1
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
2
|
Deng K, Huang Q, Yan X, Dai Y, Zhao J, Xiong X, Wang H, Chen X, Chen P, Liu L. Facile fabrication of a novel, photodetachable salecan-based hydrogel dressing with self-healing, injectable, and antibacterial properties based on metal coordination. Int J Biol Macromol 2024; 264:130551. [PMID: 38431010 DOI: 10.1016/j.ijbiomac.2024.130551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Achieving the controllable detachment of polysaccharide-based wound dressings is challenging. In this study, a novel, photodetachable salecan-based hydrogel dressing with injectable, self-healing, antibacterial, and wound healing properties was developed using a green and facile approach. A salecan hydrogel with a uniform porous structure and water content of 90.4 % was prepared by simply mixing salecan and an Fe3+-citric acid complexing solution in an acidic D-(+)-glucono-1,5-lactone environment. Metal coordinate interactions were formed between the released Fe3+ ions and carboxyl groups on the salecan polysaccharide, inducing homogeneous gelation. Benefiting from this dynamic and reversible crosslinking, the salecan hydrogel exhibited self-healing and injectable behavior, facilitating the formation of the desired shapes in situ. The exposure of Fe3+-citric acid to UV light (365 nm) resulted in the reduction of Fe3+ to Fe2+ through photochemical reactions, enabling phototriggered detachment. Moreover, the hydrogel exhibited excellent biocompatibility and satisfactory antibacterial efficacy against Escherichia coli and Staphylococcus aureus of 72.5 % and 85.3 %, respectively. The adhesive strength of the salecan hydrogel to porcine skin was 1.06 ± 0.12 kPa. In vivo wound healing experiments further highlighted the advantages of the prepared hydrogel in alleviating the degree of wound inflammation and promoting tissue regeneration within 12 days.
Collapse
Affiliation(s)
- Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qin Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaotong Yan
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yan Dai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., 88 Keyuan South Road, Chengdu 610000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hailan Wang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Song M, Aipire A, Dilxat E, Li J, Xia G, Jiang Z, Fan Z, Li J. Research Progress of Polysaccharide-Gold Nanocomplexes in Drug Delivery. Pharmaceutics 2024; 16:88. [PMID: 38258099 PMCID: PMC10820823 DOI: 10.3390/pharmaceutics16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Clinical drug administration aims to deliver drugs efficiently and safely to target tissues, organs, and cells, with the objective of enabling their therapeutic effects. Currently, the main approach to enhance a drug's effectiveness is ensuring its efficient delivery to the intended site. Due to the fact that there are still various drawbacks of traditional drug delivery methods, such as high toxicity and side effects, insufficient drug specificity, poor targeting, and poor pharmacokinetic performance, nanocarriers have emerged as a promising alternative. Nanocarriers possess significant advantages in drug delivery due to their size tunability and surface modifiability. Moreover, nano-drug delivery systems have demonstrated strong potential in terms of prolonging drug circulation time, improving bioavailability, increasing drug retention at the tumor site, decreasing drug resistance, as well as reducing the undesirable side effects of anticancer drugs. Numerous studies have focused on utilizing polysaccharides as nanodelivery carriers, developing delivery systems based on polysaccharides, or exploiting polysaccharides as tumor-targeting ligands to enhance the precision of nanoparticle delivery. These types of investigations have become commonplace in the academic literature. This review aims to elucidate the preparation methods and principles of polysaccharide gold nanocarriers. It also provides an overview of the factors that affect the loading of polysaccharide gold nanocarriers with different kinds of drugs. Additionally, it outlines the strategies employed by polysaccharide gold nanocarriers to improve the delivery efficiency of various drugs. The objective is to provide a reference for further development of research on polysaccharide gold nanodelivery systems.
Collapse
Affiliation(s)
- Ming Song
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Adila Aipire
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Elzira Dilxat
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jianmin Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Guoyu Xia
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China;
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.S.); (A.A.); (E.D.); (J.L.); (G.X.)
| |
Collapse
|
4
|
Xu Y, Xu J, Fan Z, Zhang S, Wu Y, Han R, Yu N, Tong X. Effective separation of protein from Polygonatum cyrtonema crude polysaccharide utilizing ionic liquid tetrabutylammonium bromide. Front Chem 2024; 11:1287571. [PMID: 38260046 PMCID: PMC10800795 DOI: 10.3389/fchem.2023.1287571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Extraction of plant polysaccharides often results in a large amount of proteins, which is hard to eliminate from the crude extract, and conventional approaches for deproteinization are time-consuming and often involve hazardous organic solvents. In this study, ionic liquid tetrabutylammonium bromide (TBABr) was used to create an ionic liquid aqueous two-phase system (ILATPS) for the separation of the polysaccharide (PcP) and protein extracted from the rhizome of Polygonatum cyrtonema. Bovine serum albumin (BSA) was first applied to assess the feasibility of the ILATPS, and MgSO4 was determined to be the most suitable inorganic salt. By adopting the Taguchi experiment with an L9 (3^4) orthogonal array, it was found that the best condition for the efficient separation of crude PcP was at 25°C, with 1.5 g of TBABr, 15 mg of PcP, and 2.0 g of MgSO4, with the extraction efficiency for the protein and polysaccharide as 98.6% and 93.5%, respectively. The purified PcP was homogeneous, and its weight average molecular weight (Mw) was 7,554 Da. Monosaccharide composition analysis indicated the PcP comprised mannose, galactose, glucose, galacturonic acid, arabinose, and rhamnose at a molar ratio of 33:13:8:3.5:2:1. This approach offers a practical tactic to purify polysaccharides of plant origin.
Collapse
Affiliation(s)
- Yuling Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xu
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Zheng Fan
- Medical Department, Taihe Hospital of Chinese Medicine, Taihe, China
| | - Siyuan Zhang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanjie Wu
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Wang Z, Fu S, Guo Y, Han Y, Ma C, Li R, Yang X. Classification and design strategies of polysaccharide-based nano-nutrient delivery systems for enhanced bioactivity and targeted delivery: A review. Int J Biol Macromol 2024; 256:128440. [PMID: 38016614 DOI: 10.1016/j.ijbiomac.2023.128440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Since many nutrients are highly sensitive, they cannot be absorbed and utilized efficiently by the body. Using nano-delivery systems to encapsulate nutrients is an effective method of solving the problems associated with the application of nutrients at this stage. Polysaccharides, as natural biomaterials, have a unique chemical structure, ideal biocompatibility, biodegradability and low immunogenicity. This makes polysaccharides powerful carriers that can enhance the biological activity of nutrients. However, the true role of polysaccharide-based delivery systems requires an in-depth understanding of the structural and physicochemical characteristics of polysaccharide-based nanodelivery systems, as well as effective modulation of the intestinal delivery mechanism and the latest advances in nano-encapsulation. This review provides an overview of polysaccharide-based nano-delivery systems dependent on different carrier types, emphasizing recent advances in the application of polysaccharides, a biocomposite material designed for nutrient delivery systems. Strategies for polysaccharide-based nano-delivery systems to enhance the bioavailability of orally administered nutrients from the perspective of the intestinal absorption barrier are presented. Characterization methods for polysaccharide-based nano-delivery systems are presented as well as an explanation of the formation mechanisms behind nano-delivery systems from the perspective of molecular forces. Finally, we discussed the challenges currently facing polysaccharide-based nano-delivery systems as well as possible future directions for the future.
Collapse
Affiliation(s)
- Zhili Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
6
|
Khoj MA, Hassan AF, Awwad NS, Ibrahium HA, Shaltout WA. Fabrication and characterization of Araucaria gum/calcium alginate composite beads for batch and column adsorption of lead ions. Int J Biol Macromol 2024; 255:128234. [PMID: 37981287 DOI: 10.1016/j.ijbiomac.2023.128234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
In this work, we developed five solid adsorbents such as calcium alginate beads (CG), Araucaria gum (AR) extracted from Araucaria heterophylla tree by chemical precipitation procedures, and Araucaria gum/calcium alginate composite beads (CR21, CR12, and CR11) prepared with different calcium alginate: Araucaria gum ratios (2:1, 1:2, and 1:1, respectively). The synthesized solid adsorbents were characterized utilizing TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, swelling ratio, SEM, and TEM. Through the batch and column adsorption strategies, we evaluated the effect of adsorbent dose, pH, initial Pb (II) concentration, shaking time, bed height, and flow rate. The data of batch technique indicated that CR11 demonstrated a maximum batch adsorption capacity of 149.95 mg/g at 25 °C. Lead ions adsorption was well fitted by pseudo-second order and Elovich according to kinetic studies, in addition to Langmuir and Temkin models based on adsorption isotherm studies onto all the samples. Thermodynamic investigation showed that Pb (II) adsorption process is an endothermic, physical, and spontaneous process. The highest column adsorption capacity (161.1 mg/g) was achieved by CR11 at a bed height of 3 cm, flow rate of 10 mL/min, and initial Pb+2 concentration of 225 mg/L with 68 min as breakthrough time and 180 min as exhaustion time. Yoon-Nelson and Thomas models applied well the breakthrough curves of Pb (II) column adsorption. The maximum column adsorption capacity was decreased by 11.4 % after four column adsorption/desorption processes. Our results revealed that CR11 had an excellent adsorption capacity, fast kinetics, and good selectivity, emphasizing its potential for its applications in water treatment.
Collapse
Affiliation(s)
- Manal A Khoj
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Asaad F Hassan
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Nasser S Awwad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Walaa A Shaltout
- Survey of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Egypt.
| |
Collapse
|
7
|
Silva FCO, Malaisamy A, Cahú TB, de Araújo MIF, Soares PAG, Vieira AT, Dos Santos Correia MT. Polysaccharides from exudate gums of plants and interactions with the intestinal microbiota: A review of vegetal biopolymers and prediction of their prebiotic potential. Int J Biol Macromol 2024; 254:127715. [PMID: 37918599 DOI: 10.1016/j.ijbiomac.2023.127715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Polysaccharides in plant-exuded gums are complex biopolymers consisting of a wide range of structural variability (linkages, monosaccharide composition, substituents, conformation, chain length and branching). The structural features of polysaccharides confer the ability to be exploited in different industrial sectors and applications involving biological systems. Moreover, these characteristics are attributed to a direct relationship in the process of polysaccharide enzymatic degradation by the fermentative action in the gut microbiota, through intrinsic interactions connecting bacterial metabolism and the production of various metabolites that are associated with regulatory effects on the host homeostasis system. Molecular docking analysis between bacterial target proteins and arabinogalactan-type polysaccharide obtained from gum arabic allowed the identification of intermolecular interactions provided bacterial enzymatic mechanism for the degradation of several arabinogalactan monosaccharide chains, as a model for the study and prediction of potential fermentable polysaccharide. This review discusses the main structural characteristics of polysaccharides from exudate gums of plants and their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Francisca Crislândia Oliveira Silva
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Arunkumar Malaisamy
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Thiago Barbosa Cahú
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), University City, CEP 21941-913 Rio de Janeiro, RJ, Brazil
| | - Maria Isabela Ferreira de Araújo
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Paulo Antônio Galindo Soares
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Angélica Thomaz Vieira
- Department of Biochemistry and Immunology, Laboratory of Microbiota and Immunomodulation (LMI), Federal University of Minas Gerais (UFMG), Antonio Carlos, 6627 - Pampulha, CEP 30.161-970 Belo Horizonte, MG, Brazil
| | - Maria Tereza Dos Santos Correia
- Department of Biochemistry, Glycoprotein Laboratory (BIOPROT), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
8
|
Putro JN, Soetaredjo FE, Lunardi VB, Irawaty W, Yuliana M, Santoso SP, Puspitasari N, Wenten IG, Ismadji S. Polysaccharides gums in drug delivery systems: A review. Int J Biol Macromol 2023; 253:127020. [PMID: 37741484 DOI: 10.1016/j.ijbiomac.2023.127020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Natania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institute of Technology Bandung (ITB), Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
9
|
Yang B, Wu X, Zeng J, Song J, Qi T, Yang Y, Liu D, Mo Y, He M, Feng L, Jia X. A Multi-Component Nano-Co-Delivery System Utilizing Astragalus Polysaccharides as Carriers for Improving Biopharmaceutical Properties of Astragalus Flavonoids. Int J Nanomedicine 2023; 18:6705-6724. [PMID: 38026532 PMCID: PMC10656867 DOI: 10.2147/ijn.s434196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-β-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jinjing Song
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Tianhao Qi
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao He
- College of Pharmacy, Dali University, Dali, Yunnan, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
10
|
Abreu MK, Silva MA, Abreu DS, Richter AR, de Paula RC, Constantino VR, Vasconcelos IF, de Oliveira FG, de Melo AS, Correa MA, Diógenes IC. Colloidal stability improvement of cobalt ferrite encapsulated in carboxymethylated cashew gum. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081703. [PMID: 36015329 PMCID: PMC9414761 DOI: 10.3390/pharmaceutics14081703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herb polysaccharides (HPS) have been studied extensively for their healthcare applications. Though the toxicity was not fully clarified, HPS were widely accepted for their biodegradability and biocompatibility. In addition, as carbohydrate polymers with a unique chemical composition, molecular weight, and functional group profile, HPS can be conjugated, cross-linked, and functionally modified. Thus, they are great candidates for the fabrication of drug delivery systems (DDS). HPS-based DDS (HPS-DDS) can bypass phagocytosis by the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting therapeutic effects. In this review, we focus on the application of HPS as components of immunoregulatory DDS. We summarize the principles governing the fabrication of HPS-DDS, including nanoparticles, micelles, liposomes, microemulsions, hydrogels, and microneedles. In addition, we discuss the role of HPS in DDS for immunotherapy. This comprehensive review provides valuable insights that could guide the design of effective HPS-DDS.
Collapse
|
12
|
Shobana N, Prakash P, Samrot AV, Jane Cypriyana PJ, Kajal P, Sathiyasree M, Saigeetha S, Stalin Dhas T, Alex Anand D, Sabesan GS, Muthuvenkatachalam BS, Mohanty BK, Visvanathan S. Purification and Characterization of Gum-Derived Polysaccharides of Moringa oleifera and Azadirachta indica and Their Applications as Plant Stimulants and Bio-Pesticidal Agents. Molecules 2022; 27:3720. [PMID: 35744846 PMCID: PMC9230390 DOI: 10.3390/molecules27123720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from Moringa oleifera and Azadirachta indica trees, then dried and powdered. Characterizations of gum polysaccharides were performed using TLC, GC-MS, NMR, etc., and sugar molecules such as glucose and xylose were found to be present. Effects of the gums on Abelmoschus esculentus growth were observed through root growth, shoot growth, and biomass content. The exposure of the seeds to the plant gums led to bio stimulation in the growth of the plants. Poor quality soil was exposed to the gum polysaccharide, where the polysaccharide was found to improve soil quality, which was observed through soil analysis and SEM analysis of soil porosity and structure. Furthermore, the plant gums were also found to have bio-pesticidal activity against mealybugs, which showed certain interstitial damage evident through histopathological analysis.
Collapse
Affiliation(s)
- Nagarajan Shobana
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Pandurangan Prakash
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - P. J. Jane Cypriyana
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Purohit Kajal
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Mahendran Sathiyasree
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Subramanian Saigeetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - T. Stalin Dhas
- Centre for Ocean Research, MoES—Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India;
| | - D. Alex Anand
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Gokul Shankar Sabesan
- Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia; (G.S.S.); (B.K.M.)
| | | | - Basanta Kumar Mohanty
- Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia; (G.S.S.); (B.K.M.)
| | - Sridevi Visvanathan
- Faculty of Medicine, AIMST University, Batu 3 1/2, Jalan, Bukit Air Nasi, Bedong 08100, Malaysia; (B.S.M.); (S.V.)
| |
Collapse
|
13
|
Badwaik HR, Kumari L, Maiti S, Sakure K, Ajazuddin, Nakhate KT, Tiwari V, Giri TK. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms. Int J Biol Macromol 2022; 209:2197-2212. [PMID: 35508229 DOI: 10.1016/j.ijbiomac.2022.04.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Diverse properties of natural gums have made them quite useful for various pharmaceutical applications. However, they suffer from various problems, including unregulated hydration rates, microbial degradation, and decline in viscosity during warehousing. Among various chemical procedures for modification of gums, carboxymethylation has been widely studied due to its simplicity and efficiency. Despite the availability of numerous research articles on natural gums and their uses, a comprehensive review on carboxymethylation of natural gums and their applications in the pharmaceutical and other biomedical fields is not published until now. This review outlines the classification of gums and their derivatization methods. Further, we have discussed various techniques of carboxymethylation, process of determination of degree of substitution, and functionalization pattern of substituted gums. Detailed information about the application of carboxymethyl gums as drug delivery carriers has been described. The article also gives a brief account on tissue engineering and cell delivery potential of carboxymethylated gums.
Collapse
Affiliation(s)
- Hemant Ramachandra Badwaik
- Shri Shankaracharya Institute of Pharmaceutical Science and Research, Junwani, Bhilai 490020, Chhattisgarh, India.
| | - Leena Kumari
- School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Kalyani Sakure
- Rungta College of Pharmaceutical Sciences and Reasearch, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Reasearch, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaibhav Tiwari
- Shri Shankaracharya Institute of Pharmaceutical Science and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Tapan Kumar Giri
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
14
|
Samrot AV, Saigeetha S, Mun CY, Abirami S, Purohit K, Cypriyana PJJ, Dhas TS, Inbathamizh L, Kumar SS. Utilization of Carica papaya latex on coating of SPIONs for dye removal and drug delivery. Sci Rep 2021; 11:24511. [PMID: 34972829 PMCID: PMC8720089 DOI: 10.1038/s41598-021-03328-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Latex, a milky substance found in a variety of plants which is a natural source of biologically active compounds. In this study, Latex was collected from raw Carica papaya and was characterized using UV-Vis, FTIR and GC-MS analyses. Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized, coated with C. papaya latex (PL-Sp) and characterized using UV-Vis, FT-IR, SEM-EDX, XRD, VSM and Zeta potential analyses. SPIONs and latex coated SPIONs (PL-Sp) were used in batch adsorption study for effective removal of Methylene blue (MB) dye, where (PL-Sp) removed MB dye effectively. Further the PL-Sp was used to produce a nanoconjugate loaded with curcumin and it was characterized using UV-Vis spectrophotometer, FT-IR, SEM-EDX, XRD, VSM and Zeta potential. It showed a sustained drug release pattern and also found to have good antibacterial and anticancer activity.
Collapse
Affiliation(s)
- Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia. .,Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India.
| | - S Saigeetha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, chennai, Tamil Nadu, 600119, India
| | - Chua Yeok Mun
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - S Abirami
- Department of Microbiology, Kamaraj college, Tiruchendur Road, Thoothukudi, 628003, India
| | - Kajal Purohit
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, chennai, Tamil Nadu, 600119, India
| | - P J Jane Cypriyana
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, chennai, Tamil Nadu, 600119, India
| | - T Stalin Dhas
- Centre for Ocean Research, Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - L Inbathamizh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, chennai, Tamil Nadu, 600119, India
| | - S Suresh Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India.
| |
Collapse
|
15
|
Bioactivity and Plant Growth Stimulation Studies using Mangifera indica L. Gum. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The potential of plant gum as a bioactive agent and plant growth enhancer has not been exploited well and plant gums are suitable for such purposes as they are non-toxic and biodegradable. Therefore, the aim of this study was to verify the potential of Mangifera indica (MI) gum as a bioactive agent and plant growth enhancer. Plant gum was collected from the bark of MI and polysaccharides were extracted, purified and characterized with ultraviolet-visible (UV-Vis) spectroscopic, Fourier-transform infrared spectroscopy and gas chromatography (GC) analyses. Crude and purified polysaccharides were tested for their antibacterial and antioxidant activity. The crude gum was subjected to plant growth stimulation study like germination percentage, shoot length, root length and wet weight of chilli (Capsicum frutescens). The effect of MI gum on soil porosity and water holding capacity (WHC) was also tested. UV-Vis and GC analyses of gum polysaccharide showed the presence of several types of monosaccharides in MI gum. The plant gum did not show any antibacterial activity against Escherichia coli, Pseudomonas sp., Bacillus sp. and Staphylococcus aureus, but was found to exhibit low antioxidant activity. The gum was found to enhance the seed germination and seedling growth in-vitro and in-vivo.
Collapse
|
16
|
Wu T, Li S, Huang Y, He Z, Zheng Y, Stalin A, Shao Q, Lin D. Structure and pharmacological activities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Elanthendral G, Shobana N, Meena R, P P, Samrot AV. Utilizing pharmacological properties of polyphenolic curcumin in nanotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Ribeiro IS, Pontes FJG, Carneiro MJM, Sousa NA, Pinto VPT, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Paula HCB, Feitosa JPA, de Paula RCM. Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. Int J Biol Macromol 2021; 179:314-323. [PMID: 33675833 DOI: 10.1016/j.ijbiomac.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
Polysaccharide based copolymers have been the focus of several research, particularly for the development of drug delivery systems. This study reports on the preparation of nanoparticles from an amphiphilic copolymer obtained by the poly(ε-caprolactone) graft in the structure of cashew gum, via ring-opening polymerization. The synthesis of copolymers was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The copolymers exhibit self-organization capability in water, with critical association concentration of 42 and 50 μg mL-1. The nanoparticle hydrodynamic diameters (212 and 202 nm) revealed a decreasing trend with increasing poly(ε-caprolactone) graft percentage. Epirubicin was used as an anticancer drug model and incorporated into the nanoparticles. The encapsulation efficiency reached 50% and 5.0% drug load. Nanoparticles showed an epirubicin controlled release profile, with maximum release of 93.0 ± 4.0% in 72 h, as well as excellent biocompatibility, according to hemolysis and cytotoxicity assays.
Collapse
Affiliation(s)
- Irisvan S Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco J G Pontes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Maria J M Carneiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Nayara A Sousa
- Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Vicente P T Pinto
- Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Fábio O S Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Gisele S Araújo
- Cell Culture Laboratory of the Delta, LCC Delta, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - José D B Marinho Filho
- Cell Culture Laboratory of the Delta, LCC Delta, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ana J Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Haroldo C B Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Judith P A Feitosa
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
19
|
Samrot AV, Bisyarah U, Kudaiyappan T, Etel F, Abubakar A. Ficus iyrata plant gum derived polysaccharide based nanoparticles and its application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int J Biol Macromol 2020; 165:3088-3105. [DOI: 10.1016/j.ijbiomac.2020.10.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
|