1
|
Mohammed AE, Korany SM, Sonbol H, Alhomaidi EA, Alwakeel SS, Elbaz RM. Myco-fabricated silver nanoparticle by novel soil fungi from Saudi Arabian desert and antimicrobial mechanism. Sci Rep 2024; 14:15211. [PMID: 38956076 PMCID: PMC11220002 DOI: 10.1038/s41598-024-63117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
- Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Shereen M Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Eman A Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Suaad S Alwakeel
- Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Reham M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 12612, Egypt
- Department of Biology, College of Science, University of Bisha, P.O. Box 551, 61922, Bisha, Saudi Arabia
| |
Collapse
|
2
|
Mohammed AE, Aldahasi RM, Rahman I, Shami A, Alotaibi M, BinShabaib MS, ALHarthi SS, Aabed K. The antimicrobial activity of tea tree oil ( Melaleuca alternifolia) and its metal nanoparticles in oral bacteria. PeerJ 2024; 12:e17241. [PMID: 38854801 PMCID: PMC11162611 DOI: 10.7717/peerj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham M. Aldahasi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munerah S. BinShabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shatha S. ALHarthi
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Alburae N, Alshamrani R, Mohammed AE. Bioactive silver nanoparticles fabricated using Lasiurus scindicus and Panicum turgidum seed extracts: anticancer and antibacterial efficiency. Sci Rep 2024; 14:4162. [PMID: 38378923 PMCID: PMC10879090 DOI: 10.1038/s41598-024-54449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Applying extracts from plants is considered a safe approach in biomedicine and bio-nanotechnology. The present report is considered the first study that evaluated the seeds of Lasiurus scindicus and Panicum turgidum as biogenic agents in the synthesis of silver nanoparticles (AgNPs) which had bioactivity against cancer cells and bacteria. Assessment of NPs activity against varied cell lines (colorectal cancer HCT116 and breast cancer MDA MBA 231 and MCF 10A used as control) was performed beside the antibacterial efficiency. Different techniques (DLS, TEM, EDX and FTIR) were applied to characterize the biosynthesized AgNPs. The phytochemicals from both L. scindicus and Panicum turgidum were identified by GC-MS analysis. Spherical monodisperse NPs at average diameters of 149.6 and 100.4 nm were obtained from seed extract of L. scindicus (L-AgNPs) and P. turgidum, (P-AgNPs) respectively. A strong absorption peak at 3 keV is observed by the EDX spectrum in the tested NPs. Our study provided effective NPs in mitigating the tested cell lines and the lowest IC50 were 7.8 and 10.30 for MDA MB231 treated by L-AgNPs and P-AgNPs, respectively. Both fabricated NPs might differentially target the MDA MB231 cells compared to HCT116 and MCF10A. Ultrastructural changes and damage for the NPs-treated MDA MB231 cells were studied using TEM and LSM analysis. Antibacterial activity was also observed. About 200 compounds were identified in L. scindicus and P. turgidum by GC-MS analysis might be responsible for the NPs reduction and capping abilities. Efficient NPs against cancer cells and microbes were obtained, however large-scale screening is needed to validate our findings.
Collapse
Affiliation(s)
- Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, P.O.BOX 80206, 21589, Jeddah, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, King Abdulaziz University, P.O.BOX 80206, 21589, Jeddah, Saudi Arabia
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Song Y, Sun L, Wang H, Zhang S, Fan K, Mao Y, Zhang J, Han X, Chen H, Xu Y, Sun K, Ding Z, Wang Y. Enzymatic fermentation of rapeseed cake significantly improved the soil environment of tea rhizosphere. BMC Microbiol 2023; 23:250. [PMID: 37679671 PMCID: PMC10483718 DOI: 10.1186/s12866-023-02995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Rapeseed cake is an important agricultural waste. After enzymatic fermentation, rapeseed cake not only has specific microbial diversity but also contains a lot of fatty acids, organic acids, amino acids and their derivatives, which has potential value as a high-quality organic fertilizer. However, the effects of fermented rapeseed cake on tea rhizosphere microorganisms and soil metabolites have not been reported. In this study, we aimed to elucidate the effect of enzymatic rapeseed cake fertilizer on the soil of tea tree, and to reveal the correlation between rhizosphere soil microorganisms and nutrients/metabolites. RESULTS The results showed that: (1) The application of enzymatic rapeseed cake increased the contents of soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), and available phosphorus (AP); increased the activities of soil urease (S-UE), soil catalase (S-CAT), soil acid phosphatase (S-ACP) and soil sucrase (S-SC); (2) The application of enzymatic rapeseed cake increased the relative abundance of beneficial rhizosphere microorganisms such as Chaetomium, Inocybe, Pseudoxanthomonas, Pseudomonas, Sphingomonas, and Stenotrophomonas; (3) The application of enzymatic rapeseed cake increased the contents of sugar, organic acid, and fatty acid in soil, and the key metabolic pathways were concentrated in sugar and fatty acid metabolisms; (4) The application of enzymatic rapeseed cake promoted the metabolism of sugar, organic acid, and fatty acid in soil by key rhizosphere microorganisms; enzymes and microorganisms jointly regulated the metabolic pathways of sugar and fatty acids in soil. CONCLUSIONS Enzymatic rapeseed cake fertilizer improved the nutrient status and microbial structure of tea rhizosphere soil, which was beneficial for enhancing soil productivity in tea plantations. These findings provide new insights into the use of enzymatic rapeseed cake as an efficient organic fertilizer and expand its potential for application in tea plantations.
Collapse
Affiliation(s)
- Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Huan Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yilin Mao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao Han
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Chen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Xu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kangwei Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Manjunatha D, Megha GT, Nagaraju S, Akarsh S, Nandish G, Sowmya HV, Thippeswamy B. Eco-friendly synthesized silver nanoparticles from endophytic fungus Phyllosticta owaniana: KUMBMDBT-32 and evaluation of biomedical properties. Arch Microbiol 2023; 205:217. [PMID: 37129701 DOI: 10.1007/s00203-023-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The primary objective of the current investigation was the biosynthesis of Phy-AgNPs by the endophytic fungus Phyllosticta owaniana (extracted from Abrus precatorius) and the evaluation of the secondary metabolites from the ethyl acetate extract of P. owaniana cultivated by submerged fermentation. Utilizing bioanalytical strategies, Phy-AgNPs were characterized. The UV-visible spectrophotometer analysis revealed an absorption spectrum with a peak at 420 nm, thus validating the Phy-AgNPs synthesis. The FTIR analysis revealed peaks correlating to various potential functional groups, suggesting that Phy-AgNPs have been reduced and capped. SEM-EDAX and HR-TEM analyses demonstrated the spherical shape of Phy-AgNPs, and the 3 keV EDAX analysis confirmed the existence of silver atoms. XRD analyses showed the Phy-AgNPs crystalline structure. The size and the stability of synthesized Phy-AgNPs (65.81 nm) were measured by DLS and Zeta potential studies. While the ethyl acetate extract was analyzed with GC-MS and FTIR for secondary metabolites. The synthesized Phy-AgNPs showed effective antibacterial activity against Pseudomonas aeruginosa (15.1 ± 0.17 mm, 10 mg/mL), while the antifungal activity of Phy-AgNPs inhibited the growth of Candida albicans extremely efficiently (12.16 ± 0.28 mm, 10 mg/mL). Phy-AgNPs were evaluated for a variety of biomedical properties in which they showed significant activity. In a cell viability assay using the MTT assay, Phy-AgNPs exhibited a cytotoxic impact of up to 30.67% and 34.53% when 200 µg/mL were detected. In both in vitro and in vivo anti-inflammatory examinations, nanoparticles (NPs) exhibited a significant anti-inflammatory effect. These findings support the pharmaceutical and biomedical properties of the synthesized Phy-AgNPs.
Collapse
Affiliation(s)
- Dadayya Manjunatha
- Department of P. G. Studies and Research in Microbiology, School of Biosciences, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India
| | - Gowri Thippeswamy Megha
- Department of P. G. Studies and Research in Biochemistry, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India
| | - Shivaiah Nagaraju
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, 572103, Karnataka, India
| | - Subhakar Akarsh
- Department of P. G. Studies and Research in Microbiology, School of Biosciences, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India
| | - Gurubasajar Nandish
- Department of P. G. Studies and Research in Microbiology, School of Biosciences, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India
| | - Hirakannavar Veeranna Sowmya
- Department of P. G. Studies and Research in Microbiology, School of Biosciences, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India
| | - Basaiah Thippeswamy
- Department of P. G. Studies and Research in Microbiology, School of Biosciences, Kuvempu University, Jnanasahyadri, Shivamogga Dist, Shankaraghatta, 577451, Karnataka, India.
| |
Collapse
|
6
|
Abd El-Ghany MN, Hamdi SA, Korany SM, Elbaz RM, Emam AN, Farahat MG. Biogenic Silver Nanoparticles Produced by Soil Rare Actinomycetes and Their Significant Effect on Aspergillus-derived mycotoxins. Microorganisms 2023; 11:microorganisms11041006. [PMID: 37110430 PMCID: PMC10142716 DOI: 10.3390/microorganisms11041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The current investigation addressed the green synthesis of silver nanoparticles (AgNPs) using newly isolated silver-resistant rare actinomycetes, Glutamicibacter nicotianae SNPRA1 and Leucobacter aridicollis SNPRA2, and investigated their impact on the mycotoxigenic fungi Aspergillus flavus ATCC 11498 and Aspergillus ochraceus ATCC 60532. The formation of AgNPs was evidenced by the reaction's color change to brownish and the appearance of the characteristic surface plasmon resonance. The transmission electron microscopy of biogenic AgNPs produced by G. nicotianae SNPRA1 and L. aridicollis SNPRA2 (designated Gn-AgNPs and La-AgNPs, respectively) revealed the generation of monodispersed spherical nanoparticles with average sizes of 8.48 ± 1.72 nm and 9.67 ± 2.64 nm, respectively. Furthermore, the XRD patterns reflected their crystallinity and the FTIR spectra demonstrated the presence of proteins as capping agents. Both bioinspired AgNPs exhibited a remarkable inhibitory effect on the conidial germination of the investigated mycotoxigenic fungi. The bioinspired AgNPs caused an increase in DNA and protein leakage, suggesting the disruption of membrane permeability and integrity. Interestingly, the biogenic AgNPs completely inhibited the production of total aflatoxins and ochratoxin A at concentrations less than 8 μg/mL. At the same time, cytotoxicity investigations revealed the low toxicity of the biogenic AgNPs against the human skin fibroblast (HSF) cell line. Both biogenic AgNPs exhibited feasible biocompatibility with HSF cells at concentrations up to 10 μg/mL and their IC50 values were 31.78 and 25.83 μg/mL for Gn-AgNPs and La-AgNPs, respectively. The present work sheds light on the antifungal prospect of the biogenic AgNPs produced by rare actinomycetes against mycotoxigenic fungi as promising candidates to combat mycotoxin formation in food chains at nontoxic doses.
Collapse
Affiliation(s)
- Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Salwa A Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Shereen M Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Reham M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt
- Nanomedicine & Tissue Engineering Research Lab, Medical Research Centre of Excellence, National Research Centre, El Bohouth St., Dokki, Cairo 12622, Egypt
| | - Mohamed G Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt
| |
Collapse
|