1
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Kong C, Sun J, Hu X, Li G, Wu S. A tumor targeted nano micelle carrying astragaloside IV for combination treatment of bladder cancer. Sci Rep 2024; 14:17704. [PMID: 39085255 PMCID: PMC11291986 DOI: 10.1038/s41598-024-66010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective agents for tumor immunotherapy. However, their clinical effectiveness is unsatisfactory due to off-target effects and a suppressive immune microenvironment. This study developed a nanodrug delivery system for bladder cancer (BCa) using PCL-MPEG and PCL-PEG-CHO to synthesize internal hydrophobic and external hydrophilic micelles (PP) that encapsulated water-insoluble astragaloside IV (PPA). The aldehyde group on the surface of PPA reacted with the amino group of aPD-L1, allowing the decoration of this antibody on the surface of the micelles. The resultingPPA@aPD-L1effectively piggybacked astragaloside IV and aPD-L1 antibody. These findings suggest that PPA@aPD-L1 is relatively stable in circulation and efficiently binds to BCa cells with the aid of aPD-L1. Additionally, this strategy prolongs the drug's retention time in tumors. Compared to PBS, PP, and PPA with PPA + aPD-L1 groups, PPA@aPD-L1significantly prolonged the survival of mice with BCa and reduced tumor volume. Mechanistic studies showed that PPA inhibited the NF-κB and STAT3 signaling pathways in tumor cells. Additionally, PPA@aPD-L1increased IFN-γ and decreased IL-10 expression in bladder tumors, affecting the number and type of intratumorally infiltrating T cells. Our study presents a simple and effective drug delivery system that combines herbal monomers with ICIs. It has demonstrated a potent ability to suppress tumor growth and holds potential for future applications.
Collapse
Affiliation(s)
- Chenfan Kong
- Institute of Urology, The affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
- Science and Education Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
- Department of Oncology, Shenzhen Baoan People's Hospital, Shenzhen, 518101, China
| | - Jianrong Sun
- Department of Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xinzi Hu
- Department of Oncology, Shenzhen Baoan People's Hospital, Shenzhen, 518101, China
| | - Guangzhi Li
- Institute of Urology, The affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China.
| | - Song Wu
- Department of Urology, The Affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518009, China.
| |
Collapse
|
3
|
Wang C, Liu H, Lin H, Zhong R, Li H, Liu J, Luo X, Tian M. Effect of zwitterionic sulfobetaine incorporation on blood behaviours, phagocytosis, and in vivo biodistribution of pH-responsive micelles with positive charges. J Mater Chem B 2024; 12:1652-1666. [PMID: 38275277 DOI: 10.1039/d3tb02477f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
pH-responsive micelles with positive charges are challenged by their significant effect on the cells/proteins and compromise their final fate due to electrostatic interactions. As one of the promising strategies, zwitterion incorporation in micelles has attracted considerable attention and displayed improved protein adsorption and blood circulation performances. However, previous reports in this field have been mostly limited in hemolysis for studying blood behaviour and lack a comprehensive understanding of their interactions with blood components. Herein, we present a prelimilary study on the effect of zwitterionic sulfobetaine incorporation on blood behaviour, phagocytosis, and in vivo biodistribution of pH-responsive micelles with positive charges. Amphiphilic triblock copolymers, namely poly(ε-caprolactone)-b-poly(N,N-diethylaminoethyl methacrylate)-(N-(3-sulfopropyl-N-methacryloxyethy-N,N-diethylammonium betaine)) (PCL-PDEAPSx, x = 2, 6, 10), containing different numbers of sulfobetaine groups were synthesized through four steps to prepare the pH-responsive micelles with positive charges. The effect of the sulfobetaine incorporation displayed different profiles, e.g., the micelles had no effect on RBC aggregation, thrombin time (TT), and platelet aggregation, while the cytotoxicity, hemolysis, RBC deformability, activated partial thromboplastin time (APTT), prothrombin time (PT), platelet activation, protein (albumin, fibrinogen, plasma) adsorption, phagocytosis, and in vivo biodistribution decreased with the increase in the sulfobetaine number, in which the transition mainly occurred at a sulfobetaine/tertiary amine group ratio of 3/7-1/1 compared to that of the mPEG control. In addition, the micelles displayed a strong inhibitory effect on the intrinsic coagulation pathway, which was associated with a significant decrease in the coagulation factor activity. Based on these findings, the related mechanism is discussed and proposed, which can aid the rational design of pH-responsive micelles for improved therapeutics.
Collapse
Affiliation(s)
- Chengwei Wang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Hao Liu
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Hu Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, P. R. China
| | - Hao Li
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, 610052, P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
4
|
Liu H, Lv H, Duan X, Du Y, Tang Y, Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. Int J Nanomedicine 2023; 18:6915-6940. [PMID: 38026516 PMCID: PMC10680479 DOI: 10.2147/ijn.s430877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages play a crucial role in tissue homeostasis and the innate immune system. They perform essential functions such as presenting antigens, regulating cytokines, and responding to inflammation. However, in diseases like cancer, cardiovascular disorders, and autoimmune conditions, macrophages undergo aberrant polarization, which disrupts tissue regulation and impairs their normal behavior. To address these challenges, there has been growing interest in developing customized targeted drug delivery systems specifically designed for macrophage-related functions in different anatomical locations. Nanomedicine, utilizing nanoscale drug systems, offers numerous advantages including improved stability, enhanced pharmacokinetics, controlled release kinetics, and precise temporal drug delivery. These advantages hold significant promise in achieving heightened therapeutic efficacy, specificity, and reduced side effects in drug delivery and treatment approaches. This review aims to explore the roles of macrophages in major diseases and present an overview of current strategies employed in targeted drug delivery to macrophages. Additionally, this article critically evaluates the design of macrophage-targeted delivery systems, highlighting limitations and discussing prospects in this rapidly evolving field. By assessing the strengths and weaknesses of existing approaches, we can identify areas for improvement and refinement in macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Hanxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Hui Lv
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Wei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| |
Collapse
|
5
|
Menotti F, Scutera S, Coppola B, Longo F, Mandras N, Cavallo L, Comini S, Sparti R, Fiume E, Cuffini AM, Banche G, Palmero P, Allizond V. Tuning of Silver Content on the Antibacterial and Biological Properties of Poly(ɛ-caprolactone)/Biphasic Calcium Phosphate 3D-Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2023; 15:3618. [PMID: 37688244 PMCID: PMC10489712 DOI: 10.3390/polym15173618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There is a growing interest in tissue engineering, in which biomaterials play a pivotal role in promoting bone regeneration. Furthermore, smart functionalization can provide biomaterials with the additional role of preventing orthopedic infections. Due to the growing microbial resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their known wide range of bactericidal properties, are believed to be promising additives in developing antibacterial biomaterials. In this work, novel poly(ε-caprolactone) (PCL)-based 3D scaffolds have been designed and developed, where the polymer matrix was modified with both silver (Ag), to supply antibacterial behavior, and calcium phosphates (biphasic calcium phosphate, BCP) particles to impart bioactive/bioresorbable properties. The microstructural analysis showed that constructs were characterized by square-shaped macropores, in line with the morphology and size of the templating salts used as pore formers. Degradation tests demonstrated the important role of calcium phosphates in improving PCL hydrophilicity, leading to a higher degradation degree for BCP/PCL composites compared to the neat polymer after 18 days of soaking. The appearance of an inhibition halo around the silver-functionalized PCL scaffolds for assayed microorganisms and a significant (p < 0.05) decrease in both adherent and planktonic bacteria demonstrate the Ag+ release from the 3D constructs. Furthermore, the PCL scaffolds enriched with the lowest silver percentages did not hamper the viability and proliferation of Saos-2 cells. A synergic combination of antimicrobial, osteoproliferative and biodegradable features provided to 3D scaffolds the required potential for bone tissue engineering, beside anti-microbial properties for reduction in prosthetic joints infections.
Collapse
Affiliation(s)
- Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Comini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Anna Maria Cuffini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| |
Collapse
|
6
|
PCL-based hydrophobic chains grafted with two PEG-based hydrophilic branches: fluorescence and dynamic light scattering studies. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Poly(caprolactone)- b-poly(ethylene glycol)-Based Polymeric Micelles as Drug Carriers for Efficient Breast Cancer Therapy: A Systematic Review. Polymers (Basel) 2022; 14:polym14224847. [PMID: 36432974 PMCID: PMC9698711 DOI: 10.3390/polym14224847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, drug delivery systems based on nanoparticles for cancer treatment have become the centre of attention for researchers to design and fabricate drug carriers for anti-cancer drugs due to the lack of tumour-targeting activity in conventional pharmaceuticals. Poly(caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles have attracted significant attention as a potential drug carrier intended for human use. Since their first discovery, the Food and Drug Administration (FDA)-approved polymers have been studied extensively for various biomedical applications, specifically cancer therapy. The application of PCL-PEG micelles in different cancer therapies has been recorded in countless research studies for their efficacy as drug cargos. However, systematic studies on the effectiveness of PCL-PEG micelles of specific cancers for pharmaceutical applications are still lacking. As breast cancer is reported as the most prevalent cancer worldwide, we aim to systematically review all available literature that has published research findings on the PCL-PEG-based micelles as drug cargo for therapy. We further discussed the preparation method and the anti-tumour efficacy of the micelles. Using a prearranged search string, Scopus and Science Direct were selected as the databases for the systematic searching strategy. Only eight of the 314 articles met the inclusion requirements and were used for data synthesis. From the review, all studies reported the efficiency of PCL-PEG-based micelles, which act as drug cargo for breast cancer therapy.
Collapse
|
8
|
WITHDRAWN: Poly(caprolactone)-b-Poly(ethylene glycol)-based Polymeric Micelles as Drug Carrier for Efficient Breast Cancer Therapy: A Systematic Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|