1
|
Wu S, Zhu H, Wu Y, Wang C, Duan X, Xu T. Molecular mechanisms of long noncoding RNAs associated with cervical cancer radiosensitivity. Front Genet 2023; 13:1093549. [PMID: 36685972 PMCID: PMC9846343 DOI: 10.3389/fgene.2022.1093549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Terzi MY, Okuyan HM, Gülbol-Duran G, Urhan-Küçük M. Reduced Expression of PEDF and ALDH1A1 during Spheroid Transition of Lung Cancer Cells: An In Vitro Study. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, Chrystel I, Morandi U, Stella F, Dominici M, Haider KH. Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers (Basel) 2022; 14:cancers14040976. [PMID: 35205721 PMCID: PMC8869911 DOI: 10.3390/cancers14040976] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cancer is one of the most debated problems all over the world. Cancer stem cells are considered responsible of tumor initiation, metastasis, drug resistance, and recurrence. This subpopulation of cells has been found into the tumor bulk and showed the capacity to self-renew, differentiate, up to generate a new tumor. In the last decades, several studies have been set on the molecular mechanisms behind their specific characteristics as the Wnt/β-catenin signaling, Notch signaling, Hedgehog signaling, transcription factors, etc. The most powerful part of CSCs is represented by the niches as “promoter” of their self-renewal and “protector” from the common oncological treatment as chemotherapy and radiotherapy. In our review article we highlighted the primary mechanisms involved in CSC tumorigenesis for the setting of further targets to control the metastatic process. Abstract Emerging evidence suggests that a small subpopulation of cancer stem cells (CSCs) is responsible for initiation, progression, and metastasis cascade in tumors. CSCs share characteristics with normal stem cells, i.e., self-renewal and differentiation potential, suggesting that they can drive cancer progression. Consequently, targeting CSCs to prevent tumor growth or regrowth might offer a chance to lead the fight against cancer. CSCs create their niche, a specific area within tissue with a unique microenvironment that sustains their vital functions. Interactions between CSCs and their niches play a critical role in regulating CSCs’ self-renewal and tumorigenesis. Differences observed in the frequency of CSCs, due to the phenotypic plasticity of many cancer cells, remain a challenge in cancer therapeutics, since CSCs can modulate their transcriptional activities into a more stem-like state to protect themselves from destruction. This plasticity represents an essential step for future therapeutic approaches. Regarding self-renewal, CSCs are modulated by the same molecular pathways found in normal stem cells, such as Wnt/β-catenin signaling, Notch signaling, and Hedgehog signaling. Another key characteristic of CSCs is their resistance to standard chemotherapy and radiotherapy treatments, due to their capacity to rest in a quiescent state. This review will analyze the primary mechanisms involved in CSC tumorigenesis, with particular attention to the roles of CSCs in tumor progression in benign and malignant diseases; and will examine future perspectives on the identification of new markers to better control tumorigenesis, as well as dissecting the metastasis process.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental Diagnostic and Specialty Medicine–DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy;
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
- Correspondence:
| | - Valentina Masciale
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Federica Bertolini
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Michela Maur
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Giorgia Guaitoli
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Isca Chrystel
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | - Uliano Morandi
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy; (V.M.); (U.M.)
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental Diagnostic and Specialty Medicine–DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (G.G.); (F.B.); (M.M.); (G.G.); (I.C.); (M.D.)
| | | |
Collapse
|
4
|
An Y, Yang R, Wang X, Han Y, Jia G, Hu C, Zhang Z, Liu D, Tang Q. Facile Assembly of Thermosensitive Liposomes for Active Targeting Imaging and Synergetic Chemo-/Magnetic Hyperthermia Therapy. Front Bioeng Biotechnol 2021; 9:691091. [PMID: 34422777 PMCID: PMC8371754 DOI: 10.3389/fbioe.2021.691091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for the recurrence of liver cancer, highlighting the urgent need for the development of effective treatment regimens. In this study, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and thermosensitive magnetoliposomes (TMs) conjugated to anti-CD90 (CD90@17-AAG/TMs) were developed for temperature-responsive CD90-targeted synergetic chemo-/magnetic hyperthermia therapy and simultaneous imaging in vivo. The targeting ability of CD90@DiR/TMs was studied with near-infrared (NIR) resonance imaging and magnetic resonance imaging (MRI), and the antitumor effect of CD90@17-AAG/TM-mediated magnetic thermotherapy was evaluated in vivo. After treatment, the tumors were analyzed with Western blotting, hematoxylin and eosin staining, and immunohistochemical (IHC) staining. The relative intensity of fluorescence was approximately twofold higher in the targeted group than in the non-targeted group, while the T2 relaxation time was significantly lower in the targeted group than in the non-targeted group. The combined treatment of chemotherapy, thermotherapy, and targeting therapy exhibited the most significant antitumor effect as compared to any of the treatments alone. The anti-CD90 monoclonal antibody (mAb)-targeted delivery system, CD90@17-AAG/TMs, exhibited powerful targeting and antitumor efficacies against CD90+ liver cancer stem cells in vivo.
Collapse
Affiliation(s)
- Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Yong Han
- School of Medicine, Southeast University, Nanjing, China
| | - Gang Jia
- School of Medicine, Southeast University, Nanjing, China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Affiliated Hospital of Southeast University (The Second Hospital of Nanjing), Nanjing, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dongfang Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Qiusha Tang
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Olatz C, Patricia GG, Jon L, Iker B, Carmen DLH, Fernando U, Gaskon I, Ramon PJ. Is There Such a Thing as a Genuine Cancer Stem Cell Marker? Perspectives from the Gut, the Brain and the Dental Pulp. BIOLOGY 2020; 9:biology9120426. [PMID: 33260962 PMCID: PMC7760753 DOI: 10.3390/biology9120426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
The conversion of healthy stem cells into cancer stem cells (CSCs) is believed to underlie tumor relapse after surgical removal and fuel tumor growth and invasiveness. CSCs often arise from the malignant transformation of resident multipotent stem cells, which are present in most human tissues. Some organs, such as the gut and the brain, can give rise to very aggressive types of cancers, contrary to the dental pulp, which is a tissue with a very remarkable resistance to oncogenesis. In this review, we focus on the similarities and differences between gut, brain and dental pulp stem cells and their related CSCs, placing a particular emphasis on both their shared and distinctive cell markers, including the expression of pluripotency core factors. We discuss some of their similarities and differences with regard to oncogenic signaling, telomerase activity and their intrinsic propensity to degenerate to CSCs. We also explore the characteristics of the events and mutations leading to malignant transformation in each case. Importantly, healthy dental pulp stem cells (DPSCs) share a great deal of features with many of the so far reported CSC phenotypes found in malignant neoplasms. However, there exist literally no reports about the contribution of DPSCs to malignant tumors. This raises the question about the particularities of the dental pulp and what specific barriers to malignancy might be present in the case of this tissue. These notable differences warrant further research to decipher the singular properties of DPSCs that make them resistant to transformation, and to unravel new therapeutic targets to treat deadly tumors.
Collapse
Affiliation(s)
- Crende Olatz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - García-Gallastegui Patricia
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Luzuriaga Jon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Badiola Iker
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - de la Hoz Carmen
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Unda Fernando
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
| | - Ibarretxe Gaskon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| | - Pineda Jose Ramon
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (C.O.); (G.-G.P.); (L.J.); (B.I.); (d.l.H.C.); (U.F.)
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (I.G.); (P.J.R.); Tel.: +34-946-013-218 (I.G.); +34-946-012-426 (P.J.R.)
| |
Collapse
|
6
|
Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep 2020; 10:10937. [PMID: 32616845 PMCID: PMC7363816 DOI: 10.1038/s41598-020-67753-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Grade 4 glioma or GBM has poor prognosis and is the most aggressive grade of glioma. Accurate diagnosis and classification of tumor grade is a critical determinant for development of treatment pathway. Extensive genomic sequencing of gliomas, different cell types, brain tissue regions and advances in bioinformatics algorithms, have presented an opportunity to identify molecular markers that can complement existing histology and imaging methods used to diagnose and classify gliomas. ‘Cancer stem cell theory’ purports that a minor population of stem cells among the heterogeneous population of different cell types in the tumor, drive tumor growth and resistance to therapies. However, characterization of stem cell states in GBM and ability of stem cell state signature genes to serve as diagnostic or prognostic molecular markers are unknown. In this work, two different network construction algorithms, Weighted correlation network analysis (WGCNA) and Multiscale Clustering of Geometric Network (MEGENA), were applied on publicly available glioma, control brain and stem cell gene expression RNA-seq datasets, to identify gene network regulatory modules associated with GBM. Both gene network algorithms identified consensus or equivalent modules, HuAgeGBsplit_18 (WGCNA) and c1_HuAgeGBsplit_32/193 (MEGENA), significantly associated with GBM. Characterization of HuAgeGBsplit_18 (WGCNA) and c1_HuAgeGBsplit_32/193 (MEGENA) modules showed significant enrichment of rodent quiescent stem cell marker genes (GSE70696_QNPbyTAP). A logistic regression model built with eight of these quiescent stem cell marker genes (GSE70696_QNPbyTAP) was sufficient to distinguish between control and GBM samples. This study demonstrates that GBM associated gene regulatory modules are characterized by diagnostic quiescent stem cell marker genes, which may potentially be used clinically as diagnostic markers and therapeutic targets in GBM.
Collapse
|
7
|
Ashokachakkaravarthy K, Pottakkat B. Mitotic quiescence in hepatic cancer stem cells: An incognito mode. Oncol Rev 2020; 14:452. [PMID: 32153726 PMCID: PMC7036709 DOI: 10.4081/oncol.2020.452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma represents one of the most aggressive cancers with high recurrence rates. The high recurrence is a major problem in the management of this disease. Cancer stem cells (CSCs) are often regarded as the basis of cancer recurrence. The anti-proliferative therapy kills the proliferating cells but induces mitotic quiescence in CSCs which remain as residual dormant CSCs. Later on, withdrawal of treatment reactivates the residual CSCs from dormancy to produce new cancer cells. The proliferation of these newly formed cancer cells initiates new tumor formation in the liver leading to tumor recurrence. HCC cells evade the immune surveillance via modulating the key immune cells by alpha feto-protein (AFP) secreted from CSCs or hepatic progenitor cells. This AFP mediated immune evasion assists in establishing new tumors by cancer cells in the liver. In this review, we will summarise the CSC mechanisms of recurrence, mitotic quiescence, dormancy and reactivation of CSCs, metastasis and immune evasion of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Kandasamy Ashokachakkaravarthy
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
8
|
Affinito A, Quintavalle C, Esposito CL, Roscigno G, Vilardo C, Nuzzo S, Ricci-Vitiani L, De Luca G, Pallini R, Kichkailo AS, Lapin IN, de Franciscis V, Condorelli G. The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:99-109. [PMID: 31541799 PMCID: PMC6796606 DOI: 10.1016/j.omtn.2019.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. Despite progress in surgical and medical neuro-oncology, prognosis for GBM patients remains dismal, with a median survival of only 14–15 months. The modest benefit of conventional therapies is due to the presence of GBM stem cells (GSCs) that cause tumor relapse and chemoresistance and, therefore, that play a key role in GBM aggressiveness and recurrence. So far, strategies to identify and target GSCs have been unsuccessful. Thus, the development of an approach for GSC detection and targeting would be fundamental for improving the survival of GBM patients. Here, using the cell-systematic evolution of ligand by exponential (SELEX) methodology on human primary GSCs, we generated and characterized RNA aptamers that selectively bind GSCs versus undifferentiated GBM cells. We found that the shortened version of the aptamer 40L, which we have called A40s, costained with CD133-labeled cells in human GBM tissue, suggestive of an ability to specifically recognize GSCs in fixed human tissues. Of note, both 40L and A40s were rapidly internalized by cells, allowing for the delivery of the microRNA miR-34c and the anti-microRNA anti-miR-10b, demonstrating that these aptamers can serve as selective vehicles for therapeutics. In conclusion, the aptamers 40L and A40s can selectively target GSCs. Given the crucial role of GSCs in GBM recurrence and therapy resistance, these aptamers represent innovative drug delivery candidates with a great potential in the treatment of GBM.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands
| | - Cristina Quintavalle
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands.
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Claudia Vilardo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy
| | | | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele De Luca
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Anna S Kichkailo
- Federal Research Center, Krasnoyarsk Research Center Siberian Branch of Russian Academy of Science, Krasnoyarsk, Russia; Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ivan N Lapin
- Siberian Physical-Technical Institute of Tomsk State University, Tomsk, Russia
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Pansini 5, 80131 Naples, Italy; IRCCS Neuromed - Istituto Neurologico Mediterraneo Pozzilli, Pozzilli, Italy.
| |
Collapse
|
9
|
Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019; 11:polym11040630. [PMID: 30959799 PMCID: PMC6523645 DOI: 10.3390/polym11040630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022] Open
Abstract
The side-effects associated with chemotherapy necessitates better delivery of chemotherapeutics to the tumor. Nanoparticles can load higher amounts of drug and improve delivery to tumors, increasing the efficacy of treatment. Polymeric nanoparticles, in particular, have been used extensively for chemotherapeutic delivery. This review describes the efforts made to deliver combination chemotherapies and inhibit oncogenic pathways using polymeric drug delivery systems. Combinations of chemotherapeutics with other drugs or small interfering RNA (siRNA) combinations have been summarized. Special attention is given to the delivery of drug combinations that involve either paclitaxel or doxorubicin, two popular chemotherapeutics in clinic. Attempts to inhibit specific pathways for oncotherapy have also been described. These include inhibition of oncogenic pathways (including those involving HER2, EGFR, MAPK, PI3K/Akt, STAT3, and HIF-1α), augmentation of apoptosis by inhibiting anti-apoptosis proteins (Bcl-2, Bcl-xL, and survivin), and targeting dysregulated pathways such as Wnt/β-catenin and Hedgehog.
Collapse
|
10
|
Hao J, Fan W, Li Y, Tang R, Tian C, Yang Q, Zhu T, Diao C, Hu S, Chen M, Guo P, Long Q, Zhang C, Qin G, Yu W, Chen M, Li L, Qin L, Wang J, Zhang X, Ren Y, Zhou P, Zou L, Jiang K, Guo W, Deng W. Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/hTERT signaling and cancer-stem cell traits. J Exp Clin Cancer Res 2019; 38:48. [PMID: 30717768 PMCID: PMC6360719 DOI: 10.1186/s13046-019-1036-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As the selective inhibitor of BRAF kinase, vemurafenib exhibits effective antitumor activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after its initial treatment. METHODS Immunohistochemical staining was performed to detect the expression of iNOS and hTERT, p-p65, Epcam, CD44, PCNA in mice with melanoma xenografts. The proliferation and migration of melanoma cells were detected by MTT, tumorsphere culture, cell cycle, cell apoptosis, AO/EB assay and colony formation, transwell assay and scratch assay in vitro, and tumor growth differences were observed in xenograft nude mice. Changes in the expression of key molecules in the iNOS/hTERT signaling pathways were detected by western blot. Nucleus-cytoplasm separation, and immunofluorescence analyses were conducted to explore the location of p50/p65 in melanoma cell lines. Flow cytometry assay were performed to determine the expression of CD44. Pull down assay and ChIP assay were performed to detect the binding ability of p65 at iNOS and hTERT promoters. Additionally, hTERT promoter-driven luciferase plasmids were transfected in to melanoma cells with indicated treatment to determine luciferase activity of hTERT. RESULTS Melatonin significantly and synergistically enhanced vemurafenib-mediated inhibitions of proliferation, colony formation, migration and invasion and promoted vemurafenib-induced apoptosis, cell cycle arresting and stemness weakening in melanoma cells. Further mechanism study revealed that melatonin enhanced the antitumor effect of vemurafenib by abrogating nucleus translocation of NF-κB p50/p65 and their binding at iNOS and hTERT promoters, thereby suppressing the expression of iNOS and hTERT. The elevated anti-tumor capacity of vemurafenib upon co-treatment with melatonin was also evaluated and confirmed in mice with melanoma xenografts. CONCLUSIONS Collectively, our results demonstrate melatonin synergizes the antitumor effect of vemurafenib in human melanoma by inhibiting cell proliferation and cancer-stem cell traits via targeting NF-κB/iNOS/hTERT signaling pathway, and suggest the potential of melatonin in antagonizing the toxicity of vemurafenib and augmenting its sensitivities in melanoma treatment.
Collapse
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenhua Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yizhuo Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Long
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Changlin Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ge Qin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Liren Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lijun Qin
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | - Penghui Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kui Jiang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| |
Collapse
|
11
|
Xie X, Song J, Hu Y, Zhuang S, Wang Y, Zhao Y, Lu Q. Tailor-made PL-UC-C3 nanoparticles for fluorescence/computed tomography imaging-guided cascade amplified photothermal therapy. Int J Nanomedicine 2018; 13:7633-7646. [PMID: 30538448 PMCID: PMC6251438 DOI: 10.2147/ijn.s188169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Development of the burgeoning number of photothermal therapy (PTT) agents has drawn a huge amount of interest, since PTT treatment is a powerful and effective alternative to traditional treatments. Optimal PTT agents should integrate some essential preconditions including negligible systemic toxicity, deep penetration into tumor tissues, and maximum laser energy absorbance. Unfortunately, only few of the PTT agents reported could meet all of the above mentioned conditions. METHODS Here, we report a brand new PTT agent through the encapsulation of NaGdF4:Yb,Tm@ NaGdF4:Yb (UCNPs) and an organic compound (C3) into poly-e-caprolactone-polyethylene-polyglycol (PCL-PEG) (PL-UC-C3 NPs). RESULTS UCNPs as an up-conversion material and C3 as a PTT agent both feature low cytotoxicity, and most importantly, UCNPs with superior conversion efficiency could efficiently absorb the energy of a 980 nm laser, transform the near-infrared laser light into visible light, and translate the palingenetic visible light to C3. The usage of a 980 nm laser ensures a deeper penetration and lower energy, while the highly efficient absorption and transformation process confers a cascade amplified hyperthermia for tumor treatment. CONCLUSION In this regard, our research provides a powerful and robust breakthrough for florescence/computed tomography imaging-guided PTT treatment, lighting up the clinical application in cancer treatment.
Collapse
Affiliation(s)
- Xinhui Xie
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Jialei Song
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Yili Hu
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Suyang Zhuang
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Yuntao Wang
- Department of Orthopedics, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210093, China,
| | - Yunlei Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China,
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China,
| |
Collapse
|
12
|
Tayeh Z, Ofir R. Asteriscus graveolens Extract in Combination with Cisplatin/Etoposide/Doxorubicin Suppresses Lymphoma Cell Growth through Induction of Caspase-3 Dependent Apoptosis. Int J Mol Sci 2018; 19:ijms19082219. [PMID: 30061495 PMCID: PMC6122010 DOI: 10.3390/ijms19082219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy drugs action against cancer is not selective, lead to adverse reactions and drug resistance. Combination therapies have proven more effective in defeating cancers. We hypothesize that plant extract/fraction contains many/several compounds and as such can target multiple pathways as cytotoxic agent and may also have chemo sensitizing activities. We designed a study in which, Asteriscus graveolens (Forssk.) Less (A. graveolens)-derived fraction that contains sesquiterpene lactone asteriscunolide isomers (AS) will be tested in combination with known chemotherapy drugs. Successful combination will permit to reduce chemotherapy drugs concentration and still get the same impact on cancer cells. Sesquiterpene lactone such as asteriscunolide isomers is a naturally occurring compound found in a variety of fruits, vegetables, and medicinal plants with anti-cancer properties. The experiments presented here showed that adding plant fraction containing AS permit reducing the concentration of cisplatin/etoposide/doxorubicin in order to reduce mouse BS-24-1 lymphoma cells (BS-24-1 cells) survival. It involved enhancing the production of Reactive Oxygen Species (ROS), activation of caspase-3 and inhibition of Topoisomerase I activity. Taken together, the results suggest that A. graveolens fraction sensitized BS-24-1 cells to cisplatin/etoposide/doxorubicin through induction of ROS and caspase-3-dependent apoptosis.
Collapse
Affiliation(s)
- Zainab Tayeh
- Dead Sea & Arava Science Center, Sapir 868215, Israel.
- French Assoc. Inst. for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| | - Rivka Ofir
- Dead Sea & Arava Science Center, Sapir 868215, Israel.
- Regenerative Medicine &Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
13
|
Sheng J, Ma B, Yang Q, Zhang C, Jiang Z, Borrathybay E. Tailor-made PEG-DA-CuS nanoparticles enriched in tumor with the aid of retro Diels-Alder reaction triggered by their intrinsic photothermal property. Int J Nanomedicine 2018; 13:4291-4302. [PMID: 30087561 PMCID: PMC6061216 DOI: 10.2147/ijn.s169189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction In recent years, near-infrared laser-induced photothermal therapy is being considered as a promising approach to kill tumors owing to its noninvasive nature and excellent antitumor efficiency. However, the lack of ideal photothermal agents hinders further development of this technology. Materials and methods Aiming at solving this long-standing obstacle, we report here about the polyethylene glycol (PEG)-DA modified copper sulfide (CuS) nanoparticles (NPs) (PEG-DA-CuS NPs), a kind of semiconductor photothermal agents that show excellent photothermal stability and high heat conversion efficiency. Results and discussion Owing to the surrounding PEG, the water solubility of CuS NPs was significantly improved when circulating in blood in the body. When the NPs reached the tumors and were irradiated by a 1,064 nm laser (1 W/cm2, 10 minutes), the local temperature increased above 90°C, triggering the retro Diels–Alder reaction. After the release of PEG chain, CuS NPs soon formed aggregates and enriched the tumor via the enhanced permeability and retention effect, promoting the efficacy of photothermal therapy. Conclusion Therefore, we believe PEG-DA-CuS NPs are able to serve as a kind of cytotoxic and efficient photothermal agent to kill cancer.
Collapse
Affiliation(s)
- Jie Sheng
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China, .,Physics School of Nanjing University, Laboratory of Solid State Microstructures, Nanjing 210093, China,
| | - Beibei Ma
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China,
| | - Qian Yang
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China,
| | - Chao Zhang
- Physics School of Nanjing University, Laboratory of Solid State Microstructures, Nanjing 210093, China,
| | - Zhongying Jiang
- College of Electronic and Information Engineering, Yili Normal University, Micro-nano Electric Sensing Technology and Bionic Devices Key Laboratory, Yining 835000, China, .,Physics School of Nanjing University, Laboratory of Solid State Microstructures, Nanjing 210093, China,
| | - Entomack Borrathybay
- College of Biology and Geography Sciences, Yili Normal University, Yining 835000, Xinjiang, China,
| |
Collapse
|
14
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
15
|
Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, Miotti S, Iorio E. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS One 2015; 10:e0136120. [PMID: 26402860 PMCID: PMC4581859 DOI: 10.1371/journal.pone.0136120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
Purpose The role of phosphatidylcholine-specific phospholipase C (PC-PLC), the enzyme involved in cell differentiation and proliferation, has not yet been explored in tumor initiating cells (TICs). We investigated PC-PLC expression and effects of PC-PLC inhibition in two adherent (AD) squamous carcinoma cell lines (A431 and CaSki), with different proliferative and stemness potential, and in TIC-enriched floating spheres (SPH) originated from them. Results Compared with immortalized non-tumoral keratinocytes (HaCaT) A431-AD cells showed 2.5-fold higher PC-PLC activity, nuclear localization of a 66-kDa PC-PLC isoform, but a similar distribution of the enzyme on plasma membrane and in cytoplasmic compartments. Compared with A431-AD, A431-SPH cells showed about 2.8-fold lower PC-PLC protein and activity levels, but similar nuclear content. Exposure of adherent cells to the PC-PLC inhibitor D609 (48h) induced a 50% reduction of cell proliferation at doses comprised between 33 and 50 μg/ml, without inducing any relevant cytotoxic effect (cell viability 95±5%). In A431-SPH and CaSki-SPH D609 induced both cytostatic and cytotoxic effects at about 20 to 30-fold lower doses (IC50 ranging between 1.2 and 1.6 μg/ml). Furthermore, D609 treatment of A431-AD and CaSki-AD cells affected the sphere-forming efficiency, which dropped in both cells, and induced down-modulation of stem-related markers mRNA levels (Oct4, Nestin, Nanog and ALDH1 in A431; Nestin and ALDH1 in CaSki cells). Conclusions These data suggest that the inhibition of PC-PLC activity may represent a new therapeutic approach to selectively target the most aggressive and tumor promoting sub-population of floating spheres originated from squamous cancer cells possessing different proliferative and stemness potential.
Collapse
Affiliation(s)
- Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ileana Bortolomai
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Renata Ferri
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Mercurio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvana Canevari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- * E-mail: (FP); (SC)
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (FP); (SC)
| | - Silvia Miotti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Kaid C, Silva PBG, Cortez BA, Rodini CO, Semedo-Kuriki P, Okamoto OK. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells. Cancer Sci 2015; 106:1188-95. [PMID: 26250335 PMCID: PMC4582988 DOI: 10.1111/cas.12733] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/10/2015] [Accepted: 06/30/2015] [Indexed: 01/03/2023] Open
Abstract
In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR-302/367 cluster has also been shown to control self-renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency-related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem-like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR-367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR-367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3-D tumor spheroid cell invasion and the ability to generate neurosphere-like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR-367 cancer-related targets RYR3, ITGAV and RAB23, was also detected in miR-367-overexpressing cells. Overall, these findings support the pro-oncogenic activity of miR-367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer.
Collapse
Affiliation(s)
- Carolini Kaid
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Patrícia B G Silva
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Beatriz A Cortez
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Carolina O Rodini
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Patricia Semedo-Kuriki
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Oswaldo K Okamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
17
|
Prokopi M, Kousparou CA, Epenetos AA. The Secret Role of microRNAs in Cancer Stem Cell Development and Potential Therapy: A Notch-Pathway Approach. Front Oncol 2015; 4:389. [PMID: 25717438 PMCID: PMC4324081 DOI: 10.3389/fonc.2014.00389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been implicated in the development of some if not all cancer types and have been identified as attractive targets for prognosis, diagnosis, and therapy of the disease. miRNAs are a class of small non-coding RNAs (20–22 nt in length) that bind imperfectly to the 3′-untranslated region of target mRNA regulating gene expression. Aberrantly expressed miRNAs in cancer, sometimes known as oncomiRNAs, have been shown to play a major role in oncogenesis, metastasis, and drug resistance. Amplification of oncomiRNAs during cancer development correlates with the silencing of tumor suppressor genes; on the other hand, down-regulation of miRNAs has also been observed in cancer and cancer stem cells (CSCs). In both cases, miRNA regulation is inversely correlated with cancer progression. Growing evidence indicates that miRNAs are also involved in the metastatic process by either suppressing or promoting metastasis-related genes leading to the reduction or activation of cancer cell migration and invasion processes. In particular, circulating miRNAs (vesicle-encapsulated or non-encapsulated) have significant effects on tumorigenesis: membrane-particles, apoptotic bodies, and exosomes have been described as providers of a cell-to-cell communication system transporting oncogenic miRNAs from tumors to neighboring cells and distant metastatic sites. It is hypothesized that miRNAs control cancer development in a traditional manner, by regulating signaling pathways and factors. In addition, recent developments indicate a non-conventional mechanism of cancer regulation by stem cell reprograming via a regulatory network consisting of miRNAs and Wnt/β-catenin, Notch, and Hedgehog signaling pathways, all of which are involved in controlling stem cell functions of CSCs. In this review, we focus on the role of miRNAs in the Notch-pathway and how they regulate CSC self-renewal, differentiation and tumorigenesis by direct/indirect targeting of the Notch-pathway.
Collapse
Affiliation(s)
- Marianna Prokopi
- The Bank of Cyprus Oncology Centre, Trojantec Ltd. , Nicosia , Cyprus ; Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology , Limassol , Cyprus
| | | | - Agamemnon A Epenetos
- The Bank of Cyprus Oncology Centre, Trojantec Ltd. , Nicosia , Cyprus ; Imperial College London , London , UK ; Clinical Oncology, The Harley Street Oncology Clinic , London , UK ; Medical Oncology, St Bartholomew's Hospital , London , UK
| |
Collapse
|
18
|
Chandratre SS, Dash AK. Multifunctional nanoparticles for prostate cancer therapy. AAPS PharmSciTech 2015; 16:98-107. [PMID: 25190362 DOI: 10.1208/s12249-014-0202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/07/2014] [Indexed: 02/05/2023] Open
Abstract
The relapse of cancer after first line therapy with anticancer agents is a common occurrence. This recurrence is believed to be due to the presence of a subpopulation of cells called cancer stem cells in the tumor. Therefore, a combination therapy which is susceptible to both types of cells is desirable. Delivery of this combinatorial approach in a nanoparticulate system will provide even a better therapeutic outcome in tumor targeting. The objective of this study was to develop and characterize nanoparticulate system containing two anticancer agents (cyclopamine and paclitaxel) having different susceptibilities toward cancer cells. Both drugs were entrapped in glyceryl monooleate (GMO)-chitosan solid lipid as well as poly(glycolic-lactic) acid (PLGA) nanoparticles. The cytotoxicity studies were performed on DU145, DU145 TXR, and Wi26 A4 cells. The particle size of drug-loaded GMO-chitosan nanoparticles was 278.4 ± 16.4 nm with a positive zeta potential. However, the PLGA particles were 234.5 ± 6.8 nm in size with a negative zeta potential. Thermal analyses of both nanoparticles revealed that the drugs were present in noncrystalline state in the matrix. A sustained in vitro release was observed for both the drugs in these nanoparticles. PLGA blank particles showed no cytotoxicity in all the cell lines tested, whereas GMO-chitosan blank particles showed substantial cytotoxicity. The types of polymer used for the preparation of nanoparticles played a major role and affected the in vitro release, cytotoxicity, and uptake of nanoparticles in the all the cell lines tested.
Collapse
|
19
|
Vuddanda PR, Rajamanickam VM, Yaspal M, Singh S. Investigations on agglomeration and haemocompatibility of vitamin E TPGS surface modified berberine chloride nanoparticles. BIOMED RESEARCH INTERNATIONAL 2014; 2014:951942. [PMID: 25162037 PMCID: PMC4137617 DOI: 10.1155/2014/951942] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
The objective of the present study is to investigate the influence of surface modification on systemic stability of NPs. Vitamin E TPGS (1% w/v) was used for surface modification of berberine chloride nanoparticles. Naked and surface modified NPs were incubated in different SBFs (pH 6.8 and 7.4) with or without bile salts and human plasma. NPs were observed for particle agglomeration and morphology by particle size analyzer and TEM, respectively. The haemocompatibility studies were conducted on developed NPs to evaluate their safety profile. The surface modified NPs were stable compared to naked NPs in different SBFs due to the steric stabilization property of vitamin E TPGS. Particle agglomeration was not seen when NPs were incubated in SBF (pH 6.8) with bile salts. No agglomeration was observed in NPs after their incubation in plasma but particle size of the naked NPs increased due to adhesion of plasma proteins. The TEM images confirmed the particle size results. DSC and FT-IR studies confirmed the coexistence of TPGS in surface modified NPs. The permissible haemolysis, LDH release, and platelet aggregation revealed that NPs were compatible for systemic administration. Thus, the study illustrated that the surface modification is helpful in the maintenance of stability of NPs in systemic conditions.
Collapse
Affiliation(s)
- Parameswara Rao Vuddanda
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | | | - Madhu Yaspal
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
20
|
Adult neurogenesis and glial oncogenesis: when the process fails. BIOMED RESEARCH INTERNATIONAL 2014; 2014:438639. [PMID: 24738058 PMCID: PMC3971505 DOI: 10.1155/2014/438639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/29/2014] [Indexed: 02/01/2023]
Abstract
Malignant brain tumors, including glioblastoma multiforme (GBM), are known for their high degree of invasiveness, aggressiveness, and lethality. These tumors are made up of heterogeneous cell populations and only a small part of these cells (known as cancer stem cells) is responsible for the initiation and recurrence of the tumor. The biology of cancer stem cells and their role in brain tumor growth and therapeutic resistance has been extensively investigated. Recent work suggests that glial tumors arise from neural stem cells that undergo a defective process of differentiation. The understanding of this process might permit the development of novel treatment strategies targeting cancer stem cells. In the present review, we address the mechanisms underlying glial tumor formation, paying special attention to cancer stem cells and the role of the microenvironment in preserving them and promoting tumor growth. Recent advancements in cancer stem cell biology, especially regarding tumor initiation and resistance to chemo- or radiotherapy, have led to the development of novel treatment strategies that focus on the niche of the stem cells that make up the tumor. Encouraging results from preclinical studies predict that these findings will be translated into the clinical field in the near future.
Collapse
|
21
|
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013; 65:1866-79. [PMID: 24120656 PMCID: PMC5812459 DOI: 10.1016/j.addr.2013.09.019] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
Abstract
Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Janet L Markman
- Nanomedicine Research Center, Department of Neurosurgery at Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | | | | |
Collapse
|