1
|
Jiang Z, Zhang C, Sun Q, Wang X, Chen Y, He W, Guo Z, Liu Z. A NIR-II Photoacoustic Probe for High Spatial Quantitative Imaging of Tumor Nitric Oxide in Vivo. Angew Chem Int Ed Engl 2024; 63:e202320072. [PMID: 38466238 DOI: 10.1002/anie.202320072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Nitric oxide (NO) exhibits both pro- and anti-tumor effects. Therefore, real-time in vivo imaging and quantification of tumor NO dynamics are essential for understanding the conflicting roles of NO played in pathophysiology. The current molecular probes, however, cannot provide high-resolution imaging in deep tissues, making them unsuitable for these purposes. Herein, we designed a photoacoustic probe with an absorption maximum beyond 1000 nm for high spatial quantitative imaging of in vivo tumor NO dynamics. The probe exhibits remarkable sensitivity, selective ratiometric response behavior, and good tumor-targeting abilities, facilitating ratiometric imaging of tumor NO throughout tumor progression in a micron-resolution level. Using the probe as the imaging agent, we successfully quantified NO dynamics in tumor, liver and kidney. We have pinpointed an essential concentration threshold of around 80 nmol/cm3 for NO, which plays a crucial role in the "double-edged-sword" function of NO in tumors. Furthermore, we revealed a reciprocal relationship between the NO concentration in tumors and that in the liver, providing initial insights into the possible NO-mediated communication between tumor and the liver. We believe that the probe will help resolve conflicting aspects of NO biology and guide the design of imaging agents for tumor diagnosis and anti-cancer drug screening.
Collapse
Affiliation(s)
- Zhiyong Jiang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Qian Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
2
|
Tripathy S, Londhe S, Patra CR. Nitroprusside and metal nitroprusside nano analogues for cancer therapy. Biomed Mater 2024; 19:032001. [PMID: 38387050 DOI: 10.1088/1748-605x/ad2c18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Sodium nitroprusside (SNP), U.S approved drug has been used in clinical emergency as a hypertensive drug for more than a decade. It is well established for its various biomedical applications such as angiogenesis, wound healing, neurological disorders including anti-microbial applications etc. Apart from that, SNP have been considered as excellent biomedical materials for its use as anti-cancer agent because of its behavior as NO-donor. Recent reports suggest that incorporation of metals in SNP/encapsulation of SNP in metal nanoparticles (metal nitroprusside analogues) shows better therapeutic anti-cancer activity. Although there are numerous reports available regarding the biological applications of SNP and metal-based SNP analogue nanoparticles, unfortunately there is not a single comprehensive review which highlights the anti-cancer activity of SNP and its derivative metal analogues in detail along with the future perspective. To this end, the present review article focuses the recent development of anti-cancer activity of SNP and metal-based SNP analogues, their plausible mechanism of action, current status. Furthermore, the future perspectives and challenges of these biomedical materials are also discussed. Overall, this review article represents a new perspective in the area of cancer nanomedicine that will attract a wider spectrum of scientific community.
Collapse
Affiliation(s)
- Sanchita Tripathy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007 Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002 U.P, India
| | - Swapnali Londhe
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007 Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002 U.P, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007 Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002 U.P, India
| |
Collapse
|
3
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
4
|
Liu Q, Xiang Y, Yu Q, Lv Q, Xiang Z. A TME-activated nano-catalyst for triple synergistic therapy of colorectal cancer. Sci Rep 2024; 14:3328. [PMID: 38336997 PMCID: PMC10858196 DOI: 10.1038/s41598-024-53334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer cells are highly heterogeneous and exhibit various drug resistances, making personalized treatment necessary. This typically involves a combination of different treatment modalities such as surgery, radiation, and chemotherapy to increase patient survival. Inspired by this, synergistic therapy, which combines multiple modalities into a single nanotherapeutic drug, shows promise in treating cancer. In this study, a nano-catalyst based on calcium peroxide (CaO2) and the chemotherapeutic drug doxorubicin hydrochloride (DOX) co-loaded into HPB nanoparticles (HPB@CaO2/DOX-PAA) was developed to achieve synergistic cancer treatment through chemodynamic/chemo/photothermal (CDT/CT/PTT) mechanisms. After being endocytosed by cancer cells, the nano-catalyst decomposes, releasing cargo. During near-infrared light irradiation, HPB induces a photothermal effect, DOX exhibits significant RNA and DNA destruction capabilities, meanwhile CaO2 produces a large amount of H2O2 in the moderately acidic TME, which combines with Fe2+ ions derived from HPB to form the highly toxic •OH in a Fenton-like reaction, enhancing the chemodynamic treatment. Assays conducted ex vivo and in vivo have exhibited the efficacy of this triple synergistic therapeutic regimen, indicating its potential clinical application.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
- Department of Hepatobiliary Surgery, Suining First People's Hospital, Suining, China
| | - Yurong Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
| | - Qiang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
| | - Quan Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China.
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing, Chongqing, China.
| |
Collapse
|
5
|
Qi C, Chen J, Zhuang Y, Zhang Y, Zhang Q, Tu J. PHMB modified photothermally triggered nitric oxide release nanoplatform for precise synergistic therapy of wound bacterial infections. Int J Pharm 2023; 640:123014. [PMID: 37146954 DOI: 10.1016/j.ijpharm.2023.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023]
Abstract
Bacterial infection has been considered as a significant obstacle for wound healing. Nitric oxide (NO), as a novel alternative for antibiotics, has emerged as a promising antibacterial agent. However, the precise spatiotemporal controlled release of NO still remains a major challenge. Herein, a near-infrared (NIR) light triggered NO release nanoplatform (designated as PB-NO@PDA-PHMB) with enhanced broad-spectrum antibacterial and anti-biofilm properties was constructed. Given that PB-NO@PDA-PHMB has strong absorption in the NIR region and exhibits excellent photothermal effect, it can rapidly trigger NO release by NIR irradiation. PB-NO@PDA-PHMB can effectively contact and capture bacteria, and then exhibit synergistic effect of photothermal and gas therapy. In vitro and in vivo experiments indicated that PB-NO@PDA-PHMB exhibited excellent biocompatibility, satisfactory synergistic antibacterial efficacy and the capability of accelerating wound healing. Under NIR irradiation (808 nm, 1 W cm-2, 7 min), PB-NO@PDA-PHMB (80 μg mL-1) achieved 100% bactericidal activity against both Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive bacteria Staphyloccocus aureus (S. aureus), removed 58.94% of S. aureus biofilm. Therefore, this all-in-one antibacterial nanoplatform with high NIR responsiveness provides a promising antibiotic-free strategy for bacterial infection treatment.
Collapse
Affiliation(s)
- Chenyang Qi
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Ying Zhuang
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan 430079, China
| | - Yipin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Qinqin Zhang
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
6
|
da Silva Filho PM, Paz IA, Nascimento NRFD, Abreu DS, Lopes LGDF, Sousa EHS, Longhinotti E. Nitroprusside─Expanding the Potential Use of an Old Drug Using Nanoparticles. Mol Pharm 2023; 20:6-22. [PMID: 36350781 DOI: 10.1021/acs.molpharmaceut.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For more than 70 years, sodium nitroprusside (SNP) has been used to treat severe hypertension in hospital emergency settings. During this time, a few other clinical uses have also emerged such as in the treatment of acute heart failure as well as improving mitral incompetence and in the intra- and perioperative management during heart surgery. This drug functions by releasing nitric oxide (NO), which modulates several biological processes with many potential therapeutic applications. However, this small molecule has a short lifetime, and it has been administered through the use of NO donor molecules such as SNP. On the other hand, SNP also has some setbacks such as the release of cyanide ions, high water solubility, and very fast NO release kinetics. Currently, there are many drug delivery strategies that can be applied to overcome many of these limitations, providing novel opportunities for the use of old drugs, including SNP. This Perspective describes some nitroprusside properties and highlights new potential therapeutic uses arising from the use of drug delivery systems, mainly silica-based nanoparticles. There is a series of great opportunities to further explore SNP in many medical issues as reviewed, which deserves a closer look by the scientific community.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Laboratório de Métodos de Análises e Modificação de Materiais (LABMA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil.,Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Iury Araújo Paz
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-110, Fortaleza, Ceará, Brazil
| | | | - Dieric S Abreu
- Laboratory of Materials & Devices (Lab MaDe), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| | - Elisane Longhinotti
- Laboratório de Métodos de Análises e Modificação de Materiais (LABMA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900, Fortaleza, Ceará, Brazil.,Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza, Ceará, Brazil
| |
Collapse
|
7
|
Shi H, Chen L, Liu Y, Wen Q, Lin S, Wen Q, Lu Y, Dai J, Li J, Xiao S, Fu S. Bacteria-Driven Tumor Microenvironment-Sensitive Nanoparticles Targeting Hypoxic Regions Enhances the Chemotherapy Outcome of Lung Cancer. Int J Nanomedicine 2023; 18:1299-1315. [PMID: 36945255 PMCID: PMC10024911 DOI: 10.2147/ijn.s396863] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2023] [Indexed: 03/17/2023] Open
Abstract
Background Chemotherapy still plays a dominant role in cancer treatment. However, the inability of conventional chemotherapeutic drugs to reach the hypoxic zone of solid tumors significantly weakens their efficacy. Bacteria-mediated drug delivery systems can be an effective targeting strategy for improving the therapeutic outcomes in cancer. Anaerobic bacteria have the unique ability to selectively transport drug loads to the hypoxic regions of tumors. Methods We designed a Bifidobacterium infantis (Bif)-based biohybrid (Bif@PDA-PTX-NPs) to deliver polydopamine (PDA)-coated paclitaxel nanoparticles (PTX-NPs) to tumor tissues. Results The self-driven Bif@PDA-PTX-NPs maintained the toxicity of PTX as well as the hypoxic homing tendency of Bif. Furthermore, Bif@PDA-PTX-NPs significantly inhibited the growth of A549 xenografts in nude mice, and prolonged the survival of the tumor-bearing mice compared to the other PTX formulations without any systemic or localized toxicity. Conclusion The Bif@PDA-PTX-NPs biohybrids provide a new therapeutic strategy for targeted chemotherapy to solid tumors.
Collapse
Affiliation(s)
- Huan Shi
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Lan Chen
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yanlin Liu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Sheng Lin
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yun Lu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jie Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jianmei Li
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Susu Xiao
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Shaozhi Fu, Tel +86 830-3165698, Fax +86 830-3165690, Email
| |
Collapse
|
8
|
Tumor Biochemical Heterogeneity and Cancer Radiochemotherapy: Network Breakdown Zone-Model. ENTROPY 2022; 24:e24081069. [PMID: 36010733 PMCID: PMC9407148 DOI: 10.3390/e24081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022]
Abstract
Breakdowns of two-zone random networks of the Erdős–Rényi type are investigated. They are used as mathematical models for understanding the incompleteness of the tumor network breakdown under radiochemotherapy, an incompleteness that may result from a tumor’s physical and/or chemical heterogeneity. Mathematically, having a reduced node removal probability in the network’s inner zone hampers the network’s breakdown. The latter is described quantitatively as a function of reduction in the inner zone’s removal probability, where the network breakdown is described in terms of the largest remaining clusters and their size distributions. The effects on the efficacy of radiochemotherapy due to the tumor micro-environment (TME)’s chemical make-up, and its heterogeneity, are discussed, with the goal of using such TME chemical heterogeneity imaging to inform precision oncology.
Collapse
|
9
|
Li D, Liu M, Li W, Fu Q, Wang L, Lai E, Zhao W, Zhang K. Synthesis of Prussian Blue Nanoparticles and Their Antibacterial, Antiinflammation and Antitumor Applications. Pharmaceuticals (Basel) 2022; 15:ph15070769. [PMID: 35890068 PMCID: PMC9323998 DOI: 10.3390/ph15070769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, Prussian blue nanoparticles (PBNPs), also named Prussian blue nano-enzymes, have been shown to demonstrate excellent multi-enzyme simulation activity and anti-inflammatory properties, and can be used as reactive oxygen scavengers. Their good biocompatibility and biodegradability mean that they are ideal candidates for in vivo use. PBNPs are highly efficient electron transporters with oxidation and reduction activities. PBNPs also show considerable promise as nano-drug carriers and biological detection sensors owing to their huge specific surface area, good chemical characteristics, and changeable qualities, which might considerably increase the therapeutic impact. More crucially, PBNPs, as therapeutic and diagnostic agents, have made significant advances in biological nanomedicine. This review begins with a brief description of the synthesis methods of PBNPs, then focuses on the applications of PBNPs in tissue regeneration and inflammation according to the different properties of PBNPs. This article will provide a timely reference for further study of PBNPs as therapeutic agents.
Collapse
Affiliation(s)
- Danyang Li
- The Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; (D.L.); (M.L.); (Q.F.)
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Meng Liu
- The Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; (D.L.); (M.L.); (Q.F.)
| | - Wenyao Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
- Correspondence: (W.L.); (K.Z.)
| | - Qiang Fu
- The Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; (D.L.); (M.L.); (Q.F.)
| | - Liyang Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Enping Lai
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545026, China;
| | - Weixin Zhao
- Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA;
| | - Kaile Zhang
- The Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China; (D.L.); (M.L.); (Q.F.)
- Correspondence: (W.L.); (K.Z.)
| |
Collapse
|
10
|
Choi M, Jazani AM, Oh JK, Noh SM. Perfluorocarbon Nanodroplets for Dual Delivery with Ultrasound/GSH-Responsive Release of Model Drug and Passive Release of Nitric Oxide. Polymers (Basel) 2022; 14:polym14112240. [PMID: 35683912 PMCID: PMC9182620 DOI: 10.3390/polym14112240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Nitric oxide (NO) plays a critical role as an important signaling molecule for a variety of biological functions, particularly inhibiting cell proliferation or killing target pathogens. To deliver active radical NO gaseous molecule whose half-life is a few seconds in a stable state, the design and development of effective exogenous NO supply nanocarriers are essential. Additionally, the delivery of desired drugs with NO can produce synergistic effects. Herein, we report a new approach that allows for the fabrication of dual ultrasound (US)/glutathione (GSH)-responsive perfluorocarbon (PFC) nanodroplets for the controlled release of model drug and passive release of safely incorporated NO. The approach centers on the synthesis of a disulfide-labeled amphiphilic block copolymer and its use as a GSH-degradable macromolecular emulsifier for oil-in-water emulsification process of PFC. The fabricated PFC nanodroplets are colloidally stable and enable the encapsulation of both NO and model drugs. Encapsulated drug molecules are synergistically released when ultrasound and GSH are presented, while NO molecules are passively but rapidly released. Our preliminary results demonstrate that the approach is versatile and can be extended to not only GSH-responsive but also other stimuli-responsive block copolymers, thereby allowing for the fabrication of broad choices of stimuli-responsive (smart) PFC-nanodroplets in aqueous solution for dual delivery of drug and NO therapeutics.
Collapse
Affiliation(s)
- Moonhyun Choi
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada;
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada;
- Correspondence: (J.K.O.); (S.M.N.)
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
- Correspondence: (J.K.O.); (S.M.N.)
| |
Collapse
|
11
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
12
|
Tumor Hypoxia Heterogeneity Affects Radiotherapy: Inverse-Percolation Shell-Model Monte Carlo Simulations. ENTROPY 2022; 24:e24010086. [PMID: 35052112 PMCID: PMC8774722 DOI: 10.3390/e24010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
Abstract
Tumor hypoxia was discovered a century ago, and the interference of hypoxia with all radiotherapies is well known. Here, we demonstrate the potentially extreme effects of hypoxia heterogeneity on radiotherapy and combination radiochemotherapy. We observe that there is a decrease in hypoxia from tumor periphery to tumor center, due to oxygen diffusion, resulting in a gradient of radiative cell-kill probability, mathematically expressed as a probability gradient of occupied space removal. The radiotherapy-induced break-up of the tumor/TME network is modeled by the physics model of inverse percolation in a shell-like medium, using Monte Carlo simulations. The different shells now have different probabilities of space removal, spanning from higher probability in the periphery to lower probability in the center of the tumor. Mathematical results regarding the variability of the critical percolation concentration show an increase in the critical threshold with the applied increase in the probability of space removal. Such an observation will have an important medical implication: a much larger than expected radiation dose is needed for a tumor breakup enabling successful follow-up chemotherapy. Information on the TME’s hypoxia heterogeneity, as shown here with the numerical percolation model, may enable personalized precision radiation oncology therapy.
Collapse
|