1
|
Wang J, Wang W, Li K, Wu Y, Yang X, Zhou J, Zhang Z, Jiang Y. A functional hydrogel dressing based on glycyrrhizic acid with low-swelling and moisturizing properties for enhancing infected wound repair. J Mater Chem B 2025; 13:656-667. [PMID: 39618390 DOI: 10.1039/d4tb01572j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Wound healing is a challenging due to the presence of bacterial infection, excessive inflammation and angiogenesis disorders. While traditional therapies struggle, a functional hydrogel can effectively repair wounds. However, the use of hydrogels is limited due to their high swelling and excessive dehydration characteristics. Herein, an interpenetrating polymer network hydrogel (HGP@EGCG) based on hyaluronic acid methacrylate (HAMA), glycyrrhizic acid (GA), polyvinyl alcohol (PVA), epigallocatechin-3-gallate (EGCG), and glycerin/water binary solvent was developed by self-assembly, physical entanglement and chemical crosslinking for infected wound healing. GA forms a primary network through self-assembly induced by Zn2+ and HAMA forms a more robust network structure through free radical polymerization as a rigid backbone, followed by the physical entanglement of PVA, which provides additional crosslinks within the network. The robust network structure conferred the HGP hydrogel with low swelling properties. HGP@EGCG hydrogels could adhere to the wound surface, exhibiting adequate tensile and compressive strength to withstand deformations induced by external forces. Then HGP@EGCG hydrogels with good moisture retention could facilitate the maintenance of wound hydration and prolong usage. Moreover, HGP@EGCG hydrogels could release the drug rapidly in an acidic environment and eliminate bacteria. The designed hydrogels demonstrated multifaceted functionality, including suitable adhesion, low swelling, good moisture retention, and efficient antibacterial properties. Both in vitro and in vivo investigations confirmed that HGP@EGCG hydrogels had good biocompatibility and promoted human umbilical vein endothelial cell migration and tube formation, which markedly expedited wound healing. Consequently, HGP@EGCG hydrogels present a broad spectrum of potential applications in the clinical treatment of infected wounds.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, 518000, P. R. China
| | - Wei Wang
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Kejun Li
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Yanhua Wu
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Xiaoting Yang
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| | - Jiping Zhou
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, 518000, P. R. China
| | - Zhijie Zhang
- Rehabilitation Therapy Center, Luoyang Orhtopedic-Traumatological Hospital of Henan Province (Henan Province Orthopedic Hospital), Luoyang, 471000, P. R. China.
| | - Yongjun Jiang
- Department of Rehabilitation, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan District Hospital of Traditional Chinese Medicine), Shenzhen, 518000, P. R. China.
| |
Collapse
|
2
|
Tu Y, Li Y, Qu G, Ning Y, Li B, Li G, Wu M, Li S, Huang Y. A Review of Basic Fibroblast Growth Factor Delivery Strategies and Applications in Regenerative Medicine. J Biomed Mater Res A 2025; 113:e37834. [PMID: 39740125 DOI: 10.1002/jbm.a.37834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/02/2025]
Abstract
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration. Consequently, it has garnered significant attention from scholars both domestically and internationally. However, the instability and degradation properties of bFGF in vivo have limited its clinical application. Significant interest has arisen in the development of novel bFGF delivery systems that can address the shortcomings of bFGF and enhance its bioavailability by controlling the release amount, timing, and location. This article offers a comprehensive overview of the research and recent advances in various bFGF delivery systems, including hydrogels, liposomes, microspheres, and nanoparticles. Subsequently, the applications of bFGF pharmaceutical preparations in various fields are described. Finally, the current clinical applications of bFGF drug formulations and those in clinical trials are discussed, along with their clinical translation and future trends.
Collapse
Affiliation(s)
- Yuhan Tu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Gaoer Qu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| | - Yangyang Ning
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bin Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guoben Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Min Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yangge Huang
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| |
Collapse
|
3
|
Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X 2024; 8:100265. [PMID: 39045009 PMCID: PMC11263755 DOI: 10.1016/j.ijpx.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer remains a major global health challenge, and despite available treatments, its prognosis remains poor. Recently, researchers have turned their attention to intelligent nanofibers for cancer drug delivery. These nanofibers exhibit remarkable capabilities in targeted and controlled drug release. Their inherent characteristics, such as a high surface area-to-volume ratio, make them attractive candidates for drug delivery applications. Smart nanofibers can release drugs in response to specific stimuli, including pH, temperature, magnetic fields, and light. This unique feature not only reduces side effects but also enhances the overall efficiency of drug delivery systems. Electrospinning, a widely used method, allows the precision fabrication of smart nanofibers. Its advantages include high efficiency, user-friendliness, and the ability to control various manufacturing parameters. In this review, we explore the latest developments in producing smart electrospun nanofibers for cancer treatment. Additionally, we discuss the materials used in manufacturing these nanofibers and the critical parameters involved in the electrospinning process.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebraeel Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Heidari R, Assadollahi V, Shakib Manesh MH, Mirzaei SA, Elahian F. Recent advances in mesoporous silica nanoparticles formulations and drug delivery for wound healing. Int J Pharm 2024; 665:124654. [PMID: 39244073 DOI: 10.1016/j.ijpharm.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Wound healing is a natural process that can be disrupted by disease. Nanotechnology is a promising platform for the development of new therapeutic agents to accelerate acute and chronic wound healing. Drug delivery by means of nanoparticles as well as wound dressings have emerged as suitable options to improving the healing process. The characteristics of mesoporous silica nanoparticles (MSNs) make them efficient carriers of pharmaceutical agents alone or in combination with dressings. In order to maximize the effect of a drug and minimize its adverse consequences, it may be possible to include targeted and intelligent release of the drug into the design of MSNs. Its use to facilitate closure of adjacent sides of a cut as a tissue adhesive, local wound healing, controlled drug release and induction of blood coagulation are possible applications of MSNs. This review summarizes research on MSN applications for wound healing. It includes a general overview, wound healing phases, MSN formulation, therapeutic possibilities of MSNs and MSN-based drug delivery systems for wound healing.
Collapse
Affiliation(s)
- Razieh Heidari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Shakib Manesh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Xue H, Zeng H, Zhou S, Shao Y, Chen H, Lei L, Fan X. Polydopamine-coated chondroitin sulfate methacryloyl multifunctional microspheres for wound treatment. Int J Biol Macromol 2024; 280:136087. [PMID: 39341326 DOI: 10.1016/j.ijbiomac.2024.136087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The disappearance of the protective barrier after skin injury leads to the overproduction of reactive oxygen species (ROS) in response to various stimuli. Oxidative stress is one of the most important causes of delayed wound healing, leading to negative outcomes, such as excessive inflammatory response and impaired angiogenesis. In this study, we used microfluidic technology to integrate Prussian blue nanozymes and vascular endothelial growth factor and constructed multifunctional microspheres that improved local oxidative stress. In order to enhance the adhesion of the microspheres on the wound surface and prolong the release of the drug, we coated them with dopamine, ensuring uniform encapsulation on their surface. The microspheres adhered well to the wound surface and promoted wound healing by scavenging ROS, reducing the inflammatory response, and promoting angiogenesis. This strategy of integrating nanozymes and growth factors can have a synergistic effect, which is significant for wound healing.
Collapse
Affiliation(s)
- Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Shaoyu Zhou
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
6
|
Zhou S, Liu Z, Jin Y, Huang Y, Fang Y, Tian H, Wu H. Poly (lactic acid) electrospun nanofiber membranes: Advanced characterization for biomedical applications with drug loading performance studies. Int J Biol Macromol 2024; 281:136188. [PMID: 39368570 DOI: 10.1016/j.ijbiomac.2024.136188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Traditional dressings have shortcomings such as poor moisture absorption and easy to adhere, making the development of new dressings crucial. In this work, a PLA/PVP crosslinked drug-loaded nanofiber membrane was prepared through electrospinning and ultraviolet crosslinking, with poly (lactic acid) (PLA), polyvinylpyrrolidone (PVP), and salicylic acid (SA) as starting materials. The results demonstrated that the inclusion of PVP notably boosted the viscosity and conductivity of the blend spinning solution. The roughness of the fabricated fiber was elevated, and the diameter of the fibers was more uniform. Additionally, the incorporation of PVP not only enhanced the porosity of the fiber membrane but also effectively decreased its contact angle. Notably, when the PVP content reached 40 %, the contact angle underwent a substantial reduction, decreasing significantly from 125.4° to 82.2°. The SA drug-loaded fiber membrane exhibited a notable bacteriostatic effect against Escherichia coli and Staphylococcus aureus, with its release behavior adhering to Fick's diffusion law. In the cell viability experiment, the cell proliferation rate increased from 94 % to 129 % after 3 days. This shows that the prepared membrane has good antibacterial effect and cell compatibility, which provides a theoretical basis for the construction of a new medical dressing.
Collapse
Affiliation(s)
- Sudan Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zixuan Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yansong Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yiqi Fang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hua Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
7
|
Dai Q, Liu H, Gao C, Sun W, Lu C, Zhang Y, Cai W, Qiao H, Jin A, Wang Y, Liu Y. Advances in Mussel Adhesion Proteins and Mussel-Inspired Material Electrospun Nanofibers for Their Application in Wound Repair. ACS Biomater Sci Eng 2024; 10:6097-6119. [PMID: 39255244 DOI: 10.1021/acsbiomaterials.4c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mussel refers to a marine organism with strong adhesive properties, and it secretes mussel adhesion protein (MAP). The most vital feature of MAP is the abundance of the 3,4-dihydroxyphenylalanine (DOPA) group and lysine, which have antimicrobial, anti-inflammatory, antioxidant, and cell adhesion-promoting properties and can accelerate wound healing. Polydopamine (PDA) is currently the most widely used mussel-inspired material characterized by good adhesion, biocompatibility, and biodegradability. It can mediate various interactions to form functional coatings on cell-material surfaces. Nanofibers based on MAP and mussel-inspired materials have been exerting a vital role in wound repair, while there is no comprehensive review presenting them. This Review introduces the structure of MAPs and their adhesion mechanisms and mussel-inspired materials. Second, it introduces the functionalized modification of MAPs and their inspired materials in electrospun nanofibers and application in wound repair. Finally, the future development direction and coping strategies of MAP and mussel-inspired materials are discussed. Moreover, this Review can offer novel strategies for the application of nanofibers in wound repair and bring about new breakthroughs and innovations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yeping Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang 325000, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Li QQ, Xu D, Dong QW, Song XJ, Chen YB, Cui YL. Biomedical potentials of alginate via physical, chemical, and biological modifications. Int J Biol Macromol 2024; 277:134409. [PMID: 39097042 DOI: 10.1016/j.ijbiomac.2024.134409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Alginate is a linear polysaccharide with a modifiable structure and abundant functional groups, offers immense potential for tailoring diverse alginate-based materials to meet the demands of biomedical applications. Given the advancements in modification techniques, it is significant to analyze and summarize the modification of alginate by physical, chemical and biological methods. These approaches provide plentiful information on the preparation, characterization and application of alginate-based materials. Physical modification generally involves blending and physical crosslinking, while chemical modification relies on chemical reactions, mainly including acylation, sulfation, phosphorylation, carbodiimide coupling, nucleophilic substitution, graft copolymerization, terminal modification, and degradation. Chemical modified alginate contains chemically crosslinked alginate, grafted alginate and oligo-alginate. Biological modification associated with various enzymes to realize the hydrolysis or grafting. These diverse modifications hold great promise in fully harnessing the potential of alginate for its burgeoning biomedical applications in the future. In summary, this review provides a comprehensive discussion and summary of different modification methods applied to improve the properties of alginate while expanding its biomedical potentials.
Collapse
Affiliation(s)
- Qiao-Qiao Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yi-Bing Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
9
|
Shanto PC, Tae H, Ali MY, Jahan N, Jung HI, Lee BT. Dual-layer nanofibrous PCL/gelatin membrane as a sealant barrier to prevent postoperative pancreatic leakage. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-18. [PMID: 39292636 DOI: 10.1080/09205063.2024.2402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Post-operative pancreatic leakage is a severe surgical complication that can cause internal bleeding, infections, multiple organ damage, and even death. To prevent pancreatic leakage and enhance the protection of the suture lining and tissue regeneration, a dual-layer nanofibrous membrane composed of synthetic polymer polycaprolactone (PCL) and biopolymer gelatin was developed. The fabrication of this dual-layer (PGI-PGO) membrane was achieved through the electrospinning technique, with the inner layer (PGI) containing 2% PCL (w/v) and 10% gelatin (w/v), and the outer layer (PGO) containing 10% PCL (w/v) and 10% gelatin (w/v) in mixing ratios of 2:1 and 1:1, respectively. Experimental results indicated that a higher gelatin content reduced fiber diameter enhanced the hydrophilicity of the PGI layer compared to the PGO layer, improved the membrane's biodegradability, and increased its adhesive properties. In vitro biocompatibility assessments with L929 fibroblast cells showed enhanced cell proliferation in the PGI-PGO membrane. In vivo studies confirmed that the PGI-PGO membrane effectively protected the suture line without any instances of leakage and promoted wound healing within four weeks post-surgery. In conclusion, the nanofibrous PGI-PGO membrane demonstrates a promising therapeutic potential to prevent postoperative pancreatic leakage.
Collapse
Affiliation(s)
- Prayas Chakma Shanto
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Heyjin Tae
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Md Yousuf Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Nusrat Jahan
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
- Department of General Surgery, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
10
|
Chibh S, Singh A, Finkelstein-Zuta G, Koren G, Sorkin R, Beck R, Rencus-Lazar S, Gazit E. Amylum forms typical self-assembled amyloid fibrils. SCIENCE ADVANCES 2024; 10:eadp6471. [PMID: 39213351 PMCID: PMC11364109 DOI: 10.1126/sciadv.adp6471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Amyloid fibril formation is a central biochemical process in pathology and physiology. Over decades, substantial advances were made in elucidating the mechanisms of amyloidogenesis, its links to disease, and the production of functional supramolecular structures. While the term "amyloid" denotes starch-like features of these assemblies, no evidence of amyloidogenic behavior of polysaccharides has been so far reported. Here, we investigate the potential of amylum (starch) not only to self-assemble into hierarchical fibrillar structures but also to exhibit canonical amyloidogenic properties. Ordered amylum structures were formed through a sigmoidal growth process with characteristic amyloid features including typical nanofibril morphology, binding to indicative dyes, inherent luminescence, apple-green birefringence upon Congo red staining, and notable mechanical rigidity. These findings shed light on polysaccharide self-assembly and expand the generic amyloid phenomenon.
Collapse
Affiliation(s)
- Sonika Chibh
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ashmeet Singh
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gal Finkelstein-Zuta
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Koren
- The Raymond & Beverly Sackler School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University; Tel Aviv, 6997801, Israel
- Center of Physics and Chemistry of Living Systems, Tel Aviv University; Tel Aviv, 6997801, Israel
| | - Roy Beck
- The Raymond & Beverly Sackler School of Physics and Astronomy, The Center for Nanoscience and Nanotechnology, and the Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
12
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
13
|
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int J Biol Macromol 2024; 270:132048. [PMID: 38704062 DOI: 10.1016/j.ijbiomac.2024.132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Muhammad Arshad
- Clean Technologies and Applied Research, Northern Alberta Institute of Technology, Edmonton, Alberta T5G 2R1, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
14
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
15
|
Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules 2024; 29:2050. [PMID: 38731540 PMCID: PMC11085206 DOI: 10.3390/molecules29092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Ran Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| |
Collapse
|
16
|
Kolahi Azar H, Hajian Monfared M, Seraji AA, Nazarnezhad S, Nasiri E, Zeinanloo N, Sherafati M, Sharifianjazi F, Rostami M, Beheshtizadeh N. Integration of polysaccharide electrospun nanofibers with microneedle arrays promotes wound regeneration: A review. Int J Biol Macromol 2024; 258:128482. [PMID: 38042326 DOI: 10.1016/j.ijbiomac.2023.128482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Utilizing electrospun nanofibers and microneedle arrays in wound regeneration has been practiced for several years. Researchers have recently asserted that using multiple methods concurrently might enhance efficiency, despite the inherent strengths and weaknesses of each individual approach. The combination of microneedle arrays with electrospun nanofibers has the potential to create a drug delivery system and wound healing method that offer improved efficiency and accuracy in targeting. The use of microneedles with nanofibers allows for precise administration of pharmaceuticals due to the microneedles' capacity to pierce the skin and the nanofibers' role as a drug reservoir, resulting in a progressive release of drugs over a certain period of time. Electrospun nanofibers have the ability to imitate the extracellular matrix and provide a framework for cellular growth and tissue rejuvenation, while microneedle arrays show potential for enhancing tissue regeneration and enhancing the efficacy of wound healing. The integration of electrospun nanofibers with microneedle arrays may be customized to effectively tackle particular obstacles in the fields of wound healing and drug delivery. However, some issues must be addressed before this paradigm may be fully integrated into clinical settings, including but not limited to ensuring the safety and sterilization of these products for transdermal use, optimizing manufacturing methods and characterization of developed products, larger-scale production, optimizing storage conditions, and evaluating the inclusion of multiple therapeutic and antimicrobial agents to increase the synergistic effects in the wound healing process. This research examines the combination of microneedle arrays with electrospun nanofibers to enhance the delivery of drugs and promote wound healing. It explores various kinds of microneedle arrays, the materials and processes used, and current developments in their integration with electrospun nanofibers.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Hajian Monfared
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada; Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Esmaeil Nasiri
- School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran
| | - Niloofar Zeinanloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Sherafati
- Department of Biomedical Engineering, Islamic Azad University, Mashhad, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
17
|
Liang X, Xu H, Cong H, Wan X, Liu L, Li Y, Liu C, Chen C, Jiang G, Asadi K, He H. Robust Piezoelectric Biomolecular Membranes from Eggshell Protein for Wearable Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55790-55802. [PMID: 38009467 DOI: 10.1021/acsami.3c12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Flexible and wearable devices are drawing increasing attention due to their promising applications in energy harvesting and sensing. However, the application of wearable devices still faces great challenges, such as flexibility, repeatability, and biodegradability. Biopiezoelectric materials have been regarded as favorable energy-harvesting sources due to their nontoxicity and biocompatibility. Here, a wearable and biodegradable sensor is proposed to monitor human activities. The proposed sensor is fabricated via a low-cost, facile, and scalable electrospinning technology from nanofibers composed of eggshell membranes mixed with polyethylene oxide. It is shown that the sensor exhibits excellent flexibility, outstanding degradability, and mechanical stability over 3000 cycles under periodic stimulation. The device displays multiple potential applications, including the recognition of different objects, human motion monitoring, and active voice recognition. Finally, it is shown that the composite nanofiber membrane has good degradability and breathability. With excellent sensing performance, environmental friendliness, and ease of processing, the eggshell membrane-based sensor could be a promising candidate for greener and more environmentally friendly devices for application in implantable and wearable electronics.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Xu
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Li
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Chaoyu Chen
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kamal Asadi
- Department of Physics, University of Bath, Bath BA2 7AY, U.K
| | - Haijun He
- Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Du J, Zhang Y, Huang Y, Zhang Q, Wang W, Yu M, Xu L, Xu J. Dual-Cross-Linked Chitosan-Based Antibacterial Hydrogels with Tough and Adhesive Properties for Wound Dressing. Macromol Rapid Commun 2023; 44:e2300325. [PMID: 37566735 DOI: 10.1002/marc.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Biocompatible chitosan-based hydrogels have attracted extensive attention in wound dressing due to their human skin-like tissue characteristics. However, it is a crucial challenge to fabricate chitosan-based hydrogels with versatile properties, including flexibility, stretchability, adhesivity, and antibacterial activity. In this work, a kind of chitosan-based hydrogels with integrated functionalities are facilely prepared by solution polymerization of acrylamide (AAm) and sodium p-styrene sulfonate (SS) in the presence of quaternized carboxymethyl chitosan (QCMCS). Due to the dual cross-linking between QCMCS and P(AAm-co-SS), the optimized QCMCS/P(AAm-co-SS) hydrogel exhibits tough mechanical properties (0.767 MPa tensile stress and 1100% fracture strain) and moderate tissue adhesion (11.4 kPa). Moreover, biological evaluation in vitro illustrated that as-prepared hydrogel possesses satisfactory biocompatibility, hemocompatibility, and excellent antibacterial ability (against S. aureus and E. coli are 98.8% and 97.3%, respectively). Then, the hydrogels are tested in a rat model for bacterial infection incision in vivo, and the results show that they can significantly accelerate epidermal regeneration and wound closure. This is due to their ability to reduce the inflammatory response, promote the formation of collagen deposition and granulation tissue. The proposed chitosan-based antibacterial hydrogels have the potential to be a highly effective wound dressing in clinical wound healing.
Collapse
Affiliation(s)
- Jingjing Du
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yutong Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yilin Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Qiao Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Wenzhi Wang
- College of Packaging Materials and Engineering, Hunan University of Technology, Zhuzhou, 412007, China
| | - Maolin Yu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
19
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Ruan D, Wang J, Ding T, Chen L, Du Y, Ruan Y, Cui W, Feng W. Targeting Adhesive Tumor Adventitia via Injectable Electrospun Short Fibers in Perfusion of Intraperitoneal Sporadic Tumors. SMALL METHODS 2023; 7:e2300681. [PMID: 37670530 DOI: 10.1002/smtd.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Indexed: 09/07/2023]
Abstract
Intraperitoneal sporadic tumor is a common and complicated syndrome in cancers, causing a high rate of death, and people find that intraperitoneal chemotherapy (IPC) can treat intraperitoneal sporadic tumors better than intravenous chemotherapy and surgery. However, the effectiveness and side effects of IPC are controversial, and the operation process of IPC is complicated. Herein, the injectable paclitaxel-loaded (PTX-loaded) electrospun short fibers are constructed through a series process of electrospinning, homogenizing, crosslinking, and subsequent polydopamine coating and folate acid (FA) modification. The evenly dispersed short fibers exhibited effective tumor cell killing and good injectable ability, which is convenient to use and greatly improved the complex operation procedure. Mussel-like protein poly-dopamine coating and FA modification endowed short fibers with the ability of targeted adhesion to tumors, and therefore the short fibers further acted as a kind of micro membrane that could release drugs to tumors at close range, maintaining local high drug concentration and prevent paclitaxel killing normal tissues. Thus, the target-adhesive injectable electrospun short fibers are expected to be the potential candidate for cancer treatment, especially the intraperitoneal sporadic tumors, which are hard to treat by surgery or intravenous chemotherapy.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Tao Ding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yiyin Ruan
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Weiwei Feng
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
22
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Chen K, Li Y, Li Y, Tan Y, Liu Y, Pan W, Tan G. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J Nanobiotechnology 2023; 21:237. [PMID: 37488582 PMCID: PMC10364421 DOI: 10.1186/s12951-023-01987-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
The stimuli-responsive nanofibers prepared by electrospinning have become an ideal stimuli-responsive material due to their large specific surface area and porosity, which can respond extremely quickly to external environmental incitement. As an intelligent drug delivery platform, stimuli-responsive nanofibers can efficiently load drugs and then be stimulated by specific conditions (light, temperature, magnetic field, ultrasound, pH or ROS, etc.) to achieve slow, on-demand or targeted release, showing great potential in areas such as drug delivery, tumor therapy, wound dressing, and tissue engineering. Therefore, this paper reviews the recent trends of stimuli-responsive electrospun nanofibers as intelligent drug delivery platforms in the field of biomedicine.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China.
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yingshuo Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan provincial key laboratory of R&D on tropical herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
24
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
25
|
Lin Z, Chen H, Li S, Li X, Wang J, Xu S. Electrospun Food Polysaccharides Loaded with Bioactive Compounds: Fabrication, Release, and Applications. Polymers (Basel) 2023; 15:polym15102318. [PMID: 37242893 DOI: 10.3390/polym15102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Food polysaccharides are well acclaimed in the field of delivery systems due to their natural safety, biocompatibility with the human body, and capability of incorporating/releasing various bioactive compounds. Electrospinning, a straightforward atomization technique that has been attracting researchers worldwide, is also versatile for coupling food polysaccharides and bioactive compounds. In this review, several popular food polysaccharides including starch, cyclodextrin, chitosan, alginate, and hyaluronic acid are selected to discuss their basic characteristics, electrospinning conditions, bioactive compound release characteristics, and more. Data revealed that the selected polysaccharides are capable of releasing bioactive compounds from as rapidly as 5 s to as prolonged as 15 days. In addition, a series of frequently studied physical/chemical/biomedical applications utilizing electrospun food polysaccharides with bioactive compounds are also selected and discussed. These promising applications include but are not limited to active packaging with 4-log reduction against E. coli, L. innocua, and S. aureus; removal of 95% of particulate matter (PM) 2.5 and volatile organic compounds (VOCs); heavy metal ion removal; increasing enzyme heat/pH stability; wound healing acceleration and enhanced blood coagulation, etc. The broad potentials of electrospun food polysaccharides loaded with bioactive compounds are demonstrated in this review.
Collapse
Affiliation(s)
- Zhenyu Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengmei Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaolu Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana, 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - V Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan (ROC).
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
27
|
Ayvazoğlu BŞ, Ceylan M, Turan AAI, Yılmaz EB. Biodegradable Polycaprolactone Fibers with Silica Aerogel and Nanosilver Particles Produce a Coagulation Effect. Polymers (Basel) 2023; 15:polym15092022. [PMID: 37177170 PMCID: PMC10180577 DOI: 10.3390/polym15092022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Poly-ε-caprolactone (PCL) is a biodegradable aliphatic polyester that can be used in the field of biomaterials. Electrospinning is the name given to the process of producing micro and nanoscale fibers using electrostatically charged polymeric solutions under certain conditions. Almost all synthetic and naturally occurring polymers can undergo electrospinning using suitable solvents or mixtures prepared in certain proportions. In this study, silica aerogels were obtained by the sol-gel method. PCL-silica aerogel fibers were synthesized by adding 0.5, 1, 2, and 4% ratios in the PCL solution. Blood contact analysis was performed on the produced fibers with UV-VIS. According to the results obtained, 0.5, 1, 2, and 4% nano-silver were added to the fiber-containing 4% aerogel. Then, SEM-EDS and FTIR analyses were performed on all fibers produced. Antimicrobial tests were performed on fibers containing nano-silver. As a result, high-performance blood coagulation fibers were developed using PCL with aerogel, and an antimicrobial effect was achieved with nano-silver particles. It is thought that the designed surface will be preferred in wound dressing and biomaterial in tissue engineering, as it provides a high amount of cell adhesion with a small amount of blood and contains antimicrobial properties.
Collapse
Affiliation(s)
| | - Muhammet Ceylan
- Graduate School of Natural and Applied Sciences, Istanbul Ticaret University, 34840 Istanbul, Turkey
| | - Aybüke A Isbir Turan
- Institute of Forensic Sciences, Turkish National Police Academy, 06834 Ankara, Turkey
| | - Elif Burcu Yılmaz
- Graduate School of Natural and Applied Sciences, Istanbul Ticaret University, 34840 Istanbul, Turkey
| |
Collapse
|
28
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Yusuf Aliyu A, Adeleke OA. Nanofibrous Scaffolds for Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030986. [PMID: 36986847 PMCID: PMC10051742 DOI: 10.3390/pharmaceutics15030986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic wounds are one of the secondary health complications that develop in individuals who have poorly managed diabetes mellitus. This is often associated with delays in the wound healing process, resulting from long-term uncontrolled blood glucose levels. As such, an appropriate therapeutic approach would be maintaining blood glucose concentration within normal ranges, but this can be quite challenging to achieve. Consequently, diabetic ulcers usually require special medical care to prevent complications such as sepsis, amputation, and deformities, which often develop in these patients. Although several conventional wound dressings, such as hydrogels, gauze, films, and foams, are employed in the treatment of such chronic wounds, nanofibrous scaffolds have gained the attention of researchers because of their flexibility, ability to load a variety of bioactive compounds as single entities or combinations, and large surface area to volume ratio, which provides a biomimetic environment for cell proliferation relative to conventional dressings. Here, we present the current trends on the versatility of nanofibrous scaffolds as novel platforms for the incorporation of bioactive agents suitable for the enhancement of diabetic wound healing.
Collapse
Affiliation(s)
- Anna Yusuf Aliyu
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
30
|
Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Applications of MXene and its modified materials in skin wound repair. Front Bioeng Biotechnol 2023; 11:1154301. [PMID: 36994359 PMCID: PMC10042448 DOI: 10.3389/fbioe.2023.1154301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
The rapid healing and repair of skin wounds has been receiving much clinical attention. Covering the wound with wound dressing to promote wound healing is currently the main treatment for skin wound repair. However, the performance of wound dressing prepared by a single material is limited and cannot meet the requirements of complex conditions for wound healing. MXene is a new two-dimensional material with electrical conductivity, antibacterial and photothermal properties and other physical and biological properties, which has a wide range of applications in the field of biomedicine. Based on the pathophysiological process of wound healing and the properties of ideal wound dressing, this review will introduce the preparation and modification methods of MXene, systematically summarize and review the application status and mechanism of MXene in skin wound healing, and provide guidance for subsequent researchers to further apply MXene in the design of skin wound dressing.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weijian Kong
- The Second Hospital of Jilin University, Changchun, China
| | - Renfeng Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Chunli Yao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chunli Yao,
| |
Collapse
|
31
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
32
|
Sethuram L, Thomas J. Therapeutic applications of electrospun nanofibers impregnated with various biological macromolecules for effective wound healing strategy - A review. Biomed Pharmacother 2023; 157:113996. [PMID: 36399827 DOI: 10.1016/j.biopha.2022.113996] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
A Non-healing infected wound is an ever-growing global epidemic, with increasing burden of mortality rates and management costs. The problems of chronic wound infections and their outcomes will continue as long as their underlying causes like diabetic wounds grow and spread. Commercial wound therapies employed have limited potential that inhibits pivotal functions and tissue re-epithelialization properties resulting in wound infections. Nanomaterial based drug delivery formulations involving biological macromolecules are developing areas of interest in wound healing applications which are utilized in the re-epithelialization of skin with cost-effective preparations. Research conducted on nanofibers has shown enhanced skin establishment with improved cell proliferation and growth and delivery of bioactive organic molecules at the wound site. However, drug targeted delivery with anti-scarring properties and tissue regeneration aspects have not been updated and discussed in the case of macromolecule impregnated nanofibrous mats. Hence, this review focuses on the brief concepts of wound healing and wound management, therapeutic commercialized wound dressings currently available in the field of wound care, effective electrospun nanofibers impregnated with different biological macromolecules and advancement of nanomaterials for tissue engineering have been discussed. These new findings will pave the way for producing anti-scarring high effective wound scaffolds for drug delivery.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
33
|
Alka, Verma A, Mishra N, Singh N, Singh P, Nisha R, Pal RR, Saraf SA. Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing. Curr Pharm Des 2023; 29:3221-3239. [PMID: 37584354 DOI: 10.2174/1381612829666230816100631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
34
|
Mirbagheri MS, Akhavan-Mahdavi S, Hasan A, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydr Polym 2023; 313:120512. [PMID: 37182929 DOI: 10.1016/j.carbpol.2022.120512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.
Collapse
|
35
|
Liu Y, Li C, Feng Z, Han B, Yu DG, Wang K. Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules 2022; 12:1727. [PMID: 36551155 PMCID: PMC9775188 DOI: 10.3390/biom12121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic diabetic wounds are one of the main complications of diabetes, manifested by persistent inflammation, decreased epithelialization motility, and impaired wound healing. This will not only lead to the repeated hospitalization of patients, but also bear expensive hospitalization costs. In severe cases, it can lead to amputation, sepsis or death. Electrospun nanofibers membranes have the characteristics of high porosity, high specific surface area, and easy functionalization of structure, so they can be used as a safe and effective platform in the treatment of diabetic wounds and have great application potential. This article briefly reviewed the pathogenesis of chronic diabetic wounds and the types of dressings commonly used, and then reviewed the development of electrospinning technology in recent years and the advantages of electrospun nanofibers in the treatment of diabetic wounds. Finally, the reports of different types of nanofiber dressings on diabetic wounds are summarized, and the method of using multi-drug combination therapy in diabetic wounds is emphasized, which provides new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Biao Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|