1
|
Wang R, Li J, Bi Q, Yang B, He T, Lin K, Zhu X, Zhang K, Jin R, Huang C, Nie Y, Zhang X. Crystallographic plane-induced selective mineralization of nanohydroxyapatite on fibrous-grained titanium promotes osteointegration and biocorrosion resistance. Biomaterials 2025; 313:122800. [PMID: 39241551 DOI: 10.1016/j.biomaterials.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qunjie Bi
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaifeng Lin
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Zhu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Cotrut CM, Blidisel A, Vranceanu DM, Vladescu (Dragomir) A, Ungureanu E, Pana I, Dinu M, Vitelaru C, Parau AC, Pruna V, Magurean MS, Titorencu I. Evaluation of the In Vitro Behavior of Electrochemically Deposited Plate-like Crystal Hydroxyapatite Coatings. Biomimetics (Basel) 2024; 9:704. [PMID: 39590276 PMCID: PMC11592108 DOI: 10.3390/biomimetics9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The purpose of coatings is to protect or enhance the functionality of the substrate material, irrespective of the field in which the material was designed. The use of coatings in medicine is rapidly expanding with the objective of enhancing the osseointegration ability of metallic materials such as titanium. The aim of this study was to obtain biomimetic hydroxyapatite (HAp)-based coatings on titanium by using the pulsed galvanostatic method. The morphology of the HAp-based coatings revealed the presence of very thin and wide plate-like crystals, grown perpendicular to the Ti substrate, while the chemical composition highlighted a Ca/P ratio of 1.66, which is close to that of stoichiometric HAp (1.67). The main phases and chemical bonds identified confirmed the presence of the HAp phase in the developed coatings. A roughness of 228 nm and a contact angle of approx. 17° were obtained for the HAp coatings, highlighting a hydrophilic character. In terms of biomineralization and electrochemical behavior, it was shown that the HAp coatings have significantly enhanced the titanium properties. Finally, the in vitro cell tests carried out with human mesenchymal stem cells showed that the Ti samples coated with HAp have increased cell viability, extracellular matrix, and Ca intracellular deposition when compared with the uncoated Ti, indicating the beneficial effect.
Collapse
Affiliation(s)
- Cosmin M. Cotrut
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alexandru Blidisel
- Hepato-Bilio-Pancreatic Surgery Center, University Clinic Surgical Semiology and Thoracic Surgery, “Victor Babes” University of Medicine and Pharmacy, Sq. Eftimie Murgu No. 2, 300041 Timisoara, Romania
| | - Diana M. Vranceanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Alina Vladescu (Dragomir)
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Independentei Street, 060042 Bucharest, Romania; (C.M.C.); (E.U.)
| | - Iulian Pana
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Mihaela Dinu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Catalin Vitelaru
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Anca C. Parau
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Vasile Pruna
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| | | | - Irina Titorencu
- Romanian Academy Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 8 B.P. Hasdeu, 050568 Bucharest, Romania
| |
Collapse
|
3
|
Lv Z, Ji Y, Wen G, Liang X, Zhang K, Zhang W. Structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. BURNS & TRAUMA 2024; 12:tkae036. [PMID: 38855573 PMCID: PMC11162833 DOI: 10.1093/burnst/tkae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Critical-sized bone defects represent a significant clinical challenge due to their inability to undergo spontaneous regeneration, necessitating graft interventions for effective treatment. The development of tissue-engineered scaffolds and regenerative medicine has made bone tissue engineering a highly viable treatment for bone defects. The physical and biological properties of nanocomposite biomaterials, which have optimized structures and the ability to simulate the regenerative microenvironment of bone, are promising for application in the field of tissue engineering. These biomaterials offer distinct advantages over traditional materials by facilitating cellular adhesion and proliferation, maintaining excellent osteoconductivity and biocompatibility, enabling precise control of degradation rates, and enhancing mechanical properties. Importantly, they can simulate the natural structure of bone tissue, including the specific microenvironment, which is crucial for promoting the repair and regeneration of bone defects. This manuscript provides a comprehensive review of the recent research developments and applications of structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. This review focuses on the properties and advantages these materials offer for bone repair and tissue regeneration, summarizing the latest progress in the application of nanocomposite biomaterials for bone tissue engineering and highlighting the challenges and future perspectives in the field. Through this analysis, the paper aims to underscore the promising potential of nanocomposite biomaterials in bone tissue engineering, contributing to the informed design and strategic planning of next-generation biomaterials for regenerative medicine.
Collapse
Affiliation(s)
- Zheng Lv
- Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Ying Ji
- Department of Orthopaedics, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Guoliang Wen
- Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Xiayi Liang
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, Sichuan, China
| | - Kun Zhang
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, Sichuan, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People’s Hospital, Guangxi Medical University, No. 8 Wenchang Road, Liuzhou 545006, Guangxi, China
| |
Collapse
|
4
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
5
|
Zang M, Li L, Sun X, Niu Z, Bai X, Liu X. Characterization, mechanical properties, corrosion behavior and bone-like apatite formation ability of fluorine substituted hydroxyapatite coating. J Mech Behav Biomed Mater 2024; 151:106364. [PMID: 38183747 DOI: 10.1016/j.jmbbm.2023.106364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Hydroxyapatite (HA) is a non-bioceramic commonly used in human implants in the form of coatings, which are limited in their application by mechanical and wear resistance properties, as well as biodegradability. In this study, fluorine substituted hydroxyapatite (FHA) coatings were prepared on Ti-6Al-4V surfaces by plasma spraying method using a mixture of calcium fluoride and hydroxyapatite powders. The prepared coatings were characterized by X-ray diffraction and fourier transform infrared (FTIR) spectroscopy at different levels of calcium fluoride (3 wt%, 6 wt%, 9 wt%, and 12 wt%). The biocompatibility of the coatings was evaluated by in vitro mineralization experiments. Experimental results showed that at 9 wt% of calcium fluoride, the prepared FHA coatings had better mechanical properties, with improved bond strength (28.2 MPa). The X-ray diffraction patterns of the coatings reflect the fluorine substitution during the spraying process and the 9FHA has the highest crystallinity according to the XRD analysis, which is closely related to the biological activity of the coating. In addition, Potentiodynamic polarisation showed that the sample coated with the 9FHA coating had the highest Ecorr and lowest Icorr, indicating the best corrosion resistance. The FHA coating exhibits faster apatite deposition in simulated body fluid, and the efficiency of apatite deposition increases with the increase of CaF2.
Collapse
Affiliation(s)
- Min Zang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Li Li
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Xumin Sun
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwei Niu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Xue Bai
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Xianfu Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049, China
| |
Collapse
|
6
|
Zarif ME, Bita B, Yehia-Alexe SA, Negut I, Groza A. Spectral Analysis of Strontium-Doped Calcium Phosphate/Chitosan Composite Films. Polymers (Basel) 2023; 15:4245. [PMID: 37959925 PMCID: PMC10647319 DOI: 10.3390/polym15214245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Strontium-doped calcium phosphate/chitosan films were synthetized on silicon substrates using the radio-frequency magnetron sputtering technique and the matrix-assisted pulsed laser evaporation technique. The deposition conditions associated with the radio-frequency magnetron sputtering discharge, in particular, include the high temperature at the substrate, which promotes the formation of strontium-doped tetra calcium phosphate layers. The physical and chemical processes associated with the deposition of chitosan on strontium-doped calcium phosphate layers were investigated using Fourier Transform Infrared Spectroscopy, Energy Dispersive X-ray Spectroscopy, and Scanning Electron Microscopy. Mass spectrometry coupled with laser induced ablation of the composite films proved to be a useful tool in the detection of the molecular ions characteristic to chitosan chemical structure.
Collapse
Affiliation(s)
- Maria Elena Zarif
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Sasa Alexandra Yehia-Alexe
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
| | - Andreea Groza
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Măgurele, Romania; (M.E.Z.); (B.B.); (S.A.Y.-A.); (I.N.)
| |
Collapse
|
7
|
Neto JVC, Teixeira ABV, Cândido Dos Reis A. Hydroxyapatite coatings versus osseointegration in dental implants: A systematic review. J Prosthet Dent 2023:S0022-3913(23)00631-5. [PMID: 37845113 DOI: 10.1016/j.prosdent.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
STATEMENT OF PROBLEM Knowledge of the effectiveness of hydroxyapatite coatings on the surface of titanium dental implants is lacking because of difficulties in standardizing their thickness, roughness, and effect on osseointegration. The selection of articles describing this coating in osseointegration will be of great relevance to implant dentistry. PURPOSE This systematic review aimed to answer the question, "How effective is hydroxyapatite on titanium surfaces for osseointegration?" MATERIAL AND METHODS The Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 guidelines were followed, and the protocol was registered on the international prospective register of systematic reviews (PROSPERO) database (CRD42023422601). The PubMed, Scopus, Web of Science, and Embase databases were searched, and articles were selected manually in 2 steps by 2 blinded investigators according to the previously selected eligibility criteria. The risk of bias was assessed using the systematic review center for laboratory animal experimentation (SYRCLE) tool. RESULTS Initially, 671 results were found. After analysis of eligibility criteria and full reading, 15 articles were included in the present review. Of these, 12 reported favorable osseointegration results for hydroxyapatite-coated surfaces, and 3 found no significant long-term difference between the coated and uncoated groups. CONCLUSIONS Hydroxyapatite surface treatment is effective in the osseointegration of titanium dental implants because it favors the absorption of proteins, adhesion, and proliferation of bone cells when obtained by methods that ensure proper adhesion. (J Prosthet Dent xxxx;xxx:xxx-xxx).
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Graduate student, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Beatriz Vilela Teixeira
- Postdoctoral Fellow, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Associate Professor, Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil..
| |
Collapse
|
8
|
Murphy B, Morris MA, Baez J. Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 1-Effect of Solution Concentration and Deposition Kinetics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2577. [PMID: 37764606 PMCID: PMC10535049 DOI: 10.3390/nano13182577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
This study introduces and explores the use of supersaturated solutions of calcium and phosphate ions to generate well-defined hydroxyapatite coatings for orthopaedic implants. The deposition of hydroxyapatite is conducted via several solutions of metastable precursors that precipitate insoluble hydroxyapatite minerals at a substrate-solution interface. Solutions of this nature are intrinsically unstable, but this paper outlines process windows in terms of time, temperature, concentration and pH in which coating deposition is controlled via the stop/go reaction. To understand the kinetics of the deposition process, comparisons based on ionic strength, particle size, electron imaging, elemental analyses and mass of the formed coating for various deposition solutions are carried out. This comprehensive dataset enables the measurement of deposition kinetics and identification of an optimum solution and its reaction mechanism. This study has established stable and reproducible process windows, which are precisely controlled, leading to the successful formation of desired hydroxyapatite films. The data demonstrate that this process is a promising and highly repeatable method for forming hydroxyapatites with desirable thickness, morphology and chemical composition at low temperatures and low capital cost compared to the existing techniques.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
9
|
Tamurejo-Alonso P, González-Martín ML, Pacha-Olivenza MÁ. Electrodeposited Zinc Coatings for Biomedical Application: Morphology, Corrosion and Biological Behaviour. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5985. [PMID: 37687682 PMCID: PMC10488799 DOI: 10.3390/ma16175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The improvement of biodegradable metals is currently an active and promising research area for their capabilities in implant manufacturing. However, controlling their degradation rate once their surface is in contact with the physiological media is a challenge. Surface treatments are in the way of addressing the improvement of this control. Zinc is a biocompatible metal present in the human body as well as a metal widely used in coatings to prevent corrosion, due to its well-known metal protective action. These two outstanding characteristics make zinc coating worthy of consideration to improve the degradation behaviour of implants. Electrodeposition is one of the most practical and common technologies to create protective zinc coatings on metals. This article aims to review the effect of the different parameters involved in the electrochemical process on the topography and corrosion characteristics of the zinc coating. However, certainly, it also provides an actual and comprehensive description of the state-of-the-art of the use of electrodeposited zinc for biomedical applications, focusing on their capacity to protect against bacterial colonization and to allow cell adhesion and proliferation.
Collapse
Affiliation(s)
- Purificación Tamurejo-Alonso
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
| | - María Luisa González-Martín
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Department of Applied Physics, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| | - Miguel Ángel Pacha-Olivenza
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain
| |
Collapse
|
10
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
11
|
Xue R, Deng X, Xu X, Tian Y, Hasan A, Mata A, Zhang L, Liu L. Elastin-like recombinamer-mediated hierarchical mineralization coatings on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces improve biocompatibility. BIOMATERIALS ADVANCES 2023; 151:213471. [PMID: 37201355 DOI: 10.1016/j.bioadv.2023.213471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The biocompatibility of biomedical materials is vital to their applicability and functionality. However, modifying surfaces for enhanced biocompatibility using traditional surface treatment techniques is challenging. We employed a mineralizing elastin-like recombinamer (ELR) self-assembling platform to mediate mineralization on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces, resulting in the modification of surface morphology and bioactivity while improving the biocompatibility of the material. We modulated the level of nanocrystal organization by adjusting the cross-linker ratio. Nanoindentation tests revealed that the mineralized configuration had nonuniformity with respect to Young's modulus and hardness, with the center areas having higher values (5.626 ± 0.109 GPa and 0.264 ± 0.022 GPa) compared to the edges (4.282 ± 0.327 GPa and 0.143 ± 0.023 GPa). The Scratch test results indicated high bonding strength (2.668 ± 0.117 N) between the mineralized coating and the substrate. Mineralized Zr-16Nb-xTi (x = 4,16 wt%) alloys had higher viability compared to untreated alloys, which exhibited high cell viability (>100 %) after 5 days and high alkaline phosphatase activity after 7 days. Cell proliferation assays indicated that MG 63 cells grew faster on mineralized surfaces than on untreated surfaces. Scanning electron microscopy imaging confirmed that the cells adhered and spread well on mineralized surfaces. Furthermore, hemocompatibility test results revealed that all mineralized samples were non-hemolytic. Our results demonstrate the viability of employing the ELR mineralizing platform to improve alloy biocompatibility.
Collapse
Affiliation(s)
- Renhao Xue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Xinru Deng
- School of Engineering and Materials Science, Queen Mary University of London, London E14NS, UK
| | - Xiaoning Xu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yueyan Tian
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Department of Chemical & Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ligang Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| | - Libin Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
12
|
Stocco TD, Bassous N, Oliveira Lobo A. Nanostructured materials for bone tissue replacement. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
13
|
Chen KT, Huang JW, Lin WT, Kuo TY, Chien CS, Chang CP, Lin YD. Effects of Micro-Arc Oxidation Discharge Parameters on Formation and Biomedical Properties of Hydroxyapatite-Containing Flower-like Structure Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010057. [PMID: 36614396 PMCID: PMC9821538 DOI: 10.3390/ma16010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 05/12/2023]
Abstract
The micro-arc oxidation (MAO) process was used to prepare hydroxyapatite-containing flower-like structure coatings on commercially pure titanium substrates with various values of the applied voltage (330, 390, 450 V), applied current (0.4, 0.5, 0.6 A), and duration time (1, 3, 5 min). It was found that the surface morphology of the coatings was determined primarily by the applied voltage. A voltage of 330 V yielded a flower-like/plate-like structure, while voltages of 390 V and 450 V produced a flower-like structure and a porous morphology, respectively. The applied current and duration time mainly affected the coating formation speed and petal size of the flower-like structures, respectively. The coatings prepared using voltages of 330 V and 390 V (0.6 A, 5 min) both contained Ti, TiO2-A (anatase), TiO2-R (rutile), DCPD (CaHPO4·2H2O, calcium hydrogen phosphate), and hydroxyapatite (HA). However, the latter coating contained less DCPD and had a higher HA/DCPD ratio and a Ca/P ratio closer to the ideal value of HA. The coating prepared with a voltage of 450 V consisted mainly of Ti, TiO2-A, TiO2-R, and CaTiO3. For the coatings prepared with a voltage of 390 V, the flower-like structures consisted mainly of HA-containing compounds. DCPD plate-like structures were observed either between the HA-containing flower-like structures (330 V samples) or within the flower-like structures themselves (390 V samples). The coating surfaces with flower-like/plate-like or flower-like structures had a greater roughness, which increased their hydrophilicity and resulted in superior bioactivity (SBF immersion) and biocompatibility (MG-63 cell culture). The optimal biomedical performance was found in the 390 V coating due to its flower-like structure and high HA/DCPD ratio.
Collapse
Affiliation(s)
- Kuan-Ting Chen
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
| | - Jun-Wei Huang
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
| | - Wei-Ting Lin
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
| | - Tsung-Yuan Kuo
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
- Correspondence: (T.-Y.K.); (C.-S.C.)
| | - Chi-Sheng Chien
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
- Correspondence: (T.-Y.K.); (C.-S.C.)
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City 710, Taiwan
| | - Yung-Ding Lin
- School of Intelligent Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
14
|
Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater 2022; 10:rbac094. [PMID: 36683758 PMCID: PMC9845531 DOI: 10.1093/rb/rbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues. In consideration of the disadvantages of bone substitutes, including poor mechanical properties, lack of vascularization and insufficient osteointegration, functional modification strategies can provide multiple functions and desired characteristics of printing materials, enhance their physicochemical and biological properties in bone tissue engineering. Thus, this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement. It is structured as introducing 3D printing technologies, properties of printing materials (metals, ceramics and polymers) and typical functional engineering strategies utilized in the application of bone, cartilage and joint regeneration.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bo Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | | |
Collapse
|
15
|
Bohara S, Suthakorn J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: a review. Biomater Res 2022; 26:26. [PMID: 35725501 PMCID: PMC9208209 DOI: 10.1186/s40824-022-00269-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
The use of orthopedic implants in surgical technology has fostered restoration of physiological functions. Along with successful treatment, orthopedic implants suffer from various complications and fail to offer functions correspondent to native physiology. The major problems include aseptic and septic loosening due to bone nonunion and implant site infection due to bacterial colonization. Crucial advances in material selection in the design and development of coating matrixes an opportunity for the prevention of implant failure. However, many coating materials are limited in in-vitro testing and few of them thrive in clinical tests. The rate of implant failure has surged with the increasing rates of revision surgery creating physical and sensitive discomfort as well as economic burdens. To overcome critical pathogenic activities several systematic coating techniques have been developed offering excellent results that combat infection and enhance bone integration. This review article includes some more common implant coating matrixes with excellent in vitro and in vivo results focusing on infection rates, causes, complications, coating materials, host immune responses and significant research gaps. This study provides a comprehensive overview of potential coating technology, with functional combination coatings which are focused on ultimate clinical practice with substantial improvement on in-vivo tests. This includes the development of rapidly growing hydrogel coating techniques with the potential to generate several accurate and precise coating procedures.
Collapse
Affiliation(s)
- Smriti Bohara
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| | - Jackrit Suthakorn
- Department of Biomedical Engineering, Center for Biomedical and Robotics Technology (BART LAB), Faculty of Engineering, Mahidol University, Salaya, Thailand
| |
Collapse
|
16
|
Huang T, Yu Z, Yu Q, Chen Y, Jiang Z, Wang Y, Yang G. Electrochemical deposition of lithium coating on titanium implant with enhanced early stage osseointegration. J Biomed Mater Res B Appl Biomater 2022; 110:2399-2410. [PMID: 35604032 DOI: 10.1002/jbm.b.35085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 11/10/2022]
Abstract
Recently, a large number of studies have reported that lithium (Li) displayed a positive effect on osteogenesis. However, only a few studies have investigated the Li-incorporated surfaces through electrochemical deposition. In this study, electrochemical deposition was conducted on a CHI600E electrochemical workstation. The characterization of electrochemical deposition (ECD) and ECD-Li surfaces were detected by field-emission scanning electron microscopy with energy-dispersive spectrometer. rBMSCs were cultured on two surfaces for subsequent adhesion, proliferation and live/dead assay. To evaluate the effects of Li-incorporated implants by electrochemical deposition on osseointegration in vivo, teeth extraction of two premolars and one first molar in bilateral mandible were performed on six male beagle dogs. After 3 months, ZDI and ZDI-Li implants were inserted into the bilateral mandible of each beagle dog. Micro Computed Tomography (Micro-CT) and hard tissue sectioning analysis were carried out to evaluate the osseointegration at 4- and 8-weeks post-implantation. Results showed that ECD-Li surface promoted adhesion and proliferation of BMSCs in the early stage. More importantly, through micro-CT analysis, the values of bone volume/total volume (BV/TV) (0.374 ± 0.015), bone-implant contact (BIC) (0.831 ± 0.025), and Tb.Th (0.412 ± 0.007) in ZDI-Li group was significantly higher than those of ZDI group (0.302 ± 0.009, 0.700 ± 0.023, 0.353 ± 0.001, p < .01) at 4 weeks. Similarly, ZDI-Li group manifested more bone contact with the implant surfaces at 4 weeks based on hard tissue sectioning analysis, whereas no significant difference was detected between two groups at 8 weeks. Therefore, incorporating Li into implant surface through ECD could enhance early osseointegration in vivo.
Collapse
Affiliation(s)
- Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yitong Chen
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Sun H, Yang Y, Yu L, Liu K, Fei Y, Guo C, Zhou Y, Hu J, Shi L, Ji H. Inhibition of Inflammatory Response and Promotion of Osteogenic Activity of Zinc-Doped Micro-Arc Titanium Oxide Coatings. ACS OMEGA 2022; 7:14920-14932. [PMID: 35557686 PMCID: PMC9089342 DOI: 10.1021/acsomega.2c00579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 05/31/2023]
Abstract
An early and sustained immune response can lead to chronic inflammation after the implant is placed in the body. The implantable materials with immunomodulatory effects can reduce the body's immune response and promote the formation of ideal osseointegration between the implants and bone tissue. In this study, zinc-coated titanium micro-arc oxide coating was prepared on titanium surface by micro-arc oxidation. The physical properties, anti-inflammation, and osteogenesis of the material were evaluated. We have physically characterized the surface structure of the coatings by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM) and detected the release of Zn2+ from the coating surface by inductively coupled optical plasma emission spectrometry (ICP-OES). The BMSCs were inoculated on the surface of the coating, and the biocompatibility of the coating was evaluated by CCK-8 analysis and living and dead cell staining. The osteogenic effect of the layer on BMSCs was evaluated by alkaline phosphatase (ALP) assays, osteocalcin (OCN) immunofluorescence, and quantitative polymerase chain reaction (q-PCR). The survival status of RAW264.7 on the coating surface and the mRNA expression of the associated proinflammatory markers, tumor necrosis factor-α (TNF-α), cluster of differentiation 86 (CD86), and inducible nitric oxide (INOS) were detected by CCK-8 analysis and q-PCR. In parallel, the cell counting kit-8 (CCK-8) analysis and q-PCR screened and evaluated the effective concentration of Zn2+ anti-inflammatory in vitro. The results show that the coating has good physical characterization, and Zn is uniformly bound to the surface of titanium and shows stable release and good biocompatibility to BMSCs, downregulating the expression of inflammation-related genes promoting the bone formation of BMSCs. We have successfully prepared zinc-coated micro-arc titanium oxide coating on the titanium surface, which has good osteogenesis and great anti-inflammatory potential and provides a new way for osseointegration in the implant.
Collapse
Affiliation(s)
- Haishui Sun
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yiming Yang
- College
of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai 200011, China
- National
Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai
Key Laboratory of Stomatology, Shanghai 200072, China
- Department
of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Yu
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Ke Liu
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yifan Fei
- Department
of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s
Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai 200011, China
| | - Chaoyang Guo
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yuqi Zhou
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jingzhou Hu
- Department
of Oral & Maxillofacial-Head & Neck Oncology, Ninth People’s
Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai 200011, China
| | - Lei Shi
- Department
of Oral and Maxillofacial Surgery, Gansu
Provincial Hospital, Lanzhou 730000, China
| | - Honghai Ji
- School
of Stomatology, Weifang Medical University, Weifang 261053, Shandong, China
| |
Collapse
|
18
|
Wang X, Xin H, Ning X, Zhang Y, Liu F, Zhang Z, Jia X, Guo W, Hong Y, Sui W. Strontium-loaded titanium implant with rough surface modulates osseointegration by changing sfrp4 in canonical and noncanonical Wnt signaling pathways. Biomed Mater 2022; 17. [PMID: 35349988 DOI: 10.1088/1748-605x/ac61fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 11/12/2022]
Abstract
A rough morphology and strontium can activate the Wnt pathway to regulate bone mesenchymal stem cells (rBMSCs) osteogenic differentiation, but the mechanism remains unclear. We constructed smooth Ti (ST) surfaces, rough Ti (RT) surfaces subjected to hydrofluoric acid etching, strontium-loaded smooth Ti (ST-Sr) surfaces subjected to magnetron sputtering, and rough strontium-loaded Ti (RT-Sr) surfaces. We systematically studied the in vitro osteogenic differentiation of rBMSCs on these four surfaces by alkaline phosphatase measurement, Alizarin Red staining and PCR. We also investigated whether crosstalk of the canonical and noncanonical Wnt signaling pathways regulated by sfrp4, which is an inhibitor of canonical and noncanonical Wnt, is the underlying mechanism via PCR on rBMSCs in different stages of osteogenic differentiation. We confirmed the effect of sfrp4 through an in vivo sfrp4-siRNA test. The in vitro osteogenic differentiation of rBMSCs decreased in the order RT-Sr, RT, ST-Sr, and ST. Regarding the mechanism, rough morphology and strontium both enhanced the canonical Wnt pathway to promote osseointegration. Additionally, rough morphology can inhibit sfrp4 to activate the noncanonical Wnt pathway, and then, the activated noncanonical Wnt pathway can suppress the canonical Wnt pathway at the early stage of osteogenic differentiation. Strontium continuously enhanced sfrp4 to inhibit the canonical Wnt pathway instead of activating the noncanonical Wnt pathway. Interestingly, the effect of rough morphology on sfrp4 changed from inhibition to enhancement, and the enhancing effect of strontium on sfrp4 was gradually attenuated. The results of the in vivo sfrp4-siRNA test showed that osseointegration decreased in the order RT-Sr, RT-Sr-siRNA, and ST. Our results suggest that the lack of sfrp4 could suppress osseointegration, indicating that sfrp4 acts as a crucial regulatory molecule for the canonical and noncanonical Wnt pathways during the response of rBMSCs to rough morphology and strontium.
Collapse
Affiliation(s)
- Xiaoyi Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University School of Stomatology, 145 Changle West Road, Xi 'an, Xi'an, Shaanxi, 710032, CHINA
| | - He Xin
- Fourth Military Medical University, 145 Changle West Road, Xi 'an, Xi'an, 710032, CHINA
| | - Xiaona Ning
- Ophthalmology, Tangdu Hospital Fourth Military Medical University, No. 1 xinsi Road,Xi'an, Xi'an, Shaanxi, 710038, CHINA
| | - Yubohan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University School of Stomatology, 145 Changle West Road, Xi 'an, Xi'an, Shaanxi, 710032, CHINA
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University School of Stomatology, 145 Changle West Road, Xi 'an, Xi'an, Shaanxi, 710032, CHINA
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University School of Stomatology, 145 Changle West Road, Xi 'an, Xi'an, Shaanxi, 710032, CHINA
| | - Xuelian Jia
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University School of Stomatology, 145 Changle West Road, Xi 'an, Xi'an, Shaanxi, 710032, CHINA
| | - Weiwei Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University School of Stomatology, 145 Changle West Road, Xi 'an, Xi'an, Shaanxi, 710032, CHINA
| | - Yonglong Hong
- Shenzhen Hospital of Southern Medical University, 1333 XinHu Road, Shenzhen, Shenzhen, Guangdong, 518000, CHINA
| | - Wen Sui
- Shenzhen Hospital of Southern Medical University, 1333 XinHu Road, Shenzhen 518100, Guangdong, China., Shenzhen, 518000, CHINA
| |
Collapse
|
19
|
Su T, Zheng A, Cao L, Peng L, Wang X, Wang J, Xin X, Jiang X. Adhesion-enhancing coating embedded with osteogenesis-promoting PDA/HA nanoparticles for peri-implant soft tissue sealing and osseointegration. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Gherasim O, Grumezescu AM, Grumezescu V, Andronescu E, Negut I, Bîrcă AC, Gălățeanu B, Hudiță A. Bioactive Coatings Loaded with Osteogenic Protein for Metallic Implants. Polymers (Basel) 2021; 13:4303. [PMID: 34960852 PMCID: PMC8703935 DOI: 10.3390/polym13244303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoconductive and osteoinductive coatings represent attractive and tunable strategies towards the enhanced biomechanics and osseointegration of metallic implants, providing accurate local modulation of bone-to-implant interface. Composite materials based on polylactide (PLA) and hydroxyapatite (HAp) are proved beneficial substrates for the modulation of bone cells' development, being suitable mechanical supports for the repair and regeneration of bone tissue. Moreover, the addition of osteogenic proteins represents the next step towards the fabrication of advanced biomaterials for hard tissue engineering applications, as their regulatory mechanisms beneficially contribute to the new bone formation. In this respect, laser-processed composites, based on PLA, Hap, and bone morphogenetic protein 4(BMP4), are herein proposed as bioactive coatings for metallic implants. The nanostructured coatings proved superior ability to promote the adhesion, viability, and proliferation of osteoprogenitor cells, without affecting their normal development and further sustaining the osteogenic differentiation of the cells. Our results are complementary to previous studies regarding the successful use of chemically BMP-modified biomaterials in orthopedic and orthodontic applications.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| |
Collapse
|
21
|
A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Biodes Manuf 2021; 5:371-395. [PMID: 34721937 PMCID: PMC8546395 DOI: 10.1007/s42242-021-00170-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Abstract Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials. Graphic abstract ![]()
Collapse
|
22
|
Sun Y, Zhang X, Luo M, Hu W, Zheng L, Huang R, Greven J, Hildebrand F, Yuan F. Plasma Spray vs. Electrochemical Deposition: Toward a Better Osteogenic Effect of Hydroxyapatite Coatings on 3D-Printed Titanium Scaffolds. Front Bioeng Biotechnol 2021; 9:705774. [PMID: 34381765 PMCID: PMC8350575 DOI: 10.3389/fbioe.2021.705774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Surface modification of three-dimensional (3D)-printed titanium (Ti) scaffolds with hydroxyapatite (HA) has been a research hotspot in biomedical engineering. However, unlike HA coatings on a plain surface, 3D-printed Ti scaffolds have inherent porous structures that influence the characteristics of HA coatings and osteointegration. In the present study, HA coatings were successfully fabricated on 3D-printed Ti scaffolds using plasma spray and electrochemical deposition, named plasma sprayed HA (PSHA) and electrochemically deposited HA (EDHA), respectively. Compared to EDHA scaffolds, HA coatings on PSHA scaffolds were smooth and continuous. In vitro cell studies confirmed that PSHA scaffolds have better potential to promote bone mesenchymal stem cell adhesion, proliferation, and osteogenic differentiation than EDHA scaffolds in the early and late stages. Moreover, in vivo studies showed that PSHA scaffolds were endowed with superior bone repair capacity. Although the EDHA technology is simpler and more controllable, its limitation due to the crystalline and HA structures needs to be improved in the future. Thus, we believe that plasma spray is a better choice for fabricating HA coatings on implanted scaffolds, which may become a promising method for treating bone defects.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mingran Luo
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weifan Hu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruqi Huang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Johannes Greven
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Chen W, Zhu WQ, Qiu J. Impact of exogenous metal ions on peri-implant bone metabolism: a review. RSC Adv 2021; 11:13152-13163. [PMID: 35423842 PMCID: PMC8697588 DOI: 10.1039/d0ra09395e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
The development of effective methods to promote the osseointegration of dental implants by surface modification is an area of intense research in dental materials science. Exogenous metal ions present in the implant and surface modifications are closely related to the bone metabolism around the implant. In the complex oral microenvironment, the release of metal ions caused by continuous corrosion of dental implants has an unfavorable impact on the surrounding tissue, and then affects osseointegration, leading to bad results such as loosening and falling off in the late stage of the implant. Besides, these ions can even be distributed in distant tissues and organs. Currently, surface modification techniques are being developed that involve different processing technologies including the introduction of exogenous metal ions with different properties onto the surface of implants to improve performance. However, most metal elements have some level of biological toxicity and can only be used within a safe concentration range to exert the optimum biological effects on recipients. In this paper, we review the adverse effects of metal ions on osseointegration and highlight the emerging applications for metal elements in improving the performance of dental implants.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing 210029 PR China +86 25 69593085
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University Nanjing 210029 PR China
| | - Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing 210029 PR China +86 25 69593085
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University Nanjing 210029 PR China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing 210029 PR China +86 25 69593085
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University Nanjing 210029 PR China
| |
Collapse
|
24
|
Zhou L, Pan M, Zhang Z, Diao Z, Peng X. Enhancing Osseointegration of TC4 Alloy by Surficial Activation Through Biomineralization Method. Front Bioeng Biotechnol 2021; 9:639835. [PMID: 33708765 PMCID: PMC7940542 DOI: 10.3389/fbioe.2021.639835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
Titanium (Ti) alloys have been applied to biomedical implants for a long time. Although Ti alloys are biocompatible, efforts have been continuously made to improve their bone conductivity and osteogenesis for enhancing their performance. Silk fibroin (SF) is a natural biomaterial with excellent biomedical and mechanical properties, and hydroxyapatite (HAP) nanocomposites derived from SF are promising for producing “artificial bone” owing to their biomedical applicability and strong mechanical functions. Therefore, we built an SF coating on the surface of Ti–6Al–4V alloy, and then the incubated SF-coated Ti alloy were immersed in simulated body fluid to induce mineral deposition of HAP on the alloys. The results from Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) analysis, and Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR–FTIR) confirmed the deposition of a mineral layer on the SF film surface. The proliferation, adhesion, and differentiation of MG-63 were tested, along with the BMP-2, COX-2, and OPG expression and protein content in the MG-63. Both Ti + SF and Ti + SF + HAP groups exhibited significantly better performance than a control Ti group with regard to the cell adhesion, cell proliferation, and protein expression. Furthermore, the hybrid layer comprising HAP and SF delivered more significant improvement of the osseointegration than the SF alone. It is hoped that the proposed methods can be used for constructing modified surfaces on Ti alloys, as they endowed the implants with good osteogenic potential.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Materials and Engineering, School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, China
| | - Meng Pan
- Department of Materials and Engineering, School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, China
| | - Zhenghua Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zijie Diao
- Department of Materials and Engineering, School of Forestry and Landscape Architecture, Anhui Agriculture University, Hefei, China
| | - Xiaochun Peng
- Department of Orthopaedics, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Current Challenges and Innovative Developments in Hydroxyapatite-Based Coatings on Metallic Materials for Bone Implantation: A Review. COATINGS 2020. [DOI: 10.3390/coatings10121249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biomaterials are in use for the replacement and reconstruction of several tissues and organs as treatment and enhancement. Metallic, organic, and composites are some of the common materials currently in practice. Metallic materials contribute a big share of their mechanical strength and resistance to corrosion properties, while organic polymeric materials stand high due to their biocompatibility, biodegradability, and natural availability. To enhance the biocompatibility of these metals and alloys, coatings are frequently applied. Organic polymeric materials and ceramics are extensively utilized for this purpose due to their outstanding characteristics of biocompatibility and biodegradability. Hydroxyapatite (HAp) is the material from the ceramic class which is an ultimate candidate for coating on these metals for biomedical applications. HAp possesses similar chemical and structural characteristics to normal human bone. Due to the bioactivity and biocompatibility of HAp, it is used for bone implants for regenerating bone tissues. This review covers an extensive study of the development of HAp coatings specifically for the orthopaedic applications that include different coating techniques and the process parameters of these coating techniques. Additionally, the future direction and challenges have been also discussed briefly in this review, including the coating of HAp in combination with other calcium magnesium phosphates that occur naturally in human bone.
Collapse
|