, 20S proteasome activity, cytosolic Nuclear Factor Kappa B (NF-κB-p65), and apoptosis in breast cancer and normal cells. Our results proved that the nanoparticles we synthesized were thermally stable possessing higher encapsulation efficiency and particle stability. Thermal, morphological and molecular analyses demonstrated the presence of Dox and/or Epo within NPs, indicating that they were successfully loaded. Cell line assays proved that Dox and Epo loaded NPs were less cytotoxic to single-layer normal HUVECs than free Dox and Epo, suggesting that the NPs would be biocompatible drug delivery carriers. The apoptotic index of free Dox and Epo increased 50% through their encapsulation into NPs, proving combination strategy to enhance apoptosis in breast cancer cells. Our results demonstrated that the co-encapsulation of Dox and Epo within NPs would be a promising treatment strategy to overcome multidrug resistance and toxicity to normal tissues that can be studied in further in vivo and clinical studies in breast cancer.
Collapse
Affiliation(s)
- Ertan Kucuksayan
- Faculty of Medicine, Department of Medical Biochemistry, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey.,Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Fatih Bozkurt
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering and Architecture, Department of Food Engineering, Mus Alparslan University, Mus, Turkey
| | - Mustafa Tahsin Yilmaz
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aslinur Sircan-Kucuksayan
- Faculty of Medicine, Department of Biophysics, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey
| | - Aysegul Hanikoglu
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Tomris Ozben
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
22
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
23
|
In vitro studies of Pluronic F127 coated magnetic silica nanocarriers for drug delivery system targeting liver cancer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
A multiple environment-sensitive prodrug nanomicelle strategy based on chitosan graftomer for enhanced tumor therapy of gambogic acid. Carbohydr Polym 2021; 267:118229. [PMID: 34119182 DOI: 10.1016/j.carbpol.2021.118229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
A novel multiple environment-sensitive polymeric prodrug of gambogic acid (GA) based on chitosan graftomer was fabricated for cancer treatment. Folic acid-chitosan conjugates was complexed with thermosensitive amine terminated poly-N-isopropylacrylamide (NH2-PNIPAM) to develop FA-CSPN. Gambogic acid was conjugated with the graftomer via esterification to achieve high drug-loading capacity and controlled drug release. The resulting amphiphilic prodrug, O-(gambogic acid)-N-(folic acid)-N'-(NH2-PNIPAM) chitosan graftomer (GFCP), could self-assemble into micelles. As expected, the micelles were stable and biocompatible, featuring pH-, esterase- and temperature-dependent manner of drug release. Moreover, the anticancer effect studies of GFCP micelles were performed using a tumor-bearing mouse model and cellular assays (tumor cell uptake assay, cytotoxicity and tumor-sphere penetration). Collectively, GFCP micelles show both potential in vivo and in vitro in improving the anticancer effectiveness of GA owing to high loading capacity, targeted tumor accumulation, and multiple tumor microenvironmental responsiveness.
Collapse
|
25
|
Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Am J Cancer Res 2021; 11:6334-6354. [PMID: 33995661 PMCID: PMC8120214 DOI: 10.7150/thno.59342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Clinically, the primary cause of chemotherapy failure belongs to the occurrence of cancer multidrug resistance (MDR), which directly leads to the recurrence and metastasis of cancer along with high mortality. More and more attention has been paid to multifunctional nanoplatform-based dual-therapeutic combination to eliminate resistant cancers. In addition to helping both cargoes improve hydrophobicity and pharmacokinetic properties, increase bioavailability, release on demand and enhance therapeutic efficacy with low toxic effects, these smart co-delivery nanocarriers can even overcome drug resistance. Here, this review will not only present different types of co-delivery nanocarriers, but also summarize targeted and stimuli-responsive combination nanomedicines. Furthermore, we will focus on the recent progress in the co-delivery of dual-drug using such intelligent nanocarriers for surmounting cancer MDR. Whereas it remains to be seriously considered that there are some knotty issues in the fight against MDR of cancers via using co-delivery nanoplatforms, including limited intratumoral retention, the possible changes of combinatorial ratio under complex biological environments, drug release sequence from the nanocarriers, and subsequent free-drug resistance after detachment from the nanocarriers. It is hoped that, with the advantage of continuously developing nanomaterials, two personalized therapeutic agents in combination can be better exploited to achieve the goal of cooperatively combating cancer MDR, thus advancing the time to clinical transformation.
Collapse
|
26
|
Siavashy S, Soltani M, Ghorbani-Bidkorbeh F, Fallah N, Farnam G, Mortazavi SA, Shirazi FH, Tehrani MHH, Hamedi MH. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr Polym 2021; 265:118027. [PMID: 33966822 DOI: 10.1016/j.carbpol.2021.118027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
In this study, magnetic core/chitosan shell Nanoparticles (NPs) containing cisplatin were synthesized via cisplatin complexation with tripolyphosphate as the chitosan crosslinker using two different procedures: a conventional batch flow method and a microfluidic approach. An integrated microfluidic device composed of three stages was developed to provide precise and highly controllable mixing. The comparison of the results revealed that NPs synthesized in microchannels were monodisperse 104 ± 14.59 nm (n = 3) in size with optimal morphological characteristics, whereas polydisperse 423 ± 53.33 nm (n = 3) nanoparticles were obtained by the conventional method. Furthermore, cisplatin was loaded in NPs without becoming inactivated, and the microfluidic technique demonstrated higher encapsulation efficiency, controlled release, and consequently lower IC50 values during exposure to the A2780 cell line proving that microfluidic synthesized NPs were able to enter the cells and release the drug more efficiently. The developed microfluidic platform presents valuable features that could potentially provide the clinical translation of NPs in drug delivery.
Collapse
Affiliation(s)
- Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Newsha Fallah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
27
|
Zhang Y, Yuan T, Li Z, Luo C, Wu Y, Zhang J, Zhang X, Fan W. Hyaluronate-Based Self-Stabilized Nanoparticles for Immunosuppression Reversion and Immunochemotherapy in Osteosarcoma Treatment. ACS Biomater Sci Eng 2021; 7:1515-1525. [PMID: 33793187 DOI: 10.1021/acsbiomaterials.1c00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotherapy is regarded as a potential strategy to combat cancer, especially when immunotherapy is combined with appropriate chemotherapy. However, the immunosuppressive tumor microenvironment (TME) and serious side effects extremely limit the application of immunotherapy. Herein, a self-stabilized hyaluronic acid nanoparticle is synthesized for tumor-targeted delivery of doxorubicin (DOX), cisplatin (CDDP), and resiquimod (R848) in osteosarcoma immunochemotherapy, which is referred to as CDDPNPDOX&R848. CDDPNPDOX&R848 exhibits sufficient stability, great pH responsibility, and brilliant tumor-targeting accumulation in vivo, which make it suitable for further in vivo applications. After intravenous injection, CDDPNPDOX&R848 can release the loaded cargoes under the acidic TME continuously. DOX can induce tumor cell apoptosis in combination with CDDP and trigger immunogenic cell death. More importantly, the immune-activated TME created by R848 can facilitate tumor-associated antigen presentation and antitumor immunity elicitation. Benefiting from the synergistic effect of chemotherapy and immunotherapy, the growth of tumors and lung metastasis was greatly inhibited by CDDPNPDOX&R848 in the K7M2 orthotopic osteosarcoma mouse model. Thus, this intelligent codelivery platform might be a competitive candidate for osteosarcoma immunochemotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Yuan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zuxi Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuxuan Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiyong Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
28
|
Astani S, Salehi R, Massoumi B, Massoudi A. Co-delivery of cisplatin and doxorubicin by carboxylic acid functionalized poly (hydroxyethyl methacrylate)/reduced graphene nanocomposite for combination chemotherapy of breast cancer cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:657-677. [PMID: 33347395 DOI: 10.1080/09205063.2020.1855393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study a novel pH-responsive magnetic nanocomposite based on reduced graphene oxide was developed for combination of doxorubicin (Dox)-cisplatin (Cis) delivery to destroy the MCF-7 cell line. For this purpose, polyhydroxyethyl methacrylate (PHEMA) was bonded to the reduced graphene oxide through ATRP polymerization using grafting from method. Then the PHEMA hydroxy groups were converted to succinyloxy groups by polyesterification with succinic anhydride. The physicochemical properties of the nanocomposite were investigated via FTIR, SEM, XRD, DLS and TGA analysis. Unique structure of nanocomposite led to simultaneous encapsulation of Dox (75%) and Cis (82%) through ionic interaction, π-π stacking and hydrogen bonding. The obtained nanocomposite was uptake by MCF-7 cells at early first hour because of nanocomposite small size (below 70 nm). Cell viability assay results revealed that the Dox&Cis-loaded nanocomposite showed the highest rate of MCF-7 cells at lowest concentration (IC50 = 0.798 µg/mL) compared to treatment groups received single drug-loaded nanocomposite and free drugs. Dox&Cis-loaded nanocomposite exhibited a synergistic influence with the combination index (CI) value <1. The cell cycle analysis results revealed that the highest amount of apoptosis (cells population in sub G1 was 75%) was observed in the Dox&Cis-loaded nanocomposite treatment group compared with the single drug-loaded nanocomposite and free drugs. Our findings confirmed that combinational therapy by Dox and Cis graphene oxide-based nanocomposite has increased the cytotoxicity in MCF-7 cells by stimulating the apoptotic response.
Collapse
Affiliation(s)
- Shahram Astani
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Roya Salehi
- Drug Applied Research Centre and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
29
|
Yang SJ, Huang CH, Wang CH, Shieh MJ, Chen KC. The Synergistic Effect of Hyperthermia and Chemotherapy in Magnetite Nanomedicine-Based Lung Cancer Treatment. Int J Nanomedicine 2020; 15:10331-10347. [PMID: 33376324 PMCID: PMC7755349 DOI: 10.2147/ijn.s281029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer patient death in the world. There are many treatment options for lung cancer, including surgery, radiation therapy, chemotherapy, targeted therapy, and combined therapy. Despite significant progress has been made in the diagnosis and treatment of lung cancer during the past few decades, the prognosis is still unsatisfactory. Purpose To resolve the problem of chemotherapy failure, we developed a magnetite-based nanomedicine for chemotherapy acting synergistically with loco-regional hyperthermia. Methods The targeting carrier consisted of a complex of superparamagnetic iron oxide (SPIO) and poly(sodium styrene sulfonate) (PSS) at the core and a layer-by-layer shell with cisplatin (CDDP), together with methotrexate – human serum albumin conjugate (MTX−HSA conjugate) for lung cancer-specific targeting, referred to hereafter as SPIO@PSS/CDDP/HSA−MTX nanoparticles (NPs). Results SPIO@PSS/CDDP/HSA−MTX NPs had good biocompatibility and stability in physiological solutions. Furthermore, SPIO@PSS/CDDP/HSA−MTX NPs exhibited a higher temperature increase rate than SPIO nanoparticles under irradiation by a radiofrequency (RF) generator. Therefore, SPIO@PSS/CDDP/HSA−MTX NPs could be used as a hyperthermia inducer under RF exposure after nanoparticles preferentially targeted and then accumulated at tumor sites. In addition, SPIO@PSS/CDDP/HSA−MTX NPs were developed to be used during combined chemotherapy and hyperthermia therapy, exhibiting a synergistic anticancer effect better than the effect of monotherapy. Conclusion Both in vitro and in vivo results suggest that the designed SPIO@PSS/CDDP/HSA−MTX NPs are a powerful candidate nanoplatform for future antitumor treatment strategies.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Zhang K, Zhuang Y, Zhang W, Guo Y, Liu X. Functionalized MoS 2-nanoparticles for transdermal drug delivery of atenolol. Drug Deliv 2020; 27:909-916. [PMID: 32597334 PMCID: PMC8216476 DOI: 10.1080/10717544.2020.1778815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Molybdenum disulfide (MoS2) has excellent photothermal conversion abilities, an ultra-high specific surface area, and has been extensively explored for use in biomedicine. However, the high toxicity associated with MoS2 has limited its biological applications for in vivo photothermal therapy and drug delivery systems. Herein, we have developed cationic hydroxyethyl cellulose (JR400) surface-modified MoS2 nanoparticles (NPs) that are responsive to near-infrared (NIR) laser irradiation as a transdermal drug delivery system (TDDS). Herein, we confirmed the preparation of hexagonal phase MoS2 with robust surface modification with JR400. The flower-like morphology of the NPs had an average diameter of 355 ± 69.3 nm limiting the absorption of the NPs through the stratum corneum. With the ability to efficiently load 90.4 ± 0.3% of the model drug atenolol (ATE), where 1 g of JR400-MoS2 NPs was able to load 3.6 g ATE, we assayed the controlled release capacity in vitro skin penetration studies. These JR400-MoS2 NPs showed further enhancement under NIR stimulation, with a 2.3-fold increase in ATE skin penetration. Furthermore, we verified in vivo that these JR400-MoS2 NPs do not cause skin irritation suggesting that they are promising new TDDS candidates for small molecule drugs.
Collapse
Affiliation(s)
- Kai Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yanling Zhuang
- College of Humanities and Management, Hebei Agricultural University, Cangzhou, China
| | - Weidan Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yali Guo
- Department of Cardiology and Nephrology, Rongcheng County People’s Hospital, Xiongan, China
| | - Xiaochang Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
- Translational Medicine Research Centre, Shenyang Medical College, Shenyang, China
| |
Collapse
|
31
|
Deng Z, Wang N, Ai F, Wang Z, Zhu G. Nanomaterial‐mediated platinum drug‐based combinatorial cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Na Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| | - Fujin Ai
- College of Health Science and Environment Engineering Shenzhen Technology University Shenzhen P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences Health Science Center Shenzhen University Shenzhen P. R. China
| | - Guangyu Zhu
- Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen P. R. China
| |
Collapse
|
32
|
Khaledian M, Nourbakhsh MS, Saber R, Hashemzadeh H, Darvishi MH. Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy. Int J Nanomedicine 2020; 15:6167-6182. [PMID: 32922000 PMCID: PMC7450214 DOI: 10.2147/ijn.s261638] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023] Open
Abstract
Background Among the novel cancer treatment strategies, combination therapy is a cornerstone of cancer therapy. Materials and Methods Here, combination therapy with targeted polymer, magnetic hyperthermia and chemotherapy was presented as an effective therapeutic technique. The DOX-loaded PLA–PEG–FA magnetic nanoparticles (nanocarrier) were prepared via a double emulsion method. The nanocarriers were characterized by particle size, zeta potential, morphology, saturation magnetizations and heat generation capacity, and the encapsulation efficiency, drug content and in-vitro drug release for various weight ratios of PLA:DOX. Then, cytotoxicity, cellular uptake and apoptosis level of nanocarrier-treated cells for HeLa and CT26 cells were investigated by MTT assay, flow cytometry, and apoptosis detection kit. Results and Conclusions The synthesized nanoparticles were spherical in shape, had low aggregation and considerable magnetic properties. Meanwhile, the drug content and encapsulation efficiency of nanoparticles can be achieved by varying the weight ratios of PLA:DOX. The saturation magnetizations of nanocarriers in the maximum applied magnetic field were 59/447 emu/g and 28/224 emu/g, respectively. Heat generation capacity of MNPs and nanocarriers were evaluated in the external AC magnetic field by a hyperthermia device. The highest temperature, 44.2°C, was measured in the nanocarriers suspension at w/w ratio 10:1 (polymer:DOX weight ratio) after exposed to the magnetic field for 60 minutes. The encapsulation efficiency improved with increasing polymer concentration, since the highest DOX encapsulation efficiency was related to the nanocarriers’ suspension at w/w ratio 50:1 (79.6 ± 6.4%). However, the highest DOX loading efficiency was measured in the nanocarriers’ suspension at w/w ratio 10:1 (5.14 ± 0.6%). The uptake efficiency and apoptosis level of nanocarrier-treated cells were higher than those of nanocarriers (folic acid free) and free DOX-treated cells in both cell lines. Therefore, this targeted nanocarrier may offer a promising nanosystem for cancer-combined chemotherapy and hyperthermia.
Collapse
Affiliation(s)
- Mohammad Khaledian
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.,Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Hashemzadeh
- Department of Nanobiotechnology, Faculty of Bioscience, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
34
|
Sharifi M, Jafari S, Hasan A, Paray BA, Gong G, Zheng Y, Falahati M. Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. ACS Biomater Sci Eng 2020; 6:3574-3584. [DOI: 10.1021/acsbiomaterials.0c00086] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Shadi Jafari
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1234567, Iran
| |
Collapse
|