1
|
Ding Q, Guo A, Zhang S, Gu C, Wang X, Li X, Gu M, Kim JS. Phototheranostics: An advanced approach for precise diagnosis and treatment of gynecological inflammation and tumors. Biomaterials 2025; 316:123012. [PMID: 39693783 DOI: 10.1016/j.biomaterials.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Gynecological inflammations have a significant impact on the daily lives of women. Meanwhile, cancers such as ovarian, cervical, and endometrial cancers pose severe threats to their physical and mental well-being. While current options such as conventional pharmacotherapy, surgical interventions, and recent advancements in immunotherapy and targeted therapy provide viable solutions, they possess limitations in effectively addressing the intricacies associated with gynecological diseases. These complexities include post-surgical complications, early cancer detection, and drug resistance. The management of these challenges, however, requires the implementation of innovative treatment modalities. Phototheranostics has emerged as a promising approach to effectively address these challenges. It not only treats inflammation and tumors efficiently but also aids in disease imaging and diagnosis. The distinguishing features of phototheranostics lie in their non-invasive nature, minimal risk of drug resistance, and precise targeting capabilities through the use of photosensitizers or photothermal agents. These distinctive features underscore its potential to revolutionize early diagnosis and treatment of gynecological conditions. This review aims to summarize the application of phototheranostics in managing gynecological inflammation and tumors while highlighting its significant potential for early disease detection and treatment.
Collapse
Affiliation(s)
- Qihang Ding
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Department of Chemistry, Korea University, Seoul, 02841, South Korea; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Aoxue Guo
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430072, China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road Nangang District, Harbin, Heilongjiang Province, 150040, China
| | - Chuanqi Gu
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430072, China
| | - Xinyu Wang
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430072, China
| | - Xin Li
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430072, China.
| | - Meijia Gu
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Hubei International Science and Technology Cooperation Base for Research and Clinical techniques for Brain Glioma Diagnosis and Treatment, Wuhan, 430071, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Theivendren P, Pavadai P, Veerachamy S, Palanisamy P, Kunjiappan S. Surface receptor-targeted protein-based nanocarriers for drug delivery: advances in cancer therapy. NANOTECHNOLOGY 2025; 36:122003. [PMID: 39847811 DOI: 10.1088/1361-6528/adad7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/23/2025] [Indexed: 01/25/2025]
Abstract
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect. Moreover, their intrinsic protein backbone naturally degradesin vivo, providing another level of safety over synthetic materials. Various issues like immunogenicity, mass production, and quality control must be addressed for widespread use. However, further studies are necessary to perfect protein engineering and improve drug loading, protein modification, and targeting. Thus, it can be concluded that protein-based nanocarriers targeted against the surface receptors would help achieve cancer management in a more focused manner, thus minimizing toxicity. The further development of these nanoparticles could bring a significant change in cancer treatment so that more personalized, targeted, and safe therapies would be available to all patients.
Collapse
Affiliation(s)
- Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M.S.R. Nagar, Bengaluru 560054, Karnataka, India
| | - Suganthan Veerachamy
- School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| |
Collapse
|
3
|
Liu Y, Bai X, Wang H, Wang J, Li S, Zhang H, Wang F, Hong Z. PEG-modification enhances the targeted photothermal therapy of affibody-conjugated indocyanine green for precision cancer treatment. Biochem Biophys Res Commun 2025; 742:151155. [PMID: 39662453 DOI: 10.1016/j.bbrc.2024.151155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Photothermal therapy (PTT) is an innovative cancer treatment that leverages heat generated from near-infrared light exposure to induce tumor cell death. A major challenge in PTT is achieving precise delivery of the photothermal agent to tumor tissues to maximize efficacy and minimize off-target effects. In this study, we introduce a novel ligand-coupled photothermal reagent that addresses this challenge by leveraging the high-affinity HER2 affibody ZHER2:2891 (referred to as ZHER2), conjugated with indocyanine green (ICG) for targeted delivery. Polyethylene glycol (PEG) was incorporated as a hydrophilic linker to further optimize photothermal conversion efficiency and enhance tumor-specific targeting. Among the conjugates tested, ZHER2-PEG1000-ICG, modified with a PEG chain of 1000 Da molecular weight, demonstrated exceptional performance. In vitro studies revealed that ZHER2-PEG1000-ICG specifically bound to HER2-expressing cells and effectively induced cell death. In vivo experiments using HER2-positive N87 tumor-bearing mice showed that ZHER2-PEG1000-ICG accumulated highly and specifically in tumor tissues over an extended period. Upon light irradiation, this conjugate caused a significant rise in temperature at the tumor site, resulting in complete tumor elimination with a single photothermal treatment. This PEG-modified affibody-ICG conjugate represents a precise and effective approach to PTT, offering a promising new therapeutic strategy for cancer treatment with the potential to significantly impact future cancer therapies.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, PR China; State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Xuerui Bai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Henan Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Jian Wang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, PR China.
| | - Shuang Li
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, PR China.
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Fengwei Wang
- People's Hospital of Tianjin, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
4
|
Borlan R, Tudor M, Soritau O, Florea A, Pall E, Pop B, Maniu D, Astilean S, Focsan M. Dual-Modal Near-Infrared Organic Nanoparticles: Integrating Mild Hyperthermia Phototherapy with Fluorescence Imaging. Int J Nanomedicine 2024; 19:9071-9090. [PMID: 39253059 PMCID: PMC11382802 DOI: 10.2147/ijn.s472882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/03/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose Our study seeks to develop dual-modal organic-nanoagents for cancer therapy and real-time fluorescence imaging, followed by their pre-clinical evaluation on a murine model. Integrating NIR molecular imaging with nanotechnology, our aim is to improve outcomes for early-stage cutaneous melanoma by offering more effective and less invasive methods. This approach has the potential to enhance both photothermal therapy (PTT) and Sentinel Lymph Node Biopsy (SLNB) procedures for melanoma patients. Methods NIR-797-isothiocyanate was encapsulated in poly(D,L-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) using a two-step protocol, followed by thorough characterization, including assessing loading efficiency, fluorescence stability, and photothermal conversion. Biocompatibility and cellular uptake were tested in vitro on melanoma cells, while PTT assay, with real-time thermal monitoring, was performed in vivo on tumor-bearing mice under irradiation with an 808 nm laser. Finally, ex vivo fluorescence microscopy, histopathological assay, and TEM imaging were performed. Results Our PLGA NPs, with a diameter of 270 nm, negative charge, and 60% NIR-797 loading efficiency, demonstrated excellent stability and fluorescence properties, as well as efficient light-to-heat conversion. In vitro studies confirmed their biocompatibility and cellular internalization. In vivo experiments demonstrated their efficacy as photothermal agents, inducing mild hyperthermia with temperatures reaching up to 43.8 °C. Ex vivo microscopy of tumor tissue confirmed persistent NIR fluorescence and uniform distribution of the NPs. Histopathological and TEM assays revealed early apoptosis, immune cell response, ultrastructural damage, and intracellular material debris resulting from combined NP treatment and irradiation. Additionally, TEM analyses of irradiated zone margins showed attenuated cellular damage, highlighting the precision and effectiveness of our targeted treatment approach. Conclusion Specifically tailored for dual-modal NIR functionality, our NPs offer a novel approach in cancer PTT and real-time fluorescence monitoring, signaling a promising avenue toward clinical translation.
Collapse
Affiliation(s)
- Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Madalina Tudor
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Olga Soritau
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Cluj, Romania
| | - Emoke Pall
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Cluj, Romania
| | - Bogdan Pop
- Department of Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
- Department of Pathology, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
5
|
Nguyen HN, Pertzborn D, Ziadat R, Ernst G, Guntinas-Lichius O, Von Eggeling F, Hoffmann F. Indocyanine green uptake by human tumor and non‑tumor cell lines and tissue. Biomed Rep 2024; 21:136. [PMID: 39114300 PMCID: PMC11304512 DOI: 10.3892/br.2024.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Indocyanine green (ICG) is a potential promising dye for a better intraoperative tumor border definition and an improved patient outcome by potentially improving tumor border visualization compared with traditional white light guided surgery. Here, the cellular uptake of ICG in human squamous cell carcinoma (SCC026) and immortalized non-cancer skin (HaCaT) cell lines was evaluated to study the tumor-specific cellular uptake of ICG. The spatial distribution of ICG inside tumor tissue was investigated in tissue sections of head and neck squamous cell carcinoma at a microscopic level. ICG uptake and internalization was observed in living cells after 2.5 h and in the nucleus after 24 h. In dead cells, higher and faster uptake was observed. In the tissue sections, higher ICG signal intensity could be detected in connective tissue and surrounding clusters and blood vessels. In conclusion, no distinct ICG uptake by tumor cells was detected in cancer cell lines and tumor tissue. ICG localization in certain regions of tumor tissue appears to be a result of enhanced tissue permeability and retention, but not specific to tumor cells.
Collapse
Affiliation(s)
- Hoang-Ngan Nguyen
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| | - David Pertzborn
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| | - Rafat Ziadat
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| | - Günther Ernst
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| | - Orlando Guntinas-Lichius
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| | - Ferdinand Von Eggeling
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| | - Franziska Hoffmann
- Working Group Innovative Biophotonics, Department of Otorhinolaryngology, Jena University Hospital, D-07747 Jena, Germany
| |
Collapse
|
6
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
7
|
Watanabe K, Takahashi H, Uehara S, Kato A, Fujii Y, Yanagita T, Suzuki T, Ushigome H, Maeda Y, Ogawa R, Matsuo Y, Mitsui A, Takiguchi S. Visualization of cecal tumor by near-infrared laparoscopy and intraoperative colonoscopy. Surg Case Rep 2024; 10:164. [PMID: 38951358 PMCID: PMC11217229 DOI: 10.1186/s40792-024-01964-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND In laparoscopic colorectal surgery, accurate localization of a tumor is essential for ensuring an adequate ablative margin. Therefore, a new method, near-infrared laparoscopy combined with intraoperative colonoscopy, was developed for visualizing the contour of a cecal tumor from outside of the bowel. The method was used after it was verified on a model that employed a silicone tube. CASE PRESENTATION The patient was a 77-year-old man with a cecal tumor near the appendiceal orifice. Laparoscopy was used to clamp of the terminal ileum, and a colonoscope was then inserted through the anus to the cecum. The laparoscope in the normal light mode could not be used to identify the cecal tumor. However, a laparoscope in the near-infrared ray mode could clearly visualize the contour of the cecal tumor from outside of the bowel, and the tumor could be safely resected by a stapler. The histopathological diagnosis of the resected specimen was adenocarcinoma with an invasion depth of M and a clear negative margin. CONCLUSIONS This is the first report of the laparoscopic detection of the contour of a cecal tumor from outside the bowel. This technique is useful and safe for contouring tumors in laparoscopic colorectal surgery and can be used in various surgeries that combine endoscopy and laparoscopy.
Collapse
Affiliation(s)
- Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Shuhei Uehara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Akira Kato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yoshiaki Fujii
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
8
|
Yu H, Yao Y, Zhu T, Sun Y, Zhang M, Zhang Y, Cao M, Zhang W, Yao Y. The potential of indocyanine green fluorescence detection in surgical cut margin of breast conserving surgery. Gland Surg 2024; 13:1031-1044. [PMID: 39015719 PMCID: PMC11247585 DOI: 10.21037/gs-24-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Background Fluorescence-guided surgery (FGS) is a cutting-edge technology that uses near-infrared (NIR) fluorescence imaging to guide surgeons in surgery. Indocyanine green (ICG) is a fluorescent dye, which can be used for in vivo imaging of tumor cells. We aimed to explore the use of ICG fluorescence-guided technology as a rapid intraoperative margin assessment method for breast cancer surgery. In addition, we also compared the dose selection of ICG. Methods This was a non-randomized prospective cohort study. Data were collected between August 2021 and October 2022 in the Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University. Upon specimen removal, tumor margins were immediately analyzed by ICG fluorescence detection and then sent to the pathology department for intraoperative frozen section analysis and subsequent routine pathological examination. Abnormal margin rates were calculated and compared using intraoperative frozen section analysis and under the guidance of ICG fluorescence. Results The study included 69 cases of breast cancer patients who underwent tumor resection assisted by ICG fluorescence-guided technology, including 18 patients with a 0.5 mg/kg dose and 51 patients with a 1.0 mg/kg dose. According to the study findings, the ICG test achieved a sensitivity of 81.82% and a specificity of 75.82%. At a dose of 0.5 mg/kg, the sensitivity was 66.67% whereas the specificity was 93.33%. At the dose of 1 mg/kg, the sensitivity was 87.5%, and the specificity was 74.42%. Similarly, for intraoperative frozen section analysis, the sensitivity was 81.82%, but the specificity was enhanced to 94.83%. Positive surgical cut margin was not identified in 2/69 by ICG fluorescence and frozen section analysis respectively. Conclusions The sensitivity of ICG fluorescence detection is comparable to that of frozen section analysis, but the specificity is poor. The sensitivity increased and the specificity decreased at 1 mg/kg compared to the 0.5 mg/kg dose. ICG fluorescence can be used as a supplementary tool for frozen section analysis. These findings support further development and clinical performance assessment of ICG fluorescence.
Collapse
Affiliation(s)
- Hao Yu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Yuhao Yao
- Department of Computer Science, Westcliff University, Irvine, CA, USA
| | - Tingting Zhu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meng Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yin Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Kataoka M, Itaka Y, Masada T, Minami K, Higashino H, Yamashita S. Near-infrared imaging of in vivo performance of orally administered solid forms to rats: Feasibility study with indocyanine green. Int J Pharm 2024; 649:123677. [PMID: 38061499 DOI: 10.1016/j.ijpharm.2023.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
This study demonstrates the applicability of near-infrared (NIR) imaging to evaluating in vivo oral formulation performance. As a NIR probe and model drug, indocyanine green (ICG) and acetaminophen (ACE) were selected, respectively. The fluorescence intensity of ICG greatly increased upon dissolution, with the dissolved ICG passing through the gastrointestinal tract over time. Both compounds (0.05 mg of ICG and 0.5 mg of ACE) were encapsulated in gelatin and hydroxypropyl methylcellulose (HPMC) capsules in the solid form. In vitro, the HPMC capsules showed a disintegration lag time, a feature that was not observed for the gelatin capsules. After oral administration of each capsule to rats, blood samples were collected, followed by fluorescent imaging of the abdominal region. At 0.25 h after HPMC capsule administration, the fluorescence area and intensity were significantly small and relatively weak compared to that of the gelatin capsule. These tendencies resulted from the difference in capsule disintegration times, leading to a change in gastric emptying, which corresponded well with the initial time profile of the plasma concentration of ACE. These results indicate that possibility of NIR imaging with ICG to evaluate in vivo performance of orally administered formulations.
Collapse
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yoshiya Itaka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Takato Masada
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
10
|
Heise N, Lehmann F, Csuk R, Mueller T. Targeted theranostics: Near-infrared triterpenoic acid-rhodamine conjugates as prerequisites for precise cancer diagnosis and therapy. Eur J Med Chem 2023; 259:115663. [PMID: 37480713 DOI: 10.1016/j.ejmech.2023.115663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Pentacyclic triterpenoic acids have shown excellent potential as starting materials for the synthesis of highly cytotoxic agents with significantly reduced toxicity for non-malignant cells. This study focuses on the development of triterpenoic acid-rhodamine conjugates with fluorescence shifted to the near-infrared (NIR) region for theranostic applications in cancer research. Spectral analysis revealed emission wavelengths around λ = 760 nm, enabling stronger signals and deeper tissue penetration. The conjugates were evaluated using SRB assays on tumor cell lines and non-malignant fibroblasts, demonstrating low nanomolar activity and high selectivity, similarly to their known rhodamine B counterparts. Additional staining experiments proved their mode of action as mitocans.
Collapse
Affiliation(s)
- Niels Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Florian Lehmann
- Martin-Luther-University Halle-Wittenberg, Physical Chemistry, von-Dankelmann-Platz 4, D-06120, Halle (Saale), Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| | - Thomas Mueller
- Martin-Luther-University Halle-Wittenberg, Medical Faculty, University Clinic for Internal Medicine IV, Hematology/Oncology, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| |
Collapse
|
11
|
Arias A, Anastasopoulou M, Gorpas D, Ntziachristos V. Using reflectometry to minimize the dependence of fluorescence intensity on optical absorption and scattering. BIOMEDICAL OPTICS EXPRESS 2023; 14:5499-5511. [PMID: 37854563 PMCID: PMC10581795 DOI: 10.1364/boe.496599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
The total diffuse reflectance RT and the effective attenuation coefficient µeff of an optically diffuse medium map uniquely onto its absorption and reduced scattering coefficients. Using this premise, we developed a methodology where RT and the slope of the logarithmic spatially resolved reflectance, a quantity related to µeff, are the inputs of a look-up table to correct the dependence of fluorescent signals on the media's optical properties. This methodology does not require an estimation of the medium's optical property, avoiding elaborate simulations and their errors to offer accurate and fast corrections. The experimental demonstration of our method yielded a mean relative error in fluorophore concentrations of less than 4% over a wide range of optical property variations. We discuss how the method developed can be employed to improve image fidelity and fluorochrome quantification in fluorescence molecular imaging clinical applications.
Collapse
Affiliation(s)
- Augusto Arias
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Maria Anastasopoulou
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, 81675, Germany
| |
Collapse
|
12
|
Ju M, Yoon K, Lee S, Kim KG. Single Quasi-Symmetrical LED with High Intensity and Wide Beam Width Using Diamond-Shaped Mirror Refraction Method for Surgical Fluorescence Microscope Applications. Diagnostics (Basel) 2023; 13:2763. [PMID: 37685301 PMCID: PMC10486995 DOI: 10.3390/diagnostics13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To remove tumors with the same blood vessel color, observation is performed using a surgical microscope through fluorescent staining. Therefore, surgical microscopes use light emitting diode (LED) emission and excitation wavelengths to induce fluorescence emission wavelengths. LEDs used in hand-held type microscopes have a beam irradiation range of 10° and a weak power of less than 0.5 mW. Therefore, fluorescence emission is difficult. This study proposes to increase the beam width and power of LED by utilizing the quasi-symmetrical beam irradiation method. Commercial LED irradiates a beam 1/r2 distance away from the target (working distance). To obtain the fluorescence emission probability, set up four mirrors. The distance between the mirrors and the LED is 5.9 cm, and the distance between the mirrors and the target is 2.95 cm. The commercial LED reached power on target of 8.0 pW within the wavelength band of 405 nm. The power reaching the target is 0.60 mW in the wavelength band of 405 nm for the LED with the beam mirror attachment method using the quasi-symmetrical beam irradiation method. This result is expected to be sufficient for fluorescence emission. The light power of the mirror was increased by approximately four times.
Collapse
Affiliation(s)
- Minki Ju
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
13
|
Chen J, Li D, Li H, Zhu K, Shi L, Fu X. Cell membrane-targeting NIR fluorescent probes with large Stokes shifts for ultralong-term transplanted neural stem cell tracking. Front Bioeng Biotechnol 2023; 11:1139668. [PMID: 36845195 PMCID: PMC9948019 DOI: 10.3389/fbioe.2023.1139668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
There is an emerging therapeutic strategy to transplant stem cells into diseased host tissue for various neurodegenerative diseases, owing to their self-renewal ability and pluripotency. However, the traceability of long-term transplanted cells limits the further understanding of the mechanism of the therapy. Herein, we designed and synthesized a quinoxalinone scaffold-based near-infrared (NIR) fluorescent probe named QSN, which exhibits ultra-strong photostability, large Stokes shift, and cell membrane-targeting capacity. It could be found that QSN-labeled human embryonic stem cells showed strong fluorescent emission and photostability both in vitro and in vivo. Additionally, QSN would not impair the pluripotency of embryonic stem cells, indicating that QSN did not perform cytotoxicity. Moreover, it is worth mentioning that QSN-labeled human neural stem cells held cellular retention for at least 6 weeks in the mouse brain striatum post transplantation. All these findings highlight the potential application of QSN for ultralong-term transplanted cell tracking.
Collapse
Affiliation(s)
- Jing Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongfu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongkai Zhu
- Advanced Medical Research Institute, Shandong University, Jinan, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| | - Leilei Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Kongkai Zhu, ; Leilei Shi, ; Xuemei Fu,
| |
Collapse
|
14
|
Dobre EG, Surcel M, Constantin C, Ilie MA, Caruntu A, Caruntu C, Neagu M. Skin Cancer Pathobiology at a Glance: A Focus on Imaging Techniques and Their Potential for Improved Diagnosis and Surveillance in Clinical Cohorts. Int J Mol Sci 2023; 24:1079. [PMID: 36674595 PMCID: PMC9866322 DOI: 10.3390/ijms24021079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
Early diagnosis is essential for completely eradicating skin cancer and maximizing patients' clinical benefits. Emerging optical imaging modalities such as reflectance confocal microscopy (RCM), optical coherence tomography (OCT), magnetic resonance imaging (MRI), near-infrared (NIR) bioimaging, positron emission tomography (PET), and their combinations provide non-invasive imaging data that may help in the early detection of cutaneous tumors and surgical planning. Hence, they seem appropriate for observing dynamic processes such as blood flow, immune cell activation, and tumor energy metabolism, which may be relevant for disease evolution. This review discusses the latest technological and methodological advances in imaging techniques that may be applied for skin cancer detection and monitoring. In the first instance, we will describe the principle and prospective clinical applications of the most commonly used imaging techniques, highlighting the challenges and opportunities of their implementation in the clinical setting. We will also highlight how imaging techniques may complement the molecular and histological approaches in sharpening the non-invasive skin characterization, laying the ground for more personalized approaches in skin cancer patients.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Mihaela Surcel
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
15
|
Choi J, Shin JG, Tak YO, Seo Y, Eom J. Single Camera-Based Dual-Channel Near-Infrared Fluorescence Imaging system. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249758. [PMID: 36560127 PMCID: PMC9786791 DOI: 10.3390/s22249758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 05/29/2023]
Abstract
In this study, we propose a single camera-based dual-channel near-infrared (NIR) fluorescence imaging system that produces color and dual-channel NIR fluorescence images in real time. To simultaneously acquire color and dual-channel NIR fluorescence images of two fluorescent agents, three cameras and additional optical parts are generally used. As a result, the volume of the image acquisition unit increases, interfering with movements during surgical procedures and increasing production costs. In the system herein proposed, instead of using three cameras, we set a single camera equipped with two image sensors that can simultaneously acquire color and single-channel NIR fluorescence images, thus reducing the volume of the image acquisition unit. The single-channel NIR fluorescence images were time-divided into two channels by synchronizing the camera and two excitation lasers, and the noise caused by the crosstalk effect between the two fluorescent agents was removed through image processing. To evaluate the performance of the system, experiments were conducted for the two fluorescent agents to measure the sensitivity, crosstalk effect, and signal-to-background ratio. The compactness of the resulting image acquisition unit alleviates the inconvenient movement obstruction of previous devices during clinical and animal surgery and reduces the complexity and costs of the manufacturing process, which may facilitate the dissemination of this type of system.
Collapse
Affiliation(s)
- Janghoon Choi
- Intelligent Photonic IoT Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea
- Department of Biomedical Science & Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Geun Shin
- Optical Precision Measurement Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea
| | - Yoon-Oh Tak
- Intelligent Photonic IoT Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea
| | | | - Jonghyun Eom
- Intelligent Photonic IoT Research Center, Korea Photonics Technology Institute, Gwangju 61007, Republic of Korea
| |
Collapse
|
16
|
Yadav K, Krishnan MA, Chelvam V. In Vitro and In Vivo Evaluation of Targeted Fluorescent Imaging Agents for Diagnosis and Resection of Cancer. Curr Protoc 2022; 2:e623. [PMID: 36571584 DOI: 10.1002/cpz1.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Local re-occurrence of cancer in patients with solid tumors is currently the most common reason for failure of treatment strategies. This fact indicates that prevailing approaches for tumor resection can cure only 50% of patients. A major cause of failure in tumor resection is off-target drug cytotoxicity and lack of sensitivity in tumor detection methods. These disadvantages are addressed with the development of targeted therapy and diagnostics, which significantly aid treatment strategies. Targeted diagnostics exploit properties of tumor cells that show significant up-regulation of tumor biomarkers. These biomarkers are targeted by a homing ligand attached to a fluorophore for visual inspection during surgery. However, these approaches suffer from disadvantages like high autofluorescence from background tissues, tissue absorption, and scattering, resulting in decreased image sensitivity and resolution. The use of near-infrared (NIR) fluorophores to overcome these drawbacks has generated unprecedented interest among researchers. The NIR window lies within the range of 650 to 1,700 nm, which results in reduced absorption and scattering by the tissues, thereby providing deeper tissue penetration and reduced autofluorescence. NIR fluorophores can be designed to target tumor biomarkers such as prostate specific membrane antigen (PSMA) or folate receptors found over-expressed on cancer tissues. These targeted fluorophores consist of small-molecule ligands conjugated with NIR dyes that bind with high specificity to PSMA and folic acid receptors. In this protocol, we have extensively described the methodology for the synthesis of targeted NIR agents for PSMA (DUPA-NIR bioconjugate) and folic acid (folate-NIR bioconjugate), along with detailed steps for preclinical evaluation. Procedures to calculate the binding affinity to cancer cells in vitro are described, along with uptake and biodistribution in different mice models in vivo. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis and purification of DUPA and folate-peptide linkers via a SPPS strategy Basic Protocol 2: Conjugation, purification, and characterization of targeted bioconjugates with NIR probe for deep-tissue imaging applications Basic Protocol 3: In vitro evaluation of binding affinity of targeted DUPA-NIR and folate-NIR bioconjugates using a spectrophotometer Basic Protocol 4: Induction of tumor in mice to develop CDX or metastatic tumor models Basic Protocol 5: Intravenous administration of targeted DUPA-NIR and folate-NIR bioconjugates in mouse CDX or metastatic tumor models for deep-tissue NIR imaging and tumor resection.
Collapse
Affiliation(s)
- Kratika Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Mena Asha Krishnan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Venkatesh Chelvam
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.,Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
17
|
Glutathione-capped gold nanoclusters as near-infrared-emitting efficient contrast agents for confocal fluorescence imaging of tissue-mimicking phantoms. Mikrochim Acta 2022; 189:337. [PMID: 35978146 DOI: 10.1007/s00604-022-05440-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
An innovative research has been conducted focused on demonstrating the ability of novel dual-emissive glutathione-stabilized gold nanoclusters (GSH-AuNCs) to perform bright near-infrared (NIR)-emitting contrast agents inside tissue-mimicking agarose-phantoms via two complementary confocal fluorescence imaging techniques. First, using a new and fast microwave-assisted approach, we synthesized photostable dual-emitting GSH-AuNCs with an average size of 3.2 ± 0.4 nm and NIR emission quantum yield of 9.9%. Steady-state fluorescence measurements coupled with fluorescence lifetime imaging microscopy (FLIM) assays performed on lyophilized GSH-AuNCs revealed that the obtained GSH-AuNCs exhibit PL emissions at 610 nm (red PL) and, respectively, 800 nm (NIR PL) in both solution and powder solid-state. Time-resolved fluorescence measurements showed that the two PL components are characterized by average lifetimes of 407 ns (red PL) and 1821 ns (NIR PL), respectively. Additionally, due to a partial overlap between the red PL and the absorption of the NIR PL, an energy transfer between the two coexisting emissive centers was discovered and confirmed via steady-state and time-resolved fluorescence measurements. Furthermore, the FLIM analysis performed on powder GSH-AuNCs under 640 nm, an excitation more suitable for bioimaging applications, revealed a homogeneous and photostable NIR PL signal from GSH-AuNCs. Finally, the ability of GSH-AuNCs to operate as reliable NIR-emitting contrast agents inside tissue-mimicking agarose-phantoms was demonstrated here for the first time via complementary FLIM and re-scan confocal fluorescence imaging techniques. In consequence, GSH-AuNCs show great promise for future in vivo imaging applications via confocal fluorescence microscopy.
Collapse
|
18
|
Choi J, Shin JG, Kwon HS, Tak YO, Park HJ, Ahn JC, Eom JB, Seo Y, Park JW, Choi Y, Eom J. Development of Intraoperative Near-Infrared Fluorescence Imaging System Using a Dual-CMOS Single Camera. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155597. [PMID: 35898101 PMCID: PMC9370963 DOI: 10.3390/s22155597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 06/01/2023]
Abstract
We developed a single-camera-based near-infrared (NIR) fluorescence imaging device using indocyanine green (ICG) NIR fluorescence contrast agents for image-induced surgery. In general, a fluorescent imaging system that simultaneously provides color and NIR images uses two cameras, which is disadvantageous because it increases the imaging head of the system. Recently, a single-camera-based NIR optical imaging device with quantum efficiency partially extended to the NIR region was developed to overcome this drawback. The system used RGB_NIR filters for camera sensors to provide color and NIR images simultaneously; however, the sensitivity and resolution of the infrared images are reduced by 1/4, and the exposure time and gain cannot be set individually when acquiring color and NIR images. Thus, to overcome these shortcomings, this study developed a compact fluorescent imaging system that uses a single camera with two complementary metal-oxide semiconductor (CMOS) image sensors. Sensitivity and signal-to-background ratio were measured according to the concentrations of ICG solution, exposure time, and camera gain to evaluate the performance of the imaging system. Consequently, the clinical applicability of the system was confirmed through the toxicity analysis of the light source and in vivo testing.
Collapse
Affiliation(s)
- Janghoon Choi
- Intelligent Photonic IoT Research Center, Korea Photonics Technology Institute, Gwangju 61007, Korea; (J.C.); (Y.-O.T.)
- Department of Biomedical Science & Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Jun Geun Shin
- Optical Precision Measurement Research Center, Korea Photonics Technology Institute, Gwangju 61007, Korea;
| | - Hyuk-Sang Kwon
- Department of Biomedical Science & Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Yoon-Oh Tak
- Intelligent Photonic IoT Research Center, Korea Photonics Technology Institute, Gwangju 61007, Korea; (J.C.); (Y.-O.T.)
| | - Hyeong Ju Park
- Medical Laser Research Center, Dankook University, Cheonan 31116, Korea; (H.J.P.); (J.-C.A.)
| | - Jin-Chul Ahn
- Medical Laser Research Center, Dankook University, Cheonan 31116, Korea; (H.J.P.); (J.-C.A.)
- College of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Joo Beom Eom
- College of Medicine, Dankook University, Cheonan 31116, Korea;
| | | | | | - Yongdoo Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Jonghyun Eom
- Intelligent Photonic IoT Research Center, Korea Photonics Technology Institute, Gwangju 61007, Korea; (J.C.); (Y.-O.T.)
| |
Collapse
|
19
|
Photo-induced processes of iron oxide nanoparticles to enhance laser therapy. BIOMEDICAL PHOTONICS 2022. [DOI: 10.24931/2413-9432-2021-10-4-44-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.
Collapse
|
20
|
Wang Y, Ma G, Gao G, Tao J, Cao W, Sun H, Ma F, Zhang Y, Wei Y, Tian M. Bioimaging of Dissolvable Microneedle Arrays: Challenges and Opportunities. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9758491. [PMID: 36034102 PMCID: PMC9368514 DOI: 10.34133/2022/9758491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
The emergence of microneedle arrays (MNAs) as a novel, simple, and minimally invasive administration approach largely addresses the challenges of traditional drug delivery. In particular, the dissolvable MNAs act as a promising, multifarious, and well-controlled platform for micro-nanotransport in medical research and cosmetic formulation applications. The effective delivery mostly depends on the behavior of the MNAs penetrated into the body, and accurate assessment is urgently needed. Advanced imaging technologies offer high sensitivity and resolution visualization of cross-scale, multidimensional, and multiparameter information, which can be used as an important aid for the evaluation and development of new MNAs. The combination of MNA technology and imaging can generate considerable new knowledge in a cost-effective manner with regards to the pharmacokinetics and bioavailability of active substances for the treatment of various diseases. In addition, noninvasive imaging techniques allow rapid, receptive assessment of transdermal penetration and drug deposition in various tissues, which could greatly facilitate the translation of experimental MNAs into clinical application. Relying on the recent promising development of bioimaging, this review is aimed at summarizing the current status, challenges, and future perspective on in vivo assessment of MNA drug delivery by various imaging technologies.
Collapse
Affiliation(s)
- Yanni Wang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gehua Ma
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Guangzhi Gao
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ji Tao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Haohao Sun
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- Life Science Research Center, Frontier Crossing Institute, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yilong Zhang
- Engineering Research Center of Intelligent Sensing and System, Ministry of Education, Hangzhou 310023, China
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
21
|
Borlan R, Focsan M, Perde-Schrepler M, Soritau O, Campu A, Gaina L, Pall E, Pop B, Baldasici O, Gherman C, Stoia D, Maniu D, Astilean S. Antibody-functionalized theranostic protein nanoparticles for the synergistic deep red fluorescence imaging and multimodal therapy of ovarian cancer. Biomater Sci 2021; 9:6183-6202. [PMID: 34346411 DOI: 10.1039/d1bm01002f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among women, ovarian cancer is the fifth most frequent type of cancer, and despite benefiting from current standard treatment plans, 90% of patients relapse in the subsequent 18 months and, eventually, perish. As a result, via embracing nanotechnological advancements in the field of medical science, researchers working in the areas of cancer therapy and imaging are looking for the next breakthrough treatment strategy to ensure lower cancer recurrence rates and improved outcomes for patients. Herein, we design a novel phototheranostic agent with optical features in the biological window of the electromagnetic spectrum via encapsulating a newly synthesized phthalocyanine dye within biocompatible protein nanoparticles, allowing the targeted fluorescence imaging and synergistic dual therapy of ovarian cancer. The nanosized agent displays great biocompatibility and enhanced aqueous biostability and photothermal activity, as well as high reactive-oxygen-species generation efficiency. To achieve the active targeting of the desired malignant tissue and suppress the rapid clearance of the photosensitive agent from the peritoneal cavity, the nanoparticles are biofunctionalized with an anti-folate receptor antibody. A2780 ovarian cancer cells are employed to confirm the improved targeting capabilities and the in vitro cytotoxic efficiency of the theranostic nanoparticles after exposure to a 660 nm LED lamp; upon measurement via MTT and flow cytometry assays, a significant 95% decrease in the total number of viable cells is seen. Additionally, the therapeutic performance of our newly designed nanoparticles was evaluated in vivo, via real-time thermal monitoring and histopathological assays, upon the irradiation of tumour-bearing mice with a 660 nm LED lamp (0.05 W cm-2). Foremost, separately from steady-state fluorescence imaging, we found that, via utilizing FLIM investigations, the differences in fluorescence lifetimes of antibody biofunctionalized and non-functionalized nanoparticles can be correlated to different intracellular localization and internalization pathways of the fluorescent agent, which is relevant for the development of a cutting-edge method for the detection of cancer cells that overexpress folate receptors at their surfaces.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania. and Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Maria Perde-Schrepler
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Olga Soritau
- Department of Radiobiology and Tumor Biology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Luiza Gaina
- The Research Centre on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Emoke Pall
- Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Cluj, Romania
| | - Bogdan Pop
- Department of Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania and Department of Pathology, University of Medicine and Pharmacy Iuliu HaŢieganu, Cluj-Napoca, Cluj, Romania
| | - Oana Baldasici
- Department of Functional Genomics, Proteomics and Experimental Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Claudia Gherman
- Department of Functional Genomics, Proteomics and Experimental Pathology, Oncology Institute Prof. Dr Ion Chiricuta, Cluj-Napoca, Cluj, Romania
| | - Daria Stoia
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania. and Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania. and Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania.
| |
Collapse
|
22
|
Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021; 294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
The application of nanostructured materials in medicine is a rapidly evolving area of research that includes both the diagnosis and treatment of various diseases. Metals, metal oxides and carbon-based nanomaterials have shown much promise in medical technological advancements due to their tunable physical, chemical and biological properties. The nanoscale properties, especially the size, shape, surface chemistry and stability makes them highly desirable for diagnosing and treating various diseases, including cancers. Major applications of nanomaterials in cancer diagnosis include in vivo bioimaging and molecular marker detection, mainly as image contrast agents using modalities such as radio, magnetic resonance, and ultrasound imaging. When a suitable targeting ligand is attached on the nanomaterial surface, it can help pinpoint the disease site during imaging. The application of nanostructured materials in cancer diagnosis can help in the early detection, treatment and patient follow-up . This review aims to gather and present the information regarding the application of nanotechnology in cancer diagnosis. We also discuss the challenges and prospects regarding the application of nanomaterials as cancer diagnostic tools.
Collapse
|