1
|
Tang MDQ, Tran NB, Nguyen THT, Nguyen KUH, Trinh NT, Van Vo T, Kobayashi M, Yoshitomi T, Nagasaki Y, Vong LB. Development of oral pH-sensitive redox nanotherapeutics for gastric ulcer therapy. J Control Release 2024; 375:758-766. [PMID: 39326501 DOI: 10.1016/j.jconrel.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Gastric ulcer is a common gastrointestinal disorder worldwide. Although its pathogenesis is unclear, the overproduction of reactive oxygen species (ROS), which results in an oxidative imbalance, has been reported as a central driving mechanism. Within the scope of this investigation, we developed two different self-assembling redox nanoparticles (RNPs) with ROS-scavenging features for the oral treatment of gastric ulcers. One of them, referred to as RNPN, disintegrates in response to acidic pH, whereas the other, denoted as RNPO, remains intact regardless of pH variations. Both types of RNPs showed different free radical scavenging activities in vitro. Protonation of the amino linkages in the side chains of RNPN caused the micelle structure to collapse and the nitroxide radicals encapsulated in the core were exposed to the outside, resulting in a significant increase in antioxidant capacity as the pH decreases. In contrast, RNPO maintained its spherical structure and consistent antioxidant reactivity irrespective of pH changes. The in vivo gastric retention of orally administered RNPN was significantly improved compared to that of RNPO which might be explained by the increased exposure of cationic protonating segments in RNPN on the negatively charged gastric mucosal surface. Owing to its improved gastric retention and enhanced ROS scavenging capacity under acidic pH conditions, RNPN exhibited superior protective effects against oxidative stress induced by aspirin in a gastric ulcer mouse model compared to RNPO. In addition, neither RNPN nor RNPO resulted in severe lethal effects or significant changes in the morphology of zebrafish embryos, indicating their biosafety. Our results suggest that the oral administration of RNPs has a high therapeutic potential for gastric ulcer treatment.
Collapse
Affiliation(s)
- Minh-Dat Quoc Tang
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Nhi Bao Tran
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Khanh-Uyen Hoang Nguyen
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam; Faculty of Biology and Biotechnology, University of Science Ho Chi Minh 700000, Viet Nam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Makoto Kobayashi
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam.
| |
Collapse
|
2
|
Bayoumi M, Youshia J, Arafa MG, Nasr M, Sammour OA. Nanocarriers for the treatment of glioblastoma multiforme: A succinct review of conventional and repositioned drugs in the last decade. Arch Pharm (Weinheim) 2024; 357:e2400343. [PMID: 39074966 DOI: 10.1002/ardp.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
- Nanotechnology Research Center, The British University in Egypt, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Murthy HN, Yadav GG, Paek KY, Park SY. Production of Terpene Trilactones from Cell and Organ Cultures of Ginkgo biloba. PLANTS (BASEL, SWITZERLAND) 2024; 13:2575. [PMID: 39339550 PMCID: PMC11434717 DOI: 10.3390/plants13182575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Ginkgo biloba is an ancient plant that has survived up until the present day. Gingko biloba is a rich source of valuable secondary metabolites, particularly terpene trilactones (TTLs) such as ginkgolides and bilobalides, which are obtained from the leaves and seeds of the plant. TTLs have pharmacological properties, including anticancer, anti-dementia, antidepressant, antidiabetic, anti-inflammatory, anti-hypertensive, antiplatelet, immunomodulatory, and neuroprotective effects. However, ginkgo is a very-slow-growing tree that takes approximately 30 years to reach maturity. In addition, the accumulation of TTLs in these plants is affected by age, sex, and seasonal and geographical variations. Therefore, plant cell cultures have been established in ginkgo to produce TTLs. Extensive investigations have been conducted to optimize the culture media, growth regulators, nutrients, immobilization, elicitation, and precursor-feeding strategies for the production of TTLs in vitro. In addition, metabolic engineering and synthetic biology methods have been used for the heterologous production of TTLs. In this review, we present the research strategies applied to cell cultures for the production of TTLs.
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad 580003, India
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Biotechnology, KLE Technological University, Hubballi 580031, India
| | | | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
4
|
Virameteekul S, Lees AJ, Bhidayasiri R. Small Particles, Big Potential: Polymeric Nanoparticles for Drug Delivery in Parkinson's Disease. Mov Disord 2024. [PMID: 39077831 DOI: 10.1002/mds.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the availability of a number of efficacious treatments for Parkinson's disease, their limitations and drawbacks, particularly related to low brain bioavailability and associated side effects, emphasize the need for alternative and more effective therapeutic approaches. Nanomedicine, the application of nanotechnology in medicine, has received considerable interest in recent years as a method of effectively delivering potentially therapeutic molecules to the brain. In particular, polymeric nanoparticles, constructed from biodegradable polymer, have shown great promise in enhancing therapeutic efficacy, reducing toxicity, and ensuring targeted delivery. However, their clinical translation remains a considerable challenge. This article reviews recent in vitro and in vivo studies using polymeric nanoparticles as drug and gene delivery systems for Parkinson's disease with their challenges and future directions. We are also particularly interested in the technical properties, mechanism, drugs release patterns, and delivery strategies to overcome the blood-brain barrier. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
5
|
Aanniz T, El Omari N, Elouafy Y, Benali T, Zengin G, Khalid A, Abdalla AN, Sakran AM, Bouyahya A. Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chem Biodivers 2024; 21:e202400116. [PMID: 38462536 DOI: 10.1002/cbdv.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP, 1014, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, 46030, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
6
|
Peng Y, Chen Q, Xue YH, Jin H, Liu S, Du MQ, Yao SY. Ginkgo biloba and Its Chemical Components in the Management of Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:625-666. [PMID: 38654507 DOI: 10.1142/s0192415x24500277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD), a degenerative disease of the central nervous system, remains unclear. The main manifestations of AD include cognitive and behavioral disorders, neuropsychiatric symptoms, neuroinflammation, amyloid plaques, and neurofibrillary tangles. However, current drugs for AD once the dementia stage has been reached only treat symptoms and do not delay progression, and the research and development of targeted drugs for AD have reached a bottleneck. Thus, other treatment options are needed. Bioactive ingredients derived from plants are promising therapeutic agents. Specifically, Ginkgo biloba (Gb) extracts exert anti-oxidant, anticancer, neuroplastic, neurotransmitter-modulating, blood fluidity, and anti-inflammatory effects, offering alternative options in the treatment of cardiovascular, metabolic, and neurodegenerative diseases. The main chemical components of Gb include flavonoids, terpene lactones, proanthocyanidins, organic acids, polysaccharides, and amino acids. Gb and its extracts have shown remarkable therapeutic effects on various neurodegenerative diseases, including AD, with few adverse reactions. Thus, high-quality Gb extracts are a well-established treatment option for AD. In this review, we summarize the insights derived from traditional Chinese medicine, experimental models, and emerging clinical trials on the role of Gb and its chemical components in the treatment of the main clinical manifestations of AD.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
7
|
Zhao Y, Tan H, Zhang J, Zhan D, Yang B, Hong S, Pan B, Wang N, Chen T, Shi Y, Wang Z. Developing liver-targeted naringenin nanoparticles for breast cancer endocrine therapy by promoting estrogen metabolism. J Nanobiotechnology 2024; 22:122. [PMID: 38504208 PMCID: PMC10953142 DOI: 10.1186/s12951-024-02356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dandan Zhan
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shicui Hong
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Pan
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yafei Shi
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Zhiyu Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Unnithan D, Sartaj A, Iqubal MK, Ali J, Baboota S. A neoteric annotation on the advances in combination therapy for Parkinson's disease: nanocarrier-based combination approach and future anticipation. Part II: nanocarrier design and development in focus. Expert Opin Drug Deliv 2024; 21:437-456. [PMID: 38507231 DOI: 10.1080/17425247.2024.2331216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION The current treatment modalities available for Parkinson's disease (PD) prove inadequate due to the inherent constraints in effectively transporting bioactive compounds across the blood-brain barrier. The utilization of synergistic combinations of multiple drugs in conjunction with advanced nanotechnology, emerges as a promising avenue for the treatment of PD, offering potential breakthroughs in treatment efficacy, targeted therapy, and personalized medicine. AREAS COVERED This review provides a comprehensive analysis of the efficacy of multifactorial interventions for PD, simultaneously addressing the primary challenges of conventional therapies and highlighting how advanced technologies can help overcome these limitations. Part II focuses on the effectiveness of nanotechnology for improving pharmacokinetics of conventional therapies, through the synergistic use of dual or multiple therapeutic agents into a single nanoformulation. Significant emphasis is laid on the advancements toward innovative integrations, such as CRISPR/Cas9 with neuroprotective agents and stem cells, all effectively synergized with nanocarriers. EXPERT OPINION By using drug combinations, we can leverage their combined effects to enhance treatment efficacy and mitigate side effects through lower dosages. This article is meant to give nanocarrier-mediated co-delivery of drugs and the strategic incorporation of CRISPR/Cas9, either as an independent intervention or synergized with a neuroprotective agent.
Collapse
Affiliation(s)
- Devika Unnithan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Liu Y, Zhang C, Cheng L, Wang H, Lu M, Xu H. Enhancing both oral bioavailability and anti-ischemic stroke efficacy of ginkgolide B by preparing nanocrystals self-stabilized Pickering nano-emulsion. Eur J Pharm Sci 2024; 192:106620. [PMID: 37871688 DOI: 10.1016/j.ejps.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Ginkgolide B (GB), which has been demonstrated as the most efficacious naturally occurring platelet-activating factor (PAF) antagonist, is extensively utilized for the management of cardiovascular and cerebrovascular ailments. Nevertheless, its limited oral bioavailability is hindered by its low solubility in gastric acid and inadequate stability in intestinal fluid, thereby constraining its practical application. This study aimed to develop GB nanocrystals (GB-NCs) and GB nanocrystals self-stabilized Pickering nano-emulsion (GB-NSSPNE) using a miniaturized wet bead milling method. Comparative evaluations were conducted in vivo and in vitro to assess their effectiveness. The findings revealed that GB-NSSPNE, with its intact nanoparticle slow release and absorption, was more effective in enhancing the oral bioavailability of GB compared to the rapid release and absorption of GB-NCs. This finding suggests a potential novel strategy for the oral delivery of GB.
Collapse
Affiliation(s)
- Yun Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China
| | - Chungang Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China; Department of Pharmacy, Changzhi Medical College, Changzhi, China; Key Laboratory of Ministry of Education, Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China; Qimeng Co., LTD, Chifeng, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China.
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hengyu Xu
- Medical Mass Spectrometry Technology Innovation Center of Liaoning Province, Shenyang Harmony Health Medical Laboratory, Shenyang, Liaoning Province, China
| |
Collapse
|
10
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Pradhan SP, Tejaswani P, Behera A, Sahu PK. Phytomolecules from conventional to nano form: Next-generation approach for Parkinson's disease. Ageing Res Rev 2024; 93:102136. [PMID: 38000511 DOI: 10.1016/j.arr.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The incidence of neurodegenerative diseases is increasing exponentially worldwide. Parkinson's disease (PD) is a neurodegenerative disease caused by factors like oxidative stress, gene mutation, mitochondrial dysfunction, neurotoxins, activation of microglial inflammatory mediators, deposition of Lewy's bodies, and α- synuclein proteins in the neurons leading to neuroinflammation and neurodegeneration in the substantia nigra. Hence the development of efficacious neuro-therapy is in demand which can prevent neurodegeneration and protect the nigrostriatal pathway. One of the approaches for managing PD is reducing oxidative stress due to aging and other co-morbid diseased conditions. The phytomolecules are reported as safe and efficacious antioxidants as they contain different secondary metabolites. However, the limitations of low solubility restricted permeability through the blood-brain barrier, and low bioavailability limits their clinical evaluation and application. This review discusses the therapeutic efficacy of phytomolecules in PD and different nanotechnological approaches to improve their brain permeability.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - P Tejaswani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Zheng K, Zhao J, Wang Q, Zhao Y, Yang H, Yang X, He L. Design and Evaluation of Ginkgolides Gastric Floating Controlled Release Tablets Based on Solid Supersaturated Self-nanoemulsifying. AAPS PharmSciTech 2023; 25:7. [PMID: 38147267 DOI: 10.1208/s12249-023-02717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Ginkgolides are receptor antagonist of platelet activating factor with great clinical prospect, but its application is limited by its low solubility, short half-life and poor alkaline environment stability. It is difficult to solve these problems with a single drug delivery system. In this study, supersaturated self-nanoemulsifying gastric floating tablets of ginkgolides were developed through the combination of solid supersaturated self-nanoemulsifying drug delivery system (solid S-SNEDDS) and gastric retentive floating drug delivery system (GFDDS) to solve these problems of ginkgolides. Solid S-SNEDDS was prepared by D-optimal mixture design, normalization method and single factor experiment. The properties of solid-S-SNEDDS were studied by TEM, PXRD, FT-IR, SEM and in vitro drug release profile. Then, the optimal formulation of stomach floating tablet was obtained through single factor experiment and center composite design, followed by the study of in vitro release, model and mechanism of release, in vitro buoyancy and kinetics of erosion and swelling. PXRD and FT-IR showed that the drug in solid S-SNEDDS existed in an amorphous manner and formed hydrogen bond with excipients. The results showed that the cumulative release of GA and GB in the optimal tablets was 96.12% and 92.57% higher than the simple tablets within 12 h. The release mechanism of the tablet was skeleton erosion and drug diffusion. In 12 h, the optimal tablets can float stably in vitro and release the drug at a constant rate, with a cumulative release of more than 80%. In summary, the combination of SNEDDS and GFDDS is a promising means to solve the problems of ginkgolides.
Collapse
Affiliation(s)
- Kai Zheng
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Jing Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Qiuli Wang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Yuyang Zhao
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Husheng Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, China.
| | - Lian He
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
- Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, China.
| |
Collapse
|
13
|
Nayab DE, Din FU, Ali H, Kausar WA, Urooj S, Zafar M, Khan I, Shabbir K, Khan GM. Nano biomaterials based strategies for enhanced brain targeting in the treatment of neurodegenerative diseases: an up-to-date perspective. J Nanobiotechnology 2023; 21:477. [PMID: 38087359 PMCID: PMC10716964 DOI: 10.1186/s12951-023-02250-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Neurons and their connecting axons gradually degenerate in neurodegenerative diseases (NDs), leading to dysfunctionality of the neuronal cells and eventually their death. Drug delivery for the treatment of effected nervous system is notoriously complicated because of the presence of natural barriers, i.e., the blood-brain barrier and the blood cerebrospinal fluid barrier. Palliative care is currently the standard care for many diseases. Therefore, treatment programs that target the disease's origin rather than its symptoms are recommended. Nanotechnology-based drug delivery platforms offer an innovative way to circumvent these obstacles and deliver medications directly to the central nervous system, thereby enabling treatment of several common neurological problems, i.e., Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Interestingly, the combination of nanomedicine and gene therapy enables targeting of selective mutant genes responsible for the progression of NDs, which may provide a much-needed boost in the struggle against these diseases. Herein, we discussed various central nervous system delivery obstacles, followed by a detailed insight into the recently developed techniques to restore neurological function via the differentiation of neural stem cells. Moreover, a comprehensive background on the role of nanomedicine in controlling neurogenesis via differentiation of neural stem cells is explained. Additionally, numerous phytoconstituents with their neuroprotective properties and molecular targets in the identification and management of NDs are also deliberated. Furthermore, a detailed insight of the ongoing clinical trials and currently marketed products for the treatment of NDs is provided in this manuscript.
Collapse
Affiliation(s)
- Dur E Nayab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan.
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Warda Arooj Kausar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shaiza Urooj
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Maryam Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrahim Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kanwal Shabbir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid- i-Azam University, Islamabad, 45320, Pakistan
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
14
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
15
|
Burns J, Buck AC, D’ Souza S, Dube A, Bardien S. Nanophytomedicines as Therapeutic Agents for Parkinson's Disease. ACS OMEGA 2023; 8:42045-42061. [PMID: 38024675 PMCID: PMC10652730 DOI: 10.1021/acsomega.3c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Phytochemicals are promising therapeutics for various neurodegenerative disorders, including Parkinson's disease (PD). However, their efficacy, pharmacokinetic properties, and penetration across the blood-brain barrier can be improved using delivery systems such as nanoparticles. We reviewed recently published work in which nanoparticles were used to deliver phytochemicals toward PD treatment. The studies show that nanoparticles not only improve the pharmacological effect of the phytochemicals but also enable targeting to the brain and crossing of the blood-brain barrier. Various ligands were added to the nanoparticles to improve blood-brain barrier transportation. The promising findings from the published studies reveal that more research into nanophytomedicine approaches as therapeutic targets for PD is warranted, especially since they have the potential to protect against key features of PD, including α-synuclein aggregation, mitochondrial dysfunction, and dopaminergic neuronal death. Furthermore, future directions should involve smart designs to tailor nanoparticles for improved therapeutic delivery by modifying their features, such as architecture, surface and material properties, targeting ligands, and responsiveness.
Collapse
Affiliation(s)
- Jessica Burns
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Amy Claire Buck
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Sarah D’ Souza
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Admire Dube
- School
of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Soraya Bardien
- Division
of Molecular Biology and Human Genetics, Faculty of Medicine and Health
Sciences, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- South
African Medical Research Council/Stellenbosch University Genomics
of Brain Disorders Research Unit, Stellenbosch
University, Stellenbosch, Cape Town 7600, South Africa
| |
Collapse
|
16
|
Chaoul V, Dib EY, Bedran J, Khoury C, Shmoury O, Harb F, Soueid J. Assessing Drug Administration Techniques in Zebrafish Models of Neurological Disease. Int J Mol Sci 2023; 24:14898. [PMID: 37834345 PMCID: PMC10573323 DOI: 10.3390/ijms241914898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
Neurological diseases, including neurodegenerative and neurodevelopmental disorders, affect nearly one in six of the world's population. The burden of the resulting deaths and disability is set to rise during the next few decades as a consequence of an aging population. To address this, zebrafish have become increasingly prominent as a model for studying human neurological diseases and exploring potential therapies. Zebrafish offer numerous benefits, such as genetic homology and brain similarities, complementing traditional mammalian models and serving as a valuable tool for genetic screening and drug discovery. In this comprehensive review, we highlight various drug delivery techniques and systems employed for therapeutic interventions of neurological diseases in zebrafish, and evaluate their suitability. We also discuss the challenges encountered during this process and present potential advancements in innovative techniques.
Collapse
Affiliation(s)
- Victoria Chaoul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Emanuel-Youssef Dib
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Joe Bedran
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Chakib Khoury
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Omar Shmoury
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| | - Frédéric Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat P.O. Box 100, Lebanon; (E.-Y.D.); (C.K.)
| | - Jihane Soueid
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (V.C.); (J.B.); (O.S.)
| |
Collapse
|
17
|
Badran MM, Alanazi AE, Ibrahim MA, Alshora DH, Taha E, H. Alomrani A. Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies. Polymers (Basel) 2023; 15:3890. [PMID: 37835942 PMCID: PMC10574927 DOI: 10.3390/polym15193890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Bromocriptine mesylate (BM), primarily ergocryptine, is a dopamine agonist derived from ergot alkaloids. This study aimed to formulate chitosan (CS)-coated poly ε-caprolactone nanoparticles (PCL NPs) loaded with BM for direct targeting to the brain via the nasal route. PCL NPs were optimized using response surface methodology and a Box-Behnken factorial design. Independent formulation parameters for nanoparticle attributes, including PCL payload (A), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) concentration (B), and sonication time (C), were investigated. The dependent variables were nanoparticle size (Y1), zeta potential (Y2), entrapment efficiency (EE; Y3), and drug release rate (Y4). The optimal formulation for BM-PCL NPs was determined to be 50 mg PCL load, 0.0865% TPGS concentration, and 8 min sonication time, resulting in nanoparticles with a size of 296 ± 2.9 nm having a zeta potential of -16.2 ± 3.8 mV, an EE of 90.7 ± 1.9%, and a zero-order release rate of 2.6 ± 1.3%/min. The optimized BM-PCL NPs were then coated with CS at varying concentrations (0.25, 0.5, and 1%) to enhance their effect. The CS-PCL NPs exhibited different particle sizes and zeta potentials depending on the CS concentration used. The highest EE (88%) and drug load (DL; 5.5%) were observed for the optimized BM-CS-PCL NPs coated with 0.25% CS. The BM-CS-PCL NPs displayed a biphasic release pattern, with an initial rapid drug release lasting for 2 h, followed by a sustained release for up to 48 h. The 0.25% CS-coated BM-CS-PCL NPs showed a high level of permeation across the goat nasal mucosa, with reasonable mucoadhesive strength. These findings suggested that the optimized 0.25% CS-coated BM-CS-PCL NPs hold promise for successful nasal delivery, thereby improving the therapeutic efficacy of BM.
Collapse
Affiliation(s)
- Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.B.); (E.T.); (A.H.A.)
| | - Abdulrahman E. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.E.A.); (D.H.A.)
| | - Mohamed Abbas Ibrahim
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.E.A.); (D.H.A.)
| | - Doaa Hasan Alshora
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.E.A.); (D.H.A.)
| | - Ehab Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.B.); (E.T.); (A.H.A.)
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.B.); (E.T.); (A.H.A.)
| |
Collapse
|
18
|
Nagri S, Rice O, Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1215384. [PMID: 38938851 PMCID: PMC11210682 DOI: 10.3389/fbiom.2023.1215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient's quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.
Collapse
Affiliation(s)
- Shreya Nagri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Olivia Rice
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
19
|
Pan R, Chen D, Hou L, Hu R, Jiao Z. Small extracellular vesicles: a novel drug delivery system for neurodegenerative disorders. Front Aging Neurosci 2023; 15:1184435. [PMID: 37404690 PMCID: PMC10315580 DOI: 10.3389/fnagi.2023.1184435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) have a slow onset and are usually detected late during disease. NDs are often difficult to cure due to the presence of the blood-brain barrier (BBB), which makes it difficult to find effective treatments and drugs, causing great stress and financial burden to families and society. Currently, small extracellular vesicles (sEVs) are the most promising drug delivery systems (DDSs) for targeted delivery of molecules to specific sites in the brain as a therapeutic vehicle due to their low toxicity, low immunogenicity, high stability, high delivery efficiency, high biocompatibility and trans-BBB functionality. Here, we review the therapeutic application of sEVs in several NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, discuss the current barriers associated with sEVs and brain-targeted DDS, and suggest future research directions.
Collapse
Affiliation(s)
- Renjie Pan
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongdong Chen
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lanlan Hou
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Rong Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
21
|
Biernacka P, Adamska I, Felisiak K. The Potential of Ginkgo biloba as a Source of Biologically Active Compounds-A Review of the Recent Literature and Patents. Molecules 2023; 28:3993. [PMID: 37241734 PMCID: PMC10222153 DOI: 10.3390/molecules28103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Ginkgo biloba is a relict tree species showing high resistance to adverse biotic and abiotic environmental factors. Its fruits and leaves have high medicinal value due to the presence of flavonoids, terpene trilactones and phenolic compounds. However, ginkgo seeds contain toxic and allergenic alkylphenols. The publication revises the latest research results (mainly from 2018-2022) regarding the chemical composition of extracts obtained from this plant and provides information on the use of extracts or their selected ingredients in medicine and food production. A very important section of the publication is the part in which the results of the review of patents concerning the use of Ginkgo biloba and its selected ingredients in food production are presented. Despite the constantly growing number of studies on its toxicity and interactions with synthetic drugs, its health-promoting properties are the reason for the interest of scientists and motivation to create new food products.
Collapse
Affiliation(s)
- Patrycja Biernacka
- Faculty of Food Science and Fisheries, Department of Food Science and Technology—West Pomeranian University of Technology, 70-310 Szczecin, Poland
| | | | | |
Collapse
|
22
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023:10.1007/s10571-023-01340-w. [PMID: 37004595 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
23
|
Ma L, Zhu L, Peng J, Xu S, Zhao Y, Shi J, Liu Q, Zhang H, Li J, Xiong Y. Pharmacokinetics of ginkgolide B-lyophilized nanoparticles after intravenous injection in rats using liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9465. [PMID: 36581608 DOI: 10.1002/rcm.9465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Ginkgolide B (GB) performs diverse pharmacological activities but has poor water solubility. The currently available GB injections have a short half-life and are lethal when injected rapidly. We prepared GB-lyophilized nanoparticles (GB-NPs) using a new nonsurfactant polysaccharide polymer, ZY-010, as its carrier to regulate the release of GB in vivo. Here, the pharmacokinetics (PK) of GB-NPs after intravenous injection in rats was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). METHODS The samples were separated on an Agilent Eclipse XDB-C 18 column (2.1 × 50 mm, 1.85 μm) maintained at 30°C. The MS/MS transitions of GB and glibenclamide as the internal standard (IS) were set at m/z 423.1 → 367.1 and m/z 492.1 → 367.0, respectively. The standard curve of GB content was constructed, and the specificity, sensitivity, precision, and extraction recovery of LC-MS/MS analysis were assessed. The main PK parameters were analyzed using DAS (Drug And Statistics for Windows) software, version 2.0. RESULTS The retention time of GB and IS at elution was 2.77 and 4.75 min, respectively. An excellent linear response across the concentration range of 0.001-100 μg/ml was achieved (r = 0.9997). The relative standard deviation value of precision was less than 10%. The total extraction recovery was above 80.76 ± 2.08%. The main PK parameters for the GB-NPs were as follows: t1/2 = 69.32 h, AUC(0 → ∞) = 188 312.97 ± 143 312.41 μg/L h, CL = 0.03 ± 0.02 L/h/kg, and V = 0.09 ± 0.05 L/kg. The t1/2 of the GB-NPs was significantly longer than that of GB solution, and AUC(0 → ∞) of GB-NPs was about 1.4 times that of GB solution. The PK data demonstrated that the blood concentration of GB in rats conformed to a three-compartment model in both GB solution and GB-NPs. CONCLUSION A rapid and accurate LC-MS/MS method was established for the determination of GB-NPs in rats. GB-NPs exhibited a sustained-release behavior in vivo compared with GB solution.
Collapse
Affiliation(s)
- Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lujia Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Pharmacy Department, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jianan Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shujun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hui Zhang
- ZY Therapeutics Inc., Research Triangle Park, North Carolina
| | - Jun Li
- ZY Therapeutics Inc., Research Triangle Park, North Carolina
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zheng YY, Guo ZF, Chen H, Bao TRG, Gao XX, Wang AH, Jia JM. Diterpenoids from Sigesbeckia glabrescens with anti-inflammatory and AChE inhibitory activities. PHYTOCHEMISTRY 2023; 205:113503. [PMID: 36356673 DOI: 10.1016/j.phytochem.2022.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fourteen previously undescribed diterpenoids, including seven ent-pimarane-type diterpenoids and seven phytane-type diterpenes, together with five known ones, were isolated from the aerial parts of Sigesbeckia glabrescens. The structures and absolute configurations of undescribed compounds were elucidated based on extensive spectroscopic techniques, ECD calculations, Mo2(OAC)4-induced ECD, Rh2(OCOCF3)4-induced ECD, calculated 13C NMR, and chemical methods. In the anti-inflammatory bioassay, siegetalis H showed potent inhibitory effect on LPS-induced NO production in RAW264.7 murine macrophages with an IC50 value at 17.29 μM. Furthermore, siegetalis H suppressed the protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. Mechanistically, siegetalis H suppressed the phosphorylation and degradation of IκBα, as well as the activation of the NF-κB signaling pathway. In addition, the AChE inhibition assay displayed that 3-O-acetyldarutigenol had a remarkable inhibitory effect against AChE with an IC50 value at 7.02 μM. Kinetic study on 3-O-acetyldarutigenol indicated that it acted as a mixed-type inhibitor, and the binding mode was explored by molecular docking.
Collapse
Affiliation(s)
- Ying-Ying Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Feng Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hu Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Te-Ren-Gen Bao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xu Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
25
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
26
|
Yan YC, Xu ZH, Wang J, Yu WB. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson's disease. Front Pharmacol 2022; 13:1007556. [PMID: 36249800 PMCID: PMC9556873 DOI: 10.3389/fphar.2022.1007556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with a fast-growing prevalence. Developing disease-modifying therapies for PD remains an enormous challenge. Current drug treatment will lose efficacy and bring about severe side effects as the disease progresses. Extracts from Ginkgo biloba folium (GBE) have been shown neuroprotective in PD models. However, the complex GBE extracts intertwingled with complicated PD targets hinder further drug development. In this study, we have pioneered using single-nuclei RNA sequencing data in network pharmacology analysis. Furthermore, high-throughput screening for potent drug-target interaction (DTI) was conducted with a deep learning algorithm, DeepPurpose. The strongest DTIs between ginkgolides and MAPK14 were further validated by molecular docking. This work should help advance the network pharmacology analysis procedure to tackle the limitation of conventional research. Meanwhile, these results should contribute to a better understanding of the complicated mechanisms of GBE in treating PD and lay the theoretical ground for future drug development in PD.
Collapse
Affiliation(s)
| | | | - Jian Wang
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| | - Wen-Bo Yu
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| |
Collapse
|
27
|
Hernández-Parra H, Cortés H, Avalos-Fuentes JA, Del Prado-Audelo M, Florán B, Leyva-Gómez G, Sharifi-Rad J, Cho WC. Repositioning of drugs for Parkinson's disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnology 2022; 20:413. [PMID: 36109747 PMCID: PMC9479294 DOI: 10.1186/s12951-022-01612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) significantly affects patients' quality of life and represents a high economic burden for health systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication alternatives, reducing research time and costs compared to the traditional drug development strategy. This review aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed, Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors "Parkinson's disease" and "drug repositioning" or "drug repurposing". We identified 28 drugs as potential candidates, and six of them were found in repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential. Finally, current advances in the use of NPs for Parkinson's disease are cited.
Collapse
Affiliation(s)
- Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, 14380 Ciudad de México, Mexico
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
28
|
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater 2022; 13:125. [PMID: 36135560 PMCID: PMC9504125 DOI: 10.3390/jfb13030125] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
29
|
Efficient Sustained-Release Nanoparticle Delivery System Protects Nigral Neurons in a Toxin Model of Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081731. [PMID: 36015354 PMCID: PMC9415969 DOI: 10.3390/pharmaceutics14081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is a serious neurodegenerative disease wherein the progressive destruction of dopaminergic neurons results in a series of related movement disorders. Effective oral delivery of anti-Parkinson’s drugs is challenging owing to the blood-brain barrier (BBB) and the limited plasma exposure. However, polymeric nanoparticles possess great potential to enhance oral bioavailability, thus improving drug accumulation within the brain. In this work, biodegradable poly(ethylene glycol)-b-poly(trimethylene carbonate) (PEG-PTMC) nanoparticles (PPNPs) were developed to deliver Ginkgolide B (GB) as a potent treatment for PD, aiming to enhance its accumulation within both the blood and the brain. The resultant GB-PPNPs were able to facilitate sustained GB release for 48 h and to protect against 1-methyl-4-phenylpyridine (MPP+)-induced neuronal cytotoxicity without causing any toxic damage. Subsequent pharmacokinetic studies revealed that GB-PPNPs accumulated at significantly higher concentrations in the plasma and brain relative to free GB. Oral GB-PPNP treatment was also linked to desirable outcomes in an animal model of PD, as evidenced by improvements in locomotor activity, levels of dopamine and its metabolites, and tyrosine hydroxylase activity. Together, these data suggest that PPNPs may represent promising tools for the effective remediation of PD and other central nervous system disorders.
Collapse
|
30
|
Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Tang L, Fei Y, Su Y, Zhang A, Xiao Q, Mei Y, Su Y, Li Y, Li W, Wang T, Shen Y, Wang W. A neurovascular dual-targeting platelet-like bioinspired nanoplatform for ischemic stroke treatment. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol 2022; 10:788128. [PMID: 35186901 PMCID: PMC8851324 DOI: 10.3389/fbioe.2022.788128] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
The delivery of therapeutic molecules to the brain remains an unsolved problem to the researchers due to the existence of the blood-brain barrier (BBB), which halts the entry of unwanted substances to the brain. Central nervous system (CNS) disorders, mainly Parkinson's disease, Alzheimer's disease, schizophrenia, brain tumors, and stroke, are highly prevalent globally and are a growing concern for researchers due to restricting the delivery of pharmaceutical drugs to the brain. So effective treatment modalities are essential to combat the growing epidemic of CNS diseases. Recently, the growing attention in the field of nanotechnology has gained the faith of researchers for the delivery of therapeutics to the brain by targeting them to the specific target site. Polymeric nanoparticles (PNPs) emerge out to be an instrumental approach in drug targeting to the brain by overcoming the physiological barrier, biomedical barrier, and BBB. Preclinical discovery has shown the tremendous potential and versatility of PNPs in encapsulating several drugs and their targeting to the deepest regions of the brain, thus improving therapeutic intervention of CNS disorders. The current review will summarize advances in the development of PNPs for targeting therapeutics to the brain and the functional and molecular effects obtained in the preclinical model of most common CNS diseases. The advancement of PNPs in clinical practice and their prospect in brain targeting will also be discussed briefly.
Collapse
Affiliation(s)
- Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
33
|
Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today 2022; 27:1513-1522. [DOI: 10.1016/j.drudis.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
34
|
Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. MATERIALS 2022; 15:ma15030804. [PMID: 35160749 PMCID: PMC8837051 DOI: 10.3390/ma15030804] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Collapse
|
35
|
Wan Y, Huang L, Liu Y, Ji W, Li C, Ge RL. Preconditioning With Intermittent Hypobaric Hypoxia Attenuates Stroke Damage and Modulates Endocytosis in Residual Neurons. Front Neurol 2022; 12:750908. [PMID: 34975719 PMCID: PMC8715922 DOI: 10.3389/fneur.2021.750908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Moderate hypobaric hypoxia induces cerebral ischemic tolerance. We investigated the optimal method for applying hypobaric hypoxia preconditioning at 5,000 m to ischemic brain tissue and combined it with proteomics to determine the mechanisms underlying this effect. Methods: Male SD rats were randomly grouped as S (sham, n = 20), M (middle cerebral artery occlusion [MCAO], n = 28), H2M (intermittent hypobaric hypoxia preconditioned MCAO group, 2 h/day, 10 days, n = 20), H6M (intermittent hypobaric hypoxia preconditioned MCAO group, 6 h/day, 10 days, n = 28), and HpM (persistent hypobaric hypoxia preconditioned MCAO group, 10 days, n = 28). The permanent MCAO model was established based on the Zea Longa method. Infarction was assessed with the modified neurological severity score (mNSS) and 2,3,5-triphenyl tetrazolium chloride staining. The total protein expression of the neuron-specific nuclear protein (NeuN), cysteinyl aspartate specific proteinase 3 (caspase-3), cleaved-caspase-3, and interleukin 6 (IL-6) was determined using western blotting. We assessed the peri-infarct cortex's ultrastructural changes. A label-free proteomic study and western blot verification were performed on the most effective preconditioned group. Results: The H6M group showed a lower infarct volume (p = 0.0005), lower mNSS score (p = 0.0009) than the M group. The H2M showed a lower level of IL-6 (p = 0.0213) than the M group. The caspase-3 level decreased in the H2M (p = 0.0002), H6M (p = 0.0025), and HpM groups (p = 0.0054) compared with that in the M group. Cleaved-caspase-3 expression decreased in the H2M (p = 0.0011), H6M (p < 0.0001), and HpM groups (p < 0.0001) compared with that in the M group. The neurons' ultrastructure and the blood-brain barrier in the peri-infarct tissue improved in the H2M and H6M groups. Immunofluorescence revealed increased NeuN-positive cells in the peri-infarct tissue in the H6M group (p = 0.0003, H6M vs. M). Protein expression of Chmp1a, Arpc5, and Hspa2 factors related to endocytosis were upregulated in the H6M compared with those of the M group (p < 0.05 for all) on western blot verification of label-free proteomics. Conclusions: Intermittent hypobaric hypoxia preconditioning exerts a neuroprotective effect in a rat stroke model. Persistent hypobaric hypoxia stimulation exhibited no significant neuroprotective effect. Intermittent hypoxic preconditioning for 6 h/day for 10 days upregulates key proteins in clathrin-dependent endocytosis of neurons in the cortex.
Collapse
Affiliation(s)
- Yaqi Wan
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Lu Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanmin Liu
- Qinghai Provincial People's Hospital, Xining, China
| | - Weizhong Ji
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Changxing Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
36
|
Loureiro Damasceno JP, Silva da Rosa H, Silva de Araújo L, Jacometti Cardoso Furtado NA. Andrographis paniculata Formulations: Impact on Diterpene Lactone Oral Bioavailability. Eur J Drug Metab Pharmacokinet 2022; 47:19-30. [PMID: 34816382 PMCID: PMC8609994 DOI: 10.1007/s13318-021-00736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Diterpene lactones have been identified as active compounds in several medicinal plants, including Andrographis paniculata (Burm. f.) Nees, which is a medicinal plant that has been used for centuries across the world. Andrographolide is the major diterpene from A. paniculata and the main bioactive constituent of this species. The effectiveness of diterpenes can be affected by factors that limit their oral bioavailability, such as their poor water solubility, slow dissolution rates, low gastrointestinal absorption, high chemical and metabolic instability, and rapid excretion. In this context, the purpose of the present review is to compile and compare literature data on the bioavailability of diterpene lactones from A. paniculata after oral administration in medicinal plant extracts or in their free forms and to highlight strategies that have been used to improve their oral bioavailability. Considering that medicinal plant extracts are commonly used as dried powder that is reconstituted in water before oral administration, novel pharmaceutical formulation strategies that are used to overcome difficulties with diterpene solubility are also compiled in this review. The use of self-microemulsifying drug delivery systems is a good strategy to enhance the dissolution and consequently the bioavailability of andrographolide after oral administration of A. paniculata extract formulations. On the other hand, herbosome technology, pH-sensitive nanoparticles, nanosuspensions, nanoemulsions, nanocrystal suspensions, nanocrystal-based solid dispersions, and solid dispersion systems are useful to formulate andrographolide in its free form and increase its oral bioavailability. The use of a suitable andrographolide delivery system is essential to achieve its therapeutic potential.
Collapse
Affiliation(s)
- João Paulo Loureiro Damasceno
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Hemerson Silva da Rosa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Silva de Araújo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Niege Araçari Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
37
|
Wei D, Yang H, Zhang Y, Zhang X, Wang J, Wu X, Chang J. Nano-Traditional Chinese Medicine: a promising strategy and its recent advances. J Mater Chem B 2022; 10:2973-2994. [DOI: 10.1039/d2tb00225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional Chinese medicine(TCM) has been applied to the prevention and treatment of numerous diseases and has an irreplaceable role of rehabilitation and health care. However, the application of TCM is...
Collapse
|
38
|
Preparation of chitosan nanoparticles as Ginkgo Biloba extract carrier: In vitro neuroprotective effect on oxidative stress-induced human neuroblastoma cells (SH-SY5Y). Int J Biol Macromol 2021; 192:675-683. [PMID: 34655582 DOI: 10.1016/j.ijbiomac.2021.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Ginkgo biloba (Gb) is an ancient Chinese tree cultivated for its health-promoting properties. Moreover, Gb extract has a therapeutic effect, especially on neurodegenerative diseases. In this study, Gb extract-loaded chitosan nanoparticles (Gb-CsNPs) were synthesized by ionic gelation method. Size and zeta potential of the nanoparticles were analyzed and Scanning Electron Microscopy (SEM) and Fourier Transform Spectroscopy (FT-IR) were performed. Besides, encapsulation efficacy and loading capacity were calculated, and in vitro release, and cellular uptake studies were carried out. The biocompatibility of Gb-CsNPs was demonstrated and their neuroprotective activity was investigated on oxidative stress-induced SH-SY5Y cells. Apoptotic cells were monitored by DAPI, and cell migration was examined by in vitro scratch assay. Results showed that Gb-CsNPs had an average size of 104.4 nm, their zeta potential and polydispersity index (PDI) values were 29.3 mV, and 0.09 respectively. Encapsulation efficacy and loading capacity were found as 97.4% and 40%, respectively. It has been revealed that Gb-CsNPs were biocompatible and showed neuroprotective activity by increasing cell viability from 60% to 92.3%. Consequently, neuroprotective effect of the Gb extract was increased by chitosan encapsulation. This formulation is a candidate to be used as a food supplement after being supported by future in vivo studies.
Collapse
|
39
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
40
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
41
|
Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol 2021; 12:704197. [PMID: 34483907 PMCID: PMC8414653 DOI: 10.3389/fphar.2021.704197] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes' chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.
Collapse
Affiliation(s)
- María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, Ciudad de México, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Lidia Escutia-Guadarrama
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David M. Giraldo-Gomez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Unidad de Microscopía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jonathan J. Magaña
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, Ciudad de México, México
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
42
|
Lo YC, Lin WJ. Benefit of a Short Chain Peptide as a Targeting Ligand of Nanocarriers for a Brain-Driven Purpose. Pharmaceutics 2021; 13:pharmaceutics13081249. [PMID: 34452209 PMCID: PMC8401212 DOI: 10.3390/pharmaceutics13081249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment of glioma remains a critical challenge worldwide, since the therapeutic effect is greatly hindered by poor transportation across the blood brain barrier (BBB) and low penetration into tumor cells. In this study, a peptide-conjugated nano-delivery system was explored for the purpose of glioma therapy. A peptide-decorated copolymer was used to prepare nanoparticles (NPs) by a solvent evaporation method. The particle size was in the range of 160.9 ± 3.3–173.5 ± 3.6 nm with monodistribution, and the zeta potentials ranged from −18.6 ± 1.2 to +7.9 ± 0.6 mV showing an increasing trend with R9-peptide. An in vitro cocultured BBB model illustrated the internalization of peptide-conjugated NPs in bEnd.3 cells followed by uptake by U87-MG cells indicating both BBB-crossing and glioma-penetrating abilities. IVIS (In Vivo Imaging System) images revealed that T7-conjugated NPs specifically accumulated in the brain more than peptide-free NPs and had less biodistribution in nontarget tissues than T7/R9 dual-peptide conjugated NPs. The benefit of T7-peptide as a targeting ligand for NPs across the BBB with accumulation in the brain was elucidated.
Collapse
Affiliation(s)
- Yu-Chen Lo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
| | - Wen-Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
- Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- Correspondence: ; Tel.: +886-2-3366-8765; Fax: +886-2-2391-9098
| |
Collapse
|
43
|
Sahib S, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Castellani RJ, Nozari A, Patnaik R, Menon PK, Wiklund L, Sharma HS. Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:249-315. [PMID: 34560923 DOI: 10.1016/bs.pbr.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
44
|
Liu Y, Hong H, Xue J, Luo J, Liu Q, Chen X, Pan Y, Zhou J, Liu Z, Chen T. Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood-Brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37746-37760. [PMID: 34318658 DOI: 10.1021/acsami.1c12675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial dysfunction, which is directly involved in Parkinson's disease (PD), is characterized by the production of reactive oxygen species (ROS) and aberrant energy metabolism. Thus, regulating mitochondrial function might be an effective strategy to treat PD. However, the blood-brain barrier (BBB) presents a significant challenge for the intracerebral delivery of drugs. Here, we synthesized a zeolitic imidazolate framework 8-coated Prussian blue nanocomposite (ZIF-8@PB), which was encapsulated with quercetin (QCT), a natural antioxidant, to treat PD. ZIF-8@PB-QCT exhibited superior near-infrared radiation (NIR) response and penetrated through the BBB to the site of mitochondrial damage guided by the photothermal effect. In the mice model of PD, the QCT released from ZIF-8@PB-QCT significantly increased the adenosine triphosphate levels, reduced the oxidative stress levels, and reversed dopaminergic neuronal damage as well as PD-related behavioral deficits without any damage to the normal tissues. Furthermore, we explored the underlying neuroprotective mechanism of ZIF-8@PB-QCT that was mediated by activating the PI3K/Akt signaling pathway. Thus, combined with noninvasive NIR radiation, the biocompatible ZIF-8@PB-QCT nanocomposite could be used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jincheng Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
45
|
Abstract
The application of ginkgolides as a herbal remedy reaches ancient China. Over time many studies confirmed the neuroprotective effect of standard Ginkgo biloba tree extract—the only available ginkgolide source. Ginkgolides present a wide variety of neuroregulatory properties, commonly used in the therapy process of common diseases, such as Alzheimer’s, Parkinson’s, and many other CNS-related diseases and disorders. The neuroregulative properties of ginkgolides include the conditioning of neurotransmitters action, e.g., glutamate or dopamine. Besides, natural compounds induce the inhibition of platelet-activating factors (PAF). Furthermore, ginkgolides influence the inflammatory process. This review focuses on the role of ginkgolides as neurotransmitters or neuromodulators and overviews their impact on the organism at the molecular, cellular, and physiological levels. The clinical application of ginkgolides is discussed as well.
Collapse
|
46
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
47
|
Luo T, Lin D, Hao Y, Shi R, Wei C, Shen W, Wu A, Huang P. Ginkgolide B‑mediated therapeutic effects on perioperative neurocognitive dysfunction are associated with the inhibition of iNOS‑mediated production of NO. Mol Med Rep 2021; 24:537. [PMID: 34080648 PMCID: PMC8170229 DOI: 10.3892/mmr.2021.12176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/17/2021] [Indexed: 11/06/2022] Open
Abstract
Perioperative neurocognitive dysfunction (PND) is a prevalent neurological complication after anesthesia and surgery. Ginkgolide B (GB) has been suggested to improve lipopolysaccharide-induced learning and memory impairment. The present study aimed to investigate whether GB serves a protective role against PND by inhibiting inducible nitric oxide synthase (iNOS) and nitric oxide (NO). Abdominal surgery was performed on 10- to 12-week-old male C57BL/6 mice under isoflurane anesthesia. Prior to surgery, 1400W (a specific iNOS inhibitor) and GB were administered via intraperitoneal injection. Open field and fear conditioning tests were conducted to assess cognitive function on postoperative days 1 and 3. Biochemical assays were performed to evaluate alterations in NO, malondialdehyde (MDA) and superoxide dismutase (SOD) levels. Western blotting was performed to measure iNOS expression in the hippocampus on postoperative day 1. In addition, hematoxylin and eosin staining was performed to detect the neuronal morphology in the hippocampus. Following treatment with 1400W or GB, surgery-induced cognitive dysfunction was improved. Compared with the control group, the surgery group exhibited significant overproduction of iNOS and MDA in the hippocampus on postoperative day 1. Higher levels of NO were also detected in the hippocampus and prefrontal cortex of the surgery group on postoperative day 1. Furthermore, pretreatment with 1400W or GB significantly inhibited the surgery-induced elevation of NO and MDA in brain tissues. Moreover, GB pretreatment significantly inhibited surgery-induced downregulation of SOD and upregulation of iNOS. Surgery-induced increases in neuronal loss and the Bax/Bcl-2 ratio in the hippocampus were significantly inhibited by pretreatment with GB. Collectively, the results of the present study demonstrated that the therapeutic effects of GB on PND were associated with inhibition of iNOS-induced NO production, increased SOD, and the alleviation of neuronal loss and apoptosis.
Collapse
Affiliation(s)
- Ting Luo
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yanan Hao
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Rong Shi
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wenzhen Shen
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Peili Huang
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
48
|
Peptide-Functionalized Nanoparticles-Encapsulated Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells. NANOMATERIALS 2021; 11:nano11030772. [PMID: 33803751 PMCID: PMC8003333 DOI: 10.3390/nano11030772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Seliciclib, a broad cyclin-dependent kinases (CDKs) inhibitor, exerts its potential role in cancer therapy. For taking advantage of overexpressive transferrin receptor (TfR) on most cancer cells, T7 peptide, a TfR targeting ligand, was selected as a targeting ligand to facilitate nanoparticles (NPs) internalization in cancer cells. In this study, poly(d,l-lactide-co-glycolide) (PLGA) was conjugated with maleimide poly(ethylene glycol) amine (Mal-PEG-NH2) to form PLGA-PEG-maleimide copolymer. The synthesized copolymer was used to prepare NPs for encapsulation of seliciclib which was further decorated by T7 peptide. The result shows that the better cellular uptake was achieved by T7 peptide-modified NPs particularly in TfR-high expressed cancer cells in order of MDA-MB-231 breast cancer cells > SKOV-3 ovarian cancer cells > U87-MG glioma cells. Both SKOV-3 and U87-MG cells are more sensitive to encapsulated seliciclib in T7-decorated NPs than to free seliciclib, and that IC50 values were lowered for encapsulated seliciclib.
Collapse
|