1
|
Aghajani A, Ehsani M, Khajavi R, Kalaee M, Zaarei D. Conductive bio-epoxy/boron nitride nanocomposites: effect of combination of nanotubes and epichlorohydrin surface-modified nanosheets. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
2
|
Baildya N, Mazumdar S, Mridha NK, Chattopadhyay AP, Khan AA, Dutta T, Mandal M, Chowdhury SK, Reza R, Ghosh NN. Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Comput Biol Med 2023; 154:106593. [PMID: 36746115 DOI: 10.1016/j.compbiomed.2023.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Herein we have made a comparative study of the efficiency of three different nanotubes viz. Carbon nanotube (CNT), boron nitride nanotube (BNNT) and silicon carbide nanotube (SiCNT) to deliver the cancerous drug, Azacitidine (AZD). The atomistic description of the encapsulation process of AZD in these nanotubes has been analyzed by evaluating parameters like adsorption energy, electrostatic potential map, reduced density gradient (RDG). Higher adsorption energy of AZD with BNNT (-0.66eV), SiCNT (-0.92eV) compared to CNT (-0.56eV) confirms stronger binding affinity of the drug for the former than the later. Charge density and electrostatic potential map suggest that charge separation involving BNNT and CNT is more prominent than SiCNT. Evaluation of different thermodynamic parameters like Gibbs free energy, enthalpy change revealed that the overall encapsulation process is spontaneous and exothermic in nature and much favorable with BNNT and SiCNT. Stabilizing interactions of the drug with BNNT and SiCNT has been confirmed from RDG analysis. ADMP molecular dynamics simulation supports that the encapsulation process of the drug within the NT at room temperature. These results open up unlimited opportunities for the applications of these NTs as a drug delivery system in the field of nanomedicine.
Collapse
Affiliation(s)
- Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda, West Bengal, 732209, India
| | - Sourav Mazumdar
- Department of Physics, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Asoke P Chattopadhyay
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Abdul Ashik Khan
- Department of Chemistry, Darjeeling Government College, West Bengal, 734101, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Manab Mandal
- Department of Botany, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Rahimasoom Reza
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | | |
Collapse
|
3
|
Mba IE, Nweze EI. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:445-463. [PMID: 36568838 PMCID: PMC9765339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial resistance to antibiotics is an ancient and dynamic issue that has brought a situation reminiscent of the pre-antibiotic era to the limelight. Currently, antibiotic resistance and the associated infections are widespread and pose significant global health and economic burden. Thus, the misuse of antibiotics, which has increased resistance, has necessitated the search for alternative therapeutic agents for combating resistant pathogens. Antimicrobial peptides (AMPs) hold promise as a viable therapeutic approach against drug-resistant pathogens. AMPs are oligopeptides with low molecular weight. They have broad-spectrum antimicrobial activities against pathogenic microorganisms. AMPs are nonspecific and target components of microbes that facilitate immune response by acting as the first-line defense mechanisms against invading pathogenic microbes. The diversity and potency of AMPs make them good candidates for alternative use. They could be used alone or in combination with several other biomaterials for improved therapeutic activity. They can also be employed in vaccine production targeting drug-resistant pathogens. This review covers the opportunities and advances in AMP discovery and development targeting antimicrobial resistance (AMR) bacteria. Briefly, it presents an overview of the global burden of the antimicrobial resistance crisis, portraying the global magnitude, challenges, and consequences. After that, it critically and comprehensively evaluates the potential roles of AMPs in addressing the AMR crisis, highlighting the major potentials and prospects.
Collapse
Affiliation(s)
| | - Emeka Innocent Nweze
- To whom all correspondence should be addressed:
Prof. Emeka Nweze, MSc, PhD, MPH, Department of Microbiology, University of
Nigeria, Nsukka, Nigeria; ; ORCID:
https://www.orcid.org/0000-0003-4432-0885
| |
Collapse
|
4
|
Souza GK, Gallo A, Novicki LH, Neto HR, de Paula E, Marsaioli AJ, Cabeça LF. Inclusion Complex between Local Anesthetic/2-hydroxypropyl-β-cyclodextrin in Stealth Liposome. Molecules 2022; 27:molecules27134170. [PMID: 35807414 PMCID: PMC9267999 DOI: 10.3390/molecules27134170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The drugs delivery system in the treatment of diseases has advantages such as reduced toxicity, increased availability of the drug, etc. Therefore, studies of the supramolecular interactions between local anesthetics (LAs) butamben (BTB) or ropivacaine (RVC) complexed with 2-hydroxypropyl-β-cyclodextrin (HP-βCD) and carried in Stealth liposomal (SL) are performed. 1H-NMR nuclear magnetic resonance (DOSY and STD) were used as the main tools. The displacements observed in the 1H-NMR presented the complexion between LAs and HP-βCD. The diffusion coefficients of free BTB and RVC were 7.70 × 10−10 m2 s−1 and 4.07 × 10−10 m2 s−1, and in the complex with HP-βCD were 1.90 × 10−10 m2 s−1 and 3.64 × 10−10 m2 s−1, respectively, which indicate a strong interaction between the BTB molecule and HP-βCD (98.3% molar fraction and Ka = 72.279 L/mol). With STD-NMR, the encapsulation of the BTB/HP-βCD and RVC/HP-βCD in SL vesicles was proven. Beyond the saturation transfer to the LAs, there is the magnetization transfer to the hydrogens of HP-βCD. BTB and RVC have already been studied in normal liposome systems; however, little is known of their behavior in SL.
Collapse
Affiliation(s)
- Gredson Keiff Souza
- Chemistry Institute, State University of Campinas, UNICAMP, Rua Josué de Castro Cidade Universitária, Campinas CEP 13083-970, Brazil; (G.K.S.); (A.J.M.)
| | - André Gallo
- Chemistry Department, Technological Federal University of Parana, UTFPR, Avenida dos Pioneiros, Londrina CEP 86036-370, Brazil; (A.G.); (L.H.N.); (H.R.N.)
| | - Luiza Hauser Novicki
- Chemistry Department, Technological Federal University of Parana, UTFPR, Avenida dos Pioneiros, Londrina CEP 86036-370, Brazil; (A.G.); (L.H.N.); (H.R.N.)
| | - Heitor Rodrigues Neto
- Chemistry Department, Technological Federal University of Parana, UTFPR, Avenida dos Pioneiros, Londrina CEP 86036-370, Brazil; (A.G.); (L.H.N.); (H.R.N.)
| | - Eneida de Paula
- Biology Institute, State University of Campinas, UNICAMP, Rua Josué de Castro Cidade Universitária, Campinas CEP 13083-970, Brazil;
| | - Anita Jocelyne Marsaioli
- Chemistry Institute, State University of Campinas, UNICAMP, Rua Josué de Castro Cidade Universitária, Campinas CEP 13083-970, Brazil; (G.K.S.); (A.J.M.)
| | - Luis Fernando Cabeça
- Chemistry Department, Technological Federal University of Parana, UTFPR, Avenida dos Pioneiros, Londrina CEP 86036-370, Brazil; (A.G.); (L.H.N.); (H.R.N.)
- Correspondence: ; Tel.: +55-43-98040615
| |
Collapse
|
5
|
Molaei F, Farzadian O, Zarghami Dehaghani M, Spitas C, Hamed Mashhadzadeh A. Thermal rectification in polytelescopic Ge nanowires. J Mol Graph Model 2022; 116:108252. [PMID: 35749890 DOI: 10.1016/j.jmgm.2022.108252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Herein we served non-equilibrium molecular dynamics (NEMD) approach to simulate thermal rectification in the mono- and polytelescopic Ge nanowires (GeNWs). We considered mono-telescopic structures with different Fat-Thin configurations (15-10 nm-nm or Type (I); 15-5 nm-nm or Type (II); and 10-5 or Type (III) nm-nm) as generic models. We simulated the variation of thermal conductivity against interfacial cross-sectional temperature as well as the direction of heat transfer, where a higher thermal conductivity correlating to thicker nanowires, and a more significant drop (or discontinuity) in the average interface temperature in the positive (or negative) direction were detected. Noticeably, interfacial thermal resistance followed the order of Type (II) (48 K/μW, maximal) ˃ Type (III) ˃ Type (I) (5 K/μW, minimal). In the second stage, a series of polytelescopic nanostructures of GeNWs were born with consecutive cross-sectional interfaces. Surprisingly, larger interfacial cross-sectional areas equivalent to smaller diameter changes along the GeNWs were responsible for higher temperature rectification. This led to a very limited thermal conductivity loss or a very high unidirectional heat transfer along the polytelescopic structures - the key for manufacturing next generation high-performance thermal diodes.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA; Stantec Consulting Company, Arizona, USA.
| | - Omid Farzadian
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Maryam Zarghami Dehaghani
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Christos Spitas
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
6
|
Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study. Sci Rep 2022; 12:7966. [PMID: 35562417 PMCID: PMC9106750 DOI: 10.1038/s41598-022-12168-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/28/2022] [Indexed: 01/17/2023] Open
Abstract
Optimization of thermal conductivity of nanomaterials enables the fabrication of tailor-made nanodevices for thermoelectric applications. Superlattice nanostructures are correspondingly introduced to minimize the thermal conductivity of nanomaterials. Herein we computationally estimate the effect of total length and superlattice period ([Formula: see text]) on the thermal conductivity of graphene/graphane superlattice nanoribbons using molecular dynamics simulation. The intrinsic thermal conductivity ([Formula: see text]) is demonstrated to be dependent on [Formula: see text]. The [Formula: see text] of the superlattice, nanoribbons decreased by approximately 96% and 88% compared to that of pristine graphene and graphane, respectively. By modifying the overall length of the developed structure, we identified the ballistic-diffusive transition regime at 120 nm. Further study of the superlattice periods yielded a minimal thermal conductivity value of 144 W m-1 k-1 at [Formula: see text] = 3.4 nm. This superlattice characteristic is connected to the phonon coherent length, specifically, the length of the turning point at which the wave-like behavior of phonons starts to dominate the particle-like behavior. Our results highlight a roadmap for thermal conductivity value control via appropriate adjustments of the superlattice period.
Collapse
|
7
|
Ramezani Farani M, Aminzadeh Jahromi N, Ali V, Ebrahimpour A, Salehian E, Shafiee Ardestani M, Seyedhamzeh M, Ahmadi S, Sharifi E, Ashrafizadeh M, Rabiee N, Makvandi P. Detection of Dopamine Receptors Using Nanoscale Dendrimer for Potential Application in Targeted Delivery and Whole-Body Imaging: Synthesis and In Vivo Organ Distribution. ACS APPLIED BIO MATERIALS 2022; 5:1744-1755. [DOI: 10.1021/acsabm.2c00118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Negin Aminzadeh Jahromi
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Vahid Ali
- Department of Chemistry, Faculty of Sciences, Islamic Azad University, 19585-466 Rasht, Iran
| | - Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Elnaz Salehian
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Mohammad Seyedhamzeh
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80078, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
8
|
Extension of SAFT equation of state for fluids confined in nano-pores of sedimentary rocks using molecular dynamic simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zarghami Dehaghani M, Yousefi F, Seidi F, Sajadi SM, Rabiee N, Habibzadeh S, Esmaeili A, Hamed Mashhadzadeh A, Spitas C, Mostafavi E, Saeb MR. Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. Int J Nanomedicine 2022; 17:125-136. [PMID: 35058692 PMCID: PMC8765279 DOI: 10.2147/ijn.s335380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022] Open
Affiliation(s)
- Maryam Zarghami Dehaghani
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, Iraq
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591639675, Iran
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, College of the North Atlantic — Qatar, Doha, Qatar
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- Correspondence: Amin Hamed Mashhadzadeh Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan Email ;
| | - Christos Spitas
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Ebrahim Mostafavi Stanford Cardiovascular Institute, Stanford University School of Medicine, Biomedical Innovation Building, 240 Pasteur Drive, Palo Alto, Stanford, CA94304, USA Email ;
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| |
Collapse
|
10
|
Dehaghani MZ, Molaei F, Yousefi F, Sajadi SM, Esmaeili A, Mohaddespour A, Farzadian O, Habibzadeh S, Mashhadzadeh AH, Spitas C, Saeb MR. An insight into thermal properties of BC 3-graphene hetero-nanosheets: a molecular dynamics study. Sci Rep 2021; 11:23064. [PMID: 34845328 PMCID: PMC8630025 DOI: 10.1038/s41598-021-02576-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Simulation of thermal properties of graphene hetero-nanosheets is a key step in understanding their performance in nano-electronics where thermal loads and shocks are highly likely. Herein we combine graphene and boron-carbide nanosheets (BC3N) heterogeneous structures to obtain BC3N-graphene hetero-nanosheet (BC3GrHs) as a model semiconductor with tunable properties. Poor thermal properties of such heterostructures would curb their long-term practice. BC3GrHs may be imperfect with grain boundaries comprising non-hexagonal rings, heptagons, and pentagons as topological defects. Therefore, a realistic picture of the thermal properties of BC3GrHs necessitates consideration of grain boundaries of heptagon-pentagon defect pairs. Herein thermal properties of BC3GrHs with various defects were evaluated applying molecular dynamic (MD) simulation. First, temperature profiles along BC3GrHs interface with symmetric and asymmetric pentagon-heptagon pairs at 300 K, ΔT = 40 K, and zero strain were compared. Next, the effect of temperature, strain, and temperature gradient (ΔT) on Kaptiza resistance (interfacial thermal resistance at the grain boundary) was visualized. It was found that Kapitza resistance increases upon an increase of defect density in the grain boundary. Besides, among symmetric grain boundaries, 5-7-6-6 and 5-7-5-7 defect pairs showed the lowest (2 × 10-10 m2 K W-1) and highest (4.9 × 10-10 m2 K W-1) values of Kapitza resistance, respectively. Regarding parameters affecting Kapitza resistance, increased temperature and strain caused the rise and drop in Kaptiza thermal resistance, respectively. However, lengthier nanosheets had lower Kapitza thermal resistance. Moreover, changes in temperature gradient had a negligible effect on the Kapitza resistance.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Molaei
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, 45195-313, Zanjan, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, KRG, Erbil, Iraq
| | - Amin Esmaeili
- Department of Chemical Engineering, College of the North Atlantic-Qatar, 24449 Arab League St, PO Box 24449, Doha, Qatar
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Omid Farzadian
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Christos Spitas
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
11
|
Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation. Sci Rep 2021; 11:18753. [PMID: 34548596 PMCID: PMC8455564 DOI: 10.1038/s41598-021-98222-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022] Open
Abstract
The use of carbon nanotubes as anticancer drug delivery cargo systems is a promising modality as they are able to perforate cellular membranes and transport the carried therapeutic molecules into the cellular components. Our work describes the encapsulation process of a common anticancer drug, Isatin (1H-indole-2,3-dione) as a guest molecule, in a capped single-walled carbon nanotube (SWCNT) host with chirality of (10,10). The encapsulation process was modelled, considering an aqueous solution, by a molecular dynamics (MD) simulation under a canonical NVT ensemble. The interactions between the atoms of Isatin were obtained from the DREIDING force filed. The storage capacity of the capped SWCNT host was evaluated to quantify its capacity to host multiple Isatin molecules. Our results show that the Isatin can be readily trapped inside the volume cavity of the capped SWCNT and it remained stable, as featured by a reduction in the van der Waals forces between Isatin guest and the SWCNT host (at approximately - 30 kcal mol-1) at the end of the MD simulation (15 ns). Moreover, the free energy of encapsulation was found to be - 34 kcal mol-1 suggesting that the Isatin insertion procedure into the SWCNT occurred spontaneously. As calculated, a capped SWCNT (10,10) with a length of 30 Å, was able to host eleven (11) molecules of Isatin, that all remained steadily encapsulated inside the SWCNT volume cavity, showing a potential for the use of carbon nanotubes as drug delivery cargo systems.
Collapse
|
12
|
Zarghami Dehaghani M, Yousefi F, Sajadi SM, Tajammal Munir M, Abida O, Habibzadeh S, Mashhadzadeh AH, Rabiee N, Mostafavi E, Saeb MR. Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT). Molecules 2021; 26:4920. [PMID: 34443508 PMCID: PMC8398462 DOI: 10.3390/molecules26164920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Chemotherapy with anti-cancer drugs is considered the most common approach for killing cancer cells in the human body. However, some barriers such as toxicity and side effects would limit its usage. In this regard, nano-based drug delivery systems have emerged as cost-effective and efficient for sustained and targeted drug delivery. Nanotubes such as carbon nanotubes (CNT) and boron nitride nanotubes (BNNT) are promising nanocarriers that provide the cargo with a large inner volume for encapsulation. However, understanding the insertion process of the anti-cancer drugs into the nanotubes and demonstrating drug-nanotube interactions starts with theoretical analysis. METHODS First, interactions parameters of the atoms of 5-FU were quantified from the DREIDING force field. Second, the storage capacity of BNNT (8,8) was simulated to count the number of drugs 5-FU encapsulated inside the cavity of the nanotubes. In terms of the encapsulation process of the one drug 5-FU into nanotubes, it was clarified that the drug 5-FU was more rapidly adsorbed into the cavity of the BNNT compared with the CNT due to the higher van der Waals (vdW) interaction energy between the drug and the BNNT. RESULTS The obtained values of free energy confirmed that the encapsulation process of the drug inside the CNT and BNNT occurred spontaneously with the free energies of -14 and -25 kcal·mol-1, respectively. DISCUSSION However, the lower value of the free energy in the system containing the BNNT unraveled more stability of the encapsulated drug inside the cavity of the BNNT comparing the system having CNT. The encapsulation of Fluorouracil (5-FU) anti-cancer chemotherapy drug (commercial name: Adrucil®) into CNT (8,8) and BNNT (8,8) with the length of 20 Å in an aqueous solution was discussed herein applying molecular dynamics (MD) simulation.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 11155-4563, Iran;
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan 45195-313, Iran;
| | - S. Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Erbil P.O. Box 625, Iraq;
- Department of Phytochemistry, SRC, Soran University, Soran P.O. Box 624, Iraq
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (M.T.M.); (O.A.)
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (M.T.M.); (O.A.)
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591639675, Iran
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran P.O. Box 11155-9161, Iran;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
13
|
Theory for designing mechanically stable single- and double-walled SiGe nanopeapods. J Mol Model 2021; 27:214. [PMID: 34195893 DOI: 10.1007/s00894-021-04837-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Herein, we utilized molecular dynamic (MD) simulations using LAMMPS software and selecting Tersoff and Lennard-Jones potentials to design and investigate mechanical properties of (8,8), (9,9), (10,10), and (11,11) single-walled and (8,8)@(11,11) double-walled silicon-germanium (SiGe) armchair nanopeapods. The number of encapsulated fullerenes and the working temperature were changed as variables to evaluate the mechanical properties. The larger nanopeapods had lower Young's modulus and failure strain, but, surprisingly enough, no significant variation was found in failure strain values by increasing the number of Si30Ge30 cages and the temperature (300-900 K). Overall, higher mechanical properties were the case for double-walled SiGe nanopeapods and that the more the number of encapsulated cages, the lower the mechanical properties whatever the nanopeapod. Amazingly, fullerenes remained undamaged even after the SiGe nanopeapods ruptured. Thus, thermally/mechanically stable nanopeapods developed theoretically herein can be considered potential super-carriers for drug and gene encapsulation.
Collapse
|
14
|
Fooladpanjeh S, Yousefi F, Molaei F, Zarghami Dehaghani M, Sajadi SM, Abida O, Habibzadeh S, Hamed Mashhadzadeh A, Saeb MR. Thermal conductivity of random polycrystalline BC 3 nanosheets: A step towards realistic simulation of 2D structures. J Mol Graph Model 2021; 107:107977. [PMID: 34237665 DOI: 10.1016/j.jmgm.2021.107977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Boron carbide nanosheets (BC3NSs) are semiconductors possessing non-zero bandgap. Nevertheless, there is no estimation of their thermal conductivity for practical circumstances, mainly because of difficulties in simulation of random polycrystalline structures. In the real physics world, BC3NS with perfect monocrystalline is rare, for the nature produces structures with disordered grain regions. Therefore, it is of crucial importance to capture a more realistic picture of thermal conductivity of these nanosheets. Polycrystalline BC3NS (PCBC3NSs are herein simulated by Molecular Dynamics simulation to take their thermal conductivity fingerprint applying ΔT of 40 K. A series of PCBC3NSs were evaluated for thermal conductivity varying the number of grains (3, 5, and 10). The effect of grain rotation was also modeled in terms of Kapitza thermal resistance per grain, varying the rotation angle (θ/2 = 14.5, 16, 19, and 25°). Overall, a non-linear temperature variation was observed for PCBC3NS, particularly by increasing grain number, possibly because of more phonon scattering (shorter phonon relaxation time) arising from more structural defects. By contrast, the heat current passing across the slab decreased. The thermal conductivity of nanosheet dwindled from 149 W m-1 K-1 for monocrystalline BC3NS to the values of 129.67, 121.32, 115.04, and 102.78 W m-1 K-1 for PCBC3NSs having 2, 3, 5, and 10 grains, respectively. The increase of the grain̛s rotation angle (randomness) from 14.5° to 16°, 19° and 25° led to a rise in Kapitza thermal resistance from 2⨯10-10 m2 K·W-1 to the values of 2.3⨯ 10-10, 2.9⨯10-10, and 4.7⨯ 10-10 m2 K·W-1, respectively. Thus, natural 2D structure would facilitate phonon scattering rate at the grain boundaries, which limits heat transfer across polycrystalline nanosheets.
Collapse
Affiliation(s)
- Sasan Fooladpanjeh
- Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Fatemeh Molaei
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA
| | - Maryam Zarghami Dehaghani
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Phytochemistry, SRC, Soran University, KRG, Iraq
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Zarghami Dehaghani M, Yousefi F, Bagheri B, Seidi F, Hamed Mashhadzadeh A, Rabiee N, Zarrintaj P, Mostafavi E, Saeb MR, Kim YC. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. Int J Nanomedicine 2021; 16:4277-4288. [PMID: 34194228 PMCID: PMC8238539 DOI: 10.2147/ijn.s313855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Antimicrobial peptides are potential therapeutics as anti-bacteria, anti-viruses, anti-fungi, or anticancers. However, they suffer from a short half-life and drug resistance which limit their long-term clinical usage. Methods Herein, we captured the encapsulation of antimicrobial peptide HA-FD-13 into boron nitride nanotube (BNNT) (20,20) and its release due to subsequent insertion of BNNT (14,14) with molecular dynamics simulation. Results The peptide-BNNT (20,20) van der Waals (vdW) interaction energy decreased to −270 kcal·mol−1 at the end of the simulation (15 ns). However, during the period of 0.2–1.8 ns, when half of the peptide was inside the nanotube, the encapsulation was paused due to an energy barrier in the vicinity of BNNT and subsequently the external intervention, such that the self-adjustment of the peptide allowed full insertion. The free energy of the encapsulation process was −200.12 kcal·mol−1, suggesting that the insertion procedure occurred spontaneously. Discussion Once the BNNT (14,14) entered into the BNNT (20,20), the peptide was completely released after 83.8 ps. This revealed that the vdW interaction between the BNNT (14,14) and BNNT (20,20) was stronger than between BNNT (20,20) and the peptide; therefore, the BNNT (14,14) could act as a piston pushing the peptide outside the BNNT (20,20). Moreover, the sudden drop in the vdW energy between nanotubes to the value of the −1300 Kcal·mol−1 confirmed the self-insertion of the BNNT (14,14) into the BNNT (20,20) and correspondingly the release of the peptide.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Amin Hamed Mashhadzadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-3516, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|