1
|
Gette MS, Laptenkova EV, Sudarev VV, Zagryadskaya YA, Okhrimenko IS, Bazhenov SV, Manukhov IV, Ryzhykau YL, Vlasov AV. Prolonged self-assembly of H. pylori ferritin globules at physiological conditions. Biochem Biophys Res Commun 2024; 744:151205. [PMID: 39709773 DOI: 10.1016/j.bbrc.2024.151205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
One of the promising drug delivery tools is ferritin, which features high stability at a wide range of conditions and protects cargo by its spherical protein shell. We studied the self-assembly into homoglobules of ferritin from H. pylori and a chimeric protein ferritin-SUMO. We exposed the globules to pH-driven dis/reassembly and in both cases we observed two fractions during size exclusion chromatography (SEC) procedure. The higher molecular weight fraction contained fully assembled globules of ferritin and ferritin-SUMO that well coincides with literature. Interestingly, the lower molecular weight fraction contained intermediate subglobular oligomers that also formed globules, but on a time scale of hours, while being under physiological conditions. We performed biochemical characterization of this fraction and found that, in the case of ferritin, it contained almost the whole range of intermediate oligomers with different stoichiometry. In contrast, the ferritin-SUMO fraction contained only two distinct states: dimers and globules, without any other ferritin-SUMO intermediate oligomers. We built AlphaFold-derived schemes of ferritin and ferritin-SUMO self-assembly which also indicated differences in their assembly pathways. Our results could potentially open the possibility of cargo loading into ferritins at physiological conditions and improved purification of ferritin-based products if using a ferritin-SUMO modification with following cleavage of the SUMO-tag by the SUMO protease.
Collapse
Affiliation(s)
- Margarita S Gette
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Ekaterina V Laptenkova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Vsevolod V Sudarev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Sergey V Bazhenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Ilya V Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation.
| |
Collapse
|
2
|
Hong J, Li K, He J, Liang M. A New Age of Drug Delivery: A Comparative Perspective of Ferritin-Drug Conjugates (FDCs) and Antibody-Drug Conjugates (ADCs). Bioconjug Chem 2024; 35:1142-1147. [PMID: 39129506 DOI: 10.1021/acs.bioconjchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ferritin-drug conjugates (FDCs) and antibody-drug conjugates (ADCs) respectively represent the innovative and traditional mainstream approaches in drug delivery systems, each offering unique advantages and challenges. This viewpoint delves into the evolving landscape of drug delivery technologies, specifically focusing on FDCs and ADCs. Each method exhibits unique advantages and inherent challenges, shaping their roles in therapeutic applications. The article provides a comparative analysis of two delivery systems, FDCs and ADCs, in terms of targeting accuracy, drug loading capacity, and the nature of the payload itself. This comparison offers valuable insights into the distinct advantages and disadvantages associated with each system, enabling a clearer understanding of their potential applications and limitations in therapeutic contexts. This analysis is crucial for optimizing the use of these delivery systems across varying medical contexts, offering a comprehensive overview of their impact on the field of drug delivery.
Collapse
Affiliation(s)
- Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kang Li
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Vojnikova M, Sukupova M, Stefanik M, Strakova P, Haviernik J, Kapolkova K, Gruberova E, Raskova K, Michalkova H, Svec P, Kudlickova MP, Huvarova I, Ruzek D, Salat J, Pekarik V, Eyer L, Heger Z. Nanoformulation of the Broad-Spectrum Hydrophobic Antiviral Vacuolar ATPase Inhibitor Diphyllin in Human Recombinant H-ferritin. Int J Nanomedicine 2024; 19:3907-3917. [PMID: 38708183 PMCID: PMC11069354 DOI: 10.2147/ijn.s452119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Michaela Vojnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Martina Sukupova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Stefanik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Petra Strakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Haviernik
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Kapolkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Eliska Gruberova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Klara Raskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | | | - Ivana Huvarova
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Daniel Ruzek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiri Salat
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Ludek Eyer
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
5
|
Prchalova E, Sukupova M, Malinak D, Andrys R, Sivak L, Pekarik V, Skarka A, Svobodova J, Prchal L, Fresser L, Heger Z, Musilek K. BODIPY-labelled acetylcholinesterase reactivators can be encapsulated into ferritin nanovehicles for enhanced bioavailability in the CNS. Biomed Pharmacother 2023; 167:115490. [PMID: 37722189 DOI: 10.1016/j.biopha.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
The BODIPY-labelled oxime reactivator was prepared and used to study its biodistribution into central nervous system. The newly synthesized oxime was found to be weak inhibitor of acetylcholinesterase and strong inhibitor of butyrylcholinesterase. Its reactivation ability for organophosphate inhibited acetylcholinesterase was found similar to a parent oxime. The BODIPY-labelled oxime was further encapsulated into recombinant human H-ferritin and evaluated in vitro and in vivo. The oxime or encapsulated oxime were found to be bioaccumulated primarily in liver and kidneys of mice, but some amount was distributed also to the brain, where it was detectable even after 24 h. The BODIPY-labelled oxime encapsulated to human H-ferritin showed better CNS bioaccumulation and tissue retention at 8 and 24 h time points compared to free oxime, although the fluorescence results might be biased due to BODIPY metabolites identified in tissue homogenates. Taken together, the study demonstrates the first utilization of recombinant ferritins for changing the unfavourable pharmacokinetics of oxime reactivators and brings promising results for follow-up studies.
Collapse
Affiliation(s)
- Eliska Prchalova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Martina Sukupova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - David Malinak
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Adam Skarka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jana Svobodova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Fresser
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Zhu Y, Zhu Y, Cao T, Liu X, Liu X, Yan Y, Shi Y, Wang JC. Ferritin-based nanomedicine for disease treatment. MEDICAL REVIEW (2021) 2023; 3:49-74. [PMID: 37724111 PMCID: PMC10471093 DOI: 10.1515/mr-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 09/20/2023]
Abstract
Ferritin is an endogenous protein which is self-assembled by 24 subunits into a highly uniform nanocage structure. Due to the drug-encapsulating ability in the hollow inner cavity and abundant modification sites on the outer surface, ferritin nanocage has been demonstrated great potential to become a multi-functional nanomedicine platform. Its good biocompatibility, low toxicity and immunogenicity, intrinsic tumor-targeting ability, high stability, low cost and massive production, together make ferritin nanocage stand out from other nanocarriers. In this review, we summarized ferritin-based nanomedicine in field of disease diagnosis, treatment and prevention. The different types of drugs to be loaded in ferritin, as well as drug-loading methods were classified. The strategies for site-specific and non-specific functional modification of ferritin were investigated, then the application of ferritin for disease imaging, drug delivery and vaccine development were discussed. Finally, the challenges restricting the clinical translation of ferritin-based nanomedicines were analyzed.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefeng Zhu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tianmiao Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yujie Shi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Laboratory of Innovative Formulations and Pharmaceutical Excipients, Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|