1
|
Zhong SJ, Xing YD, Dong LY, Chen Y, Liu N, Wang ZM, Zhang H, Zheng AP. Progress in the study of curcumin metabolism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39692630 DOI: 10.1080/10286020.2024.2420619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024]
Abstract
Curcumin has diverse biological functions, especially antioxidant and anti-inflammatory properties, but clinical trials have been hindered by its low bioavailability and pharmacokinetic properties. To achieve therapeutic efficacy, understanding curcumin's in vivo metabolism is crucial. We reviewed current research on curcumin metabolism in PubMed, Google Scholar, and CNKI. This article outlines curcumin's metabolic processes in the body via oral and intravenous injection. It suggests that upon entering the human body, curcumin may undergo oxidation, reduction, binding, and microbial community influence.
Collapse
Affiliation(s)
- Shi-Jie Zhong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Ya-Dong Xing
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Lu-Yao Dong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110000, China
| | - Yi Chen
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Nan Liu
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Zeng-Ming Wang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Hui Zhang
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| | - Ai-Ping Zheng
- Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing Institute of Pharmacology and Toxicology, Beijing100000, China
| |
Collapse
|
2
|
Hu Y, Sheng Y, Liu P, Sun J, Tang L. The pharmacokinetics and tissue distribution of curcumin following inhalation administration in rats-A comparative analysis with oral and intravenous routes. Biomed Chromatogr 2024; 38:e6003. [PMID: 39350524 DOI: 10.1002/bmc.6003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 11/19/2024]
Abstract
A sensitive and simple method using ultra-liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and validated to determine the concentration of curcumin in rat plasma and tissue samples. Emodin was selected as the internal standard (IS), and biological samples were pretreated with simple one-step acetonitrile precipitation. The calibration curves exhibited linearity within the range of 1-1000 ng/ml for both rat plasma and tissue samples. The accuracy and precision of intra-day as well as inter-day determinations ranged from 99.3% to 117.3% and from 98.2% to 105.1%, respectively. This method demonstrated excellent recovery rates ranging from 76.4% to 96.4% along with minimal matrix effect ranging from 86.5% to 99.6%. The effectiveness of this method was successfully demonstrated through its application in an in vivo pharmacokinetic and tissue distribution study after single administration via inhalation (100 mg/kg), oral gavage (100 mg/kg) and intravenous injection (2.5 mg/kg) of curcumin in rats. The results revealed that inhalation significantly improved the bioavailability of curcumin, with most of the drug being deposited in the lung. These findings highlight inhalation as an effective route for targeted delivery of drugs directly into lung tissues, thus suggesting potential future applications for treating pulmonary diseases utilizing inhaled curcumin.
Collapse
Affiliation(s)
- Yue Hu
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China
- NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| | - Yunhua Sheng
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China
- NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| | - Ping Liu
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China
- NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| | - Jie Sun
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China
- NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| | - Liming Tang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai, China
- NMPA Key Laboratory for Quality Analysis of Chemical Drug Preparations, Shanghai, China
| |
Collapse
|
3
|
Fan Y, Chen A, Zhu J, Liu R, Mei Y, Li L, Sha X, Wang X, Ren W, Wang L, Liu B. Engineered lactococcus lactis intrapleural therapy promotes regression of malignant pleural effusion by enhancing antitumor immunity. Cancer Lett 2024; 588:216777. [PMID: 38432582 DOI: 10.1016/j.canlet.2024.216777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.
Collapse
Affiliation(s)
- Yue Fan
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Aoxing Chen
- The Clinical Cancer Institute of Nanjing University, Nanjing, China; Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Junmeng Zhu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yi Mei
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lin Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China; Department of Pathology, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoxuan Sha
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaonan Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China; The Comprehensive Cancer Centre, China Pharmaceutical University Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wei Ren
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China; The Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Edel GG, Schaaf G, Wijnen RMH, Tibboel D, Kardon G, Rottier RJ. Cellular Origin(s) of Congenital Diaphragmatic Hernia. Front Pediatr 2021; 9:804496. [PMID: 34917566 PMCID: PMC8669812 DOI: 10.3389/fped.2021.804496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a structural birth defect characterized by a diaphragmatic defect, lung hypoplasia and structural vascular defects. In spite of recent developments, the pathogenesis of CDH is still poorly understood. CDH is a complex congenital disorder with multifactorial etiology consisting of genetic, cellular and mechanical factors. This review explores the cellular origin of CDH pathogenesis in the diaphragm and lungs and describes recent developments in basic and translational CDH research.
Collapse
Affiliation(s)
- Gabriëla G. Edel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Rene M. H. Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Robbert J. Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
6
|
Phytochemicals in Malignant Pleural Mesothelioma Treatment-Review on the Current Trends of Therapies. Int J Mol Sci 2021; 22:ijms22158279. [PMID: 34361048 PMCID: PMC8348618 DOI: 10.3390/ijms22158279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but highly aggressive tumor of pleura arising in response to asbestos fibers exposure. MPM is frequently diagnosed in the advanced stage of the disease and causes poor prognostic outcomes. From the clinical perspective, MPM is resistant to conventional treatment, thus challenging the therapeutic options. There is still demand for improvement and sensitization of MPM cells to therapy in light of intensive clinical studies on chemotherapeutic drugs, including immuno-modulatory and targeted therapies. One way is looking for natural sources, whole plants, and extracts whose ingredients, especially polyphenols, have potential anticancer properties. This comprehensive review summarizes the current studies on natural compounds and plant extracts in developing new treatment strategies for MPM.
Collapse
|
7
|
Antimisiaris S, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174:53-86. [PMID: 33539852 DOI: 10.1016/j.addr.2021.01.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Localized or topical administration of drugs may be considered as a potential approach for overcoming the problems caused by the various biological barriers encountered in drug delivery. The combination of using localized administration routes and delivering drugs in nanoparticulate formulations, such as liposomes, may have additional advantages. Such advantages include prolonged retention of high drug loads at the site of action and controlled release of the drug, ensuring prolonged therapeutic effect; decreased potential for side-effects and toxicity (due to the high topical concentrations of drugs); and increased protection of drugs from possible harsh environments at the site of action. The use of targeted liposomal formulations may further potentiate any acquired therapeutic advantages. In this review we present the most advanced cases of localized delivery of liposomal formulations of drugs, which have been investigated pre-clinically and clinically in the last ten years, together with the reported therapeutic advantages, in each case.
Collapse
|
8
|
Hocking AJ, Farrall AL, Newhouse S, Sordillo P, Greco K, Karapetis CS, Dougherty B, Klebe S. Study protocol of a phase 1 clinical trial establishing the safety of intrapleural administration of liposomal curcumin: curcumin as a palliative treatment for malignant pleural effusion (IPAL-MPE). BMJ Open 2021; 11:e047075. [PMID: 33782024 PMCID: PMC8009239 DOI: 10.1136/bmjopen-2020-047075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION This is a phase 1, open-label, single-centre, uncontrolled, dose-escalation study to evaluate the feasibility, tolerability and pharmacokinetic profiles of a single dose of liposomal curcumin, administered via an existing tunnelled indwelling pleural catheter (TIPC) directly to the tumour site in individuals with diagnoses of malignant pleural effusion. Primarily, we aim to determine a maximum tolerated dose of liposomal curcumin administered via this method. METHODS AND ANALYSIS We will use a 3+3 expanded cohort for predefined dose-escalation levels or until a predefined number of dose-limiting toxicities are reached. Participants will be administered a single dose of liposomal curcumin (LipoCurc, SignPath Pharma) via their existing TIPC as a sequential enrolling case series with the following dose cohorts: 100, 200 and 300 mg/m2. Primary endpoints are determination of the maximum tolerated dose within the predetermined dose range, and determination of the feasibility of intrapleural administration of liposomal curcumin via an existing TIPC. Secondary endpoints include determination of the safety and tolerability of intrapleural administration of liposomal curcumin, median overall survival, effects on quality of life and on feelings of breathlessness, and the pharmacokinetics and concentrations of curcumin from the plasma and the pleural fluid. Important inclusion criteria include age ≥18 years, an existing TIPC, a pleural biopsy or pleural fluid cytology-proven diagnosis of malignant pleural effusion and for whom no antitumour therapy of proven benefit is available or has been previously declined, eastern cooperative group performance status <2. ETHICS AND DISSEMINATION The study protocol has been approved by the Southern Adelaide Local Health Network Human Research Ethics Committee (HREC) (approval number: HREC/20/SAC/11). Study results will be published in peer-reviewed journals, and presented at conferences, in field of medical oncology and respiratory medicine. TRIAL REGISTRATION NUMBER ACTRN12620001216909. PROTOCOL VERSION NUMBER V.1.0.
Collapse
Affiliation(s)
| | - Alexandra L Farrall
- Anatomical Pathology, Flinders University, Bedford Park, South Australia, Australia
| | - Sarah Newhouse
- School of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Respiratory and Sleep Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Kim Greco
- Respiratory and Sleep Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Christos Stelios Karapetis
- School of Medicine, Flinders University, Bedford Park, South Australia, Australia
- Medical Oncology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Brendan Dougherty
- Respiratory and Sleep Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Sonja Klebe
- Anatomical Pathology, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Curcumin Treatment Identifies Therapeutic Targets within Biomarkers of Liver Colonization by Highly Invasive Mesothelioma Cells-Potential Links with Sarcomas. Cancers (Basel) 2020; 12:cancers12113384. [PMID: 33207594 PMCID: PMC7696465 DOI: 10.3390/cancers12113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Aggressive sarcomatoid tumors designed in inbred strains of immunocompetent rats represent useful tools for both the identification of biomarkers of invasiveness and evaluation of innovative therapies. Our aim was to investigate the molecular determinants of liver colonization and potential common biomarkers of sarcomas and sarcomatoid tumors, using the most invasive (M5-T1) of our four experimental models of peritoneal sarcomatoid malignant mesothelioma in the F344 rat. Using an advanced and robust technique of quantitative proteomics and a bank of paraffin-embedded tumor and tissue samples, we analyzed changes in the proteotype patterns of the liver from normal rats, adjacent non-tumorous liver from untreated tumor-bearing rats, and liver from tumor-bearing rats positively responding to repeated administrations of curcumin given intraperitoneally. The identification of proteome alterations accounting for the antitumor effects of curcumin and changes in the liver microenvironment, which favored the induction of an immune response, could be useful to the research community. Abstract Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
Collapse
|
10
|
Tanideh N, Azarpira N, Sarafraz N, Zare S, Rowshanghiyas A, Farshidfar N, Iraji A, Zarei M, El Fray M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers (Basel) 2020. [DOI: https://doi.org/10.3390/polym12112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.
Collapse
|
11
|
Tanideh N, Azarpira N, Sarafraz N, Zare S, Rowshanghiyas A, Farshidfar N, Iraji A, Zarei M, El Fray M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers (Basel) 2020; 12:2588. [DOI: https:/doi.org/10.3390/polym12112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.
Collapse
|
12
|
Tanideh N, Azarpira N, Sarafraz N, Zare S, Rowshanghiyas A, Farshidfar N, Iraji A, Zarei M, El Fray M. Poly(3-Hydroxybutyrate)-Multiwalled Carbon Nanotubes Electrospun Scaffolds Modified with Curcumin. Polymers (Basel) 2020; 12:E2588. [PMID: 33158130 PMCID: PMC7694206 DOI: 10.3390/polym12112588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Appropriate selection of suitable materials and methods is essential for scaffolds fabrication in tissue engineering. The major challenge is to mimic the structure and functions of the extracellular matrix (ECM) of the native tissues. In this study, an optimized 3D structure containing poly(3-hydroxybutyrate) (P3HB), multiwalled carbon nanotubes (MCNTs) and curcumin (CUR) was created by electrospinning a novel biomimetic scaffold. CUR, a natural anti-inflammatory compound, has been selected as a bioactive component to increase the biocompatibility and reduce the potential inflammatory reaction of electrospun scaffolds. The presence of CUR in electrospun scaffolds was confirmed by 1H NMR and Fourier-transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) revealed highly interconnected porosity of the obtained 3D structures. Addition of up to 20 wt% CUR has enhanced mechanical properties of the scaffolds. CUR has also promoted in vitro bioactivity and hydrolytic degradation of the electrospun nanofibers. The developed P3HB-MCNT composite scaffolds containing 20 wt% of CUR revealed excellent in vitro cytocompatibility using mesenchymal stem cells and in vivo biocompatibility in rat animal model study. Importantly, the reduced inflammatory reaction in the rat model after 8 weeks of implantation has also been observed for scaffolds modified with CUR. Overall, newly developed P3HB-MCNTs-CUR electrospun scaffolds have demonstrated their high potential for tissue engineering applications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.T.); (S.Z.)
- Pharmacology Department, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Najmeh Sarafraz
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (N.T.); (S.Z.)
| | - Aida Rowshanghiyas
- Department of Medical Biotechnology, Tehran Medical Science, Islamic Azad University, Tehran 19395-1495, Iran;
| | - Nima Farshidfar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, 71-311 Szczecin, Poland
| |
Collapse
|