1
|
Goldaeva KV, Pleshakova TO, Ivanov YD. Nanowire-based biosensors for solving biomedical problems. BIOMEDITSINSKAIA KHIMIIA 2024; 70:304-314. [PMID: 39324195 DOI: 10.18097/pbmc20247005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity. Taking into consideration their high efficiency and diverse applications, nanowire-based biosensors demonstrate significant promise for commercialization and widespread application in medicine and related fields, making them an important area for future research and development.
Collapse
Affiliation(s)
- K V Goldaeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Yu D Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
3
|
Lin Y, Zhang Y, Wang S, Yang Q. Elucidating the relationship between metabolites and breast cancer: A Mendelian randomization study. Toxicol Appl Pharmacol 2024; 484:116855. [PMID: 38341104 DOI: 10.1016/j.taap.2024.116855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The evidence about the causal roles of metabolites in breast cancer is lacking. This study conducted a systematic evaluation of the potential causal relationship between 1091 human blood metabolites, 309 metabolite ratios, and the likelihood of developing breast cancer and its subtype by employing a two-sample bidirectional Mendelian randomization (MR) approach Four metabolites, including tryptophan betaine (Odds Ratio [OR] = 1.07, 95%CI = 1.04-1.10, Bonferroni-corrected P = 0.007), X-21312 (OR = 0.90, 95%CI = 0.86-0.94, Bonferroni-corrected P = 0.02), 3-bromo-5-chloro-2,6-dihydroxybenzoic acid (OR = 0.94, 95%CI = 0.91-0.96, Bonferroni-corrected P = 0.03) and X-18921 (OR = 0.96, 95%CI = 0.94-0.98, Bonferroni-corrected P = 0.04) were significantly associated with overall breast cancer using inverse-variance weighted (IVW) method. Tryptophan betaine was also significantly associated with estrogen receptor (ER)-positive breast cancer (OR = 1.08, 95%CI = 1.04-1.11, Bonferroni-corrected P = 0.03). X-23680 (OR = 1.10, 95%CI = 1.05-1.15, Bonferroni-corrected P = 0.04) and glycine to phosphate ratio (OR = 1.07, 95%CI = 1.04-1.10, Bonferroni-corrected P = 0.04) were associated with ER-negative breast cancer. Reverse MR analysis showed no significant associations between breast cancer and metabolites. This MR study indicated compelling evidence of a causal association between metabolites and the risk of breast cancer and its subtypes, underscoring the potential impact of metabolic interference on breast cancer risk and indicating the drug targets for breast cancer.
Collapse
Affiliation(s)
- Yilong Lin
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Zhang
- Department of Hematology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Songsong Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Li H, Li D, Chen H, Yue X, Fan K, Dong L, Wang G. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:6808. [PMID: 37571591 PMCID: PMC10422280 DOI: 10.3390/s23156808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
As a new type of one-dimensional semiconductor nanometer material, silicon nanowires (SiNWs) possess good application prospects in the field of biomedical sensing. SiNWs have excellent electronic properties for improving the detection sensitivity of biosensors. The combination of SiNWs and field effect transistors (FETs) formed one special biosensor with high sensitivity and target selectivity in real-time and label-free. Recently, SiNW-FETs have received more attention in fields of biomedical detection. Here, we give a critical review of the progress of SiNW-FETs, in particular, about the reversible surface modification methods. Moreover, we summarized the applications of SiNW-FETs in DNA, protein, and microbial detection. We also discuss the related working principle and technical approaches. Our review provides an extensive discussion for studying the challenges in the future development of SiNW-FETs.
Collapse
Affiliation(s)
- Huiping Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huiyi Chen
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Chen C, Xu Y, Lai Z, Li Z, Sun Q. Case Report: Exploration of changes in serum immunoinflammation-related protein complexes of patients with metastatic breast cancer. Front Oncol 2023; 13:1207991. [PMID: 37546392 PMCID: PMC10401826 DOI: 10.3389/fonc.2023.1207991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Patients with advanced breast cancer are difficult to treat and have poor prognosis. At present, the commonly used methods to monitor the disease progression of breast cancer are imaging examinations such as breast ultrasound, mammography and peripheral blood tumor markers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA15-3). However, none of them can detect tumor progression at an early stage. Serum immunoinflammation-related protein complexes (IIRPCs) showed potential to indicate cancer progression. Therefore, we attempted to monitor the level of IIRPCs in peripheral blood of patients with metastatic breast cancer and compare it with patients' treatment and disease progression, and here we performed case reports of two of them.
Collapse
Affiliation(s)
- Chang Chen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|