1
|
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024; 50:102121. [PMID: 39278189 PMCID: PMC11418158 DOI: 10.1016/j.tranon.2024.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Exosomes are small, round vesicles in the 30 and 120 nm diameter range released by all living cell types. Exosomes play many essential functions in intercellular communication and tissue crosstalk in the human body. They can potentially be used as strong biomarkers and therapeutic agents for early diagnosis, therapy response, and prognosis of different diseases. The main requirements for exosomal large-scale clinical practice application are rapid, easy, high-yield, high purity, characterization, safety, low cost, and therapeutic efficacy. Depending on the sample types, environmental insults, and exosome quantity, exosomes can be isolated from various sources, including body fluids, solid tissues, and cell culture medium using different procedures. This study comprehensively analyzed the current research progress in exosome isolation and characterization strategies along with their advantages and disadvantages. The provided information will make it easier to select exosome separation methods based on the types of biological samples available, and it will facilitate the use of exosomes in translational and clinical research, particularly in cancer. Lay abstract Exosomes have recently received much attention due to their potential to function as biomarkers and novel therapeutic agents for early diagnosis, therapeutic response, and prognosis in various diseases. This review summarizes many approaches for isolating and characterizing exosomes, focusing on developing technologies, and provides an in-depth comparison and analysis of each method, including its principles, advantages, and limitations.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Experimental Medicine Application and Research Center (EMARC) Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
2
|
Martínez Fajardo C, Morote L, Moreno-Giménez E, López-López S, Rubio-Moraga Á, Díaz-Guerra MJM, Diretto G, López Jiménez AJ, Ahrazem O, Gómez-Gómez L. Exosome-like nanoparticles from Arbutus unedo L. mitigate LPS-induced inflammation via JAK-STAT inactivation. Food Funct 2024; 15:11280-11290. [PMID: 39474636 DOI: 10.1039/d4fo03646h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Exosomes have garnered attention as a potential cell-free therapy for inflammatory diseases due to their immunomodulatory and anti-inflammatory properties. Exosome-like nanoparticles isolated from Arbutus unedo were characterized and analyzed for their anti-inflammatory potential. The results revealed that the isolated exosomes exhibited a spheroid morphology, with an approximate modal size of 190 nm. Exposure to these exosomes significantly reduced the mRNA expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the glycoprotein CD80, the transcription factor STAT1, and pro-inflammatory cytokine genes like IL-1b and IL-6, in lipopolysaccharide (LPS)-induced protein RAW264.7 cells. In addition, exosomes reduced the LPS-induced protein levels of PSTAT1 and STAT1, IRF1 and RelB, which are key transcription factors in the control of proinflammatory gene expression. LC-MS analysis identified the presence of carotenoids, mainly β-carotene, with known anti-inflammatory activity, related to its ROS-scavenging activity, suggesting its potential contribution to the anti-inflammatory activity of the exosomes isolated from A. unedo fruits.
Collapse
Affiliation(s)
- Cristian Martínez Fajardo
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lucía Morote
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Elena Moreno-Giménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Susana López-López
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, C/Laurel, s/n, 02008 Albacete, Spain
- Facultad de Medicina, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - María José M Díaz-Guerra
- Facultad de Medicina, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Alberto J López Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
3
|
Yi S, Jung E, Kim H, Choi J, Kim S, Lim EK, Kim KS, Kang T, Jung J. Harnessing Lactobacillus reuteri-Derived Extracellular Vesicles for Multifaceted Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406094. [PMID: 39422169 DOI: 10.1002/smll.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) have emerged as valuable biological materials for treating intractable diseases. Extensive studies are conducted on EVs derived from various cellular sources. In this study, EVs derived from Lactobacillus reuteri (L. reuteri), a probiotic, exhibit remarkable cancer therapeutic efficacy when administered orally is reported. These L. reuteri-derived EVs (REVs) demonstrate stability in the gastrointestinal tract and exert significant anti-tumor effects. Using A549 cells and murine models, we confirmed that REVs mediate their therapeutic effects by modulating apoptotic signaling pathways. Furthermore, the combination of REV with drugs enhances tumor ablation and induces immunogenic cell death. In a mouse model, oral administration of REVs encapsulating indocyanine green followed by photothermal therapy led to complete tumor elimination within 32 days. REVs represent a promising biological therapeutic platform for cancer treatment, either independently or in combination with other therapies, depending on the treatment objectives.
Collapse
Grants
- KGM5472413 Korea Research Institute of Bioscience and Biotechnology
- National NanoFab Center
- RS-2024-00401639 Ministry of Agriculture, Food and Rural Affairs
- 2021003370003 Ministry of Environment
- RS-2022-00154853 Ministry of Trade, Industry and Energy
- RS-2024-00403563 Ministry of Trade, Industry and Energy
- RS-2024-00432382 Ministry of Trade, Industry and Energy
- 2021M3H4A1A02051048 Ministry of Science and ICT, South Korea
- 2023R1A2C2005185 Ministry of Science and ICT, South Korea
- 2021M3E5E3080844 Ministry of Science and ICT, South Korea
- 2022R1C1C1008815 Ministry of Science and ICT, South Korea
- RS-2024-00348576 Ministry of Science and ICT, South Korea
- RS-2024-00438316 Ministry of Science and ICT, South Korea
- RS-2024-00459749 Ministry of Science and ICT, South Korea
Collapse
Affiliation(s)
- Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunkyeong Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinsol Choi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro, Geumjeon-gu, Busan, 46241, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
4
|
Wu R, Chen B, Jia J, Liu J. Relationship between Protein, MicroRNA Expression in Extracellular Vesicles and Rice Seed Vigor. Int J Mol Sci 2024; 25:10504. [PMID: 39408833 PMCID: PMC11476841 DOI: 10.3390/ijms251910504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Plant extracellular vesicles are non-self-replicating particles released by living plant cells and delimited by a lipid bilayer. They contain a large amount of lipids, RNA, and proteins. Seed vigor plays an important role in agricultural production and preservation of germplasm resources. Extracellular vesicles with cross-species communication with bioactive molecules can resist pathogens, exhibit anti-aging properties, and perform other functions; however, its potential influence on seed vigor has not been reported. In this study, rice seeds with different germination percentages were used to extract extracellular vesicles, endogenous proteins, and RNA. Protein qualitative identification and miRNA differential analysis were performed to analyze the regulatory mechanism of extracellular vesicles on seed vigor. Results: The profiles of four miRNA families were found to be significantly different: osa-miR164, osa-miR168, osa-miR166, and osa-miR159. Protein correlation analysis predicted that extracellular vesicles might mediate the synthesis of the seed cell wall; glyoxic acid cycle and tricarboxylic acid cycle; non-specific lipid transfer; mitochondrial quality control; and other biological processes to regulate rice seed viability. In addition, cupin protein, phospholipase D, aldehyde dehydrogenase, seven heat shock proteins (especially BiP1 and BiP2), protein disulfide isomerase-like (PDI), thioredoxin, calnexin and calreticulin, glutathione transferase, and other proteins found in extracellular vesicles were closely related to seed vigor. This provides a novel direction for the study of the regulation mechanism of seed vigor.
Collapse
Affiliation(s)
- Rouxian Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (B.C.); (J.J.)
| | | | | | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (B.C.); (J.J.)
| |
Collapse
|
5
|
Yoon HJ, Won JP, Lee HG, Seo HG. Green Onion-Derived Exosome-like Nanoparticles Prevent Ferroptotic Cell Death Triggered by Glutamate: Implication for GPX4 Expression. Nutrients 2024; 16:3257. [PMID: 39408223 PMCID: PMC11478619 DOI: 10.3390/nu16193257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In recent years, alongside research on mammalian-derived exosomes, there has been increasing interest in the physiological activities of plant-derived exosome-like nanoparticles (PDEN). The biocompatibility, minimal side effects, and diverse bioactive ingredients contained in PDEN make them valuable as potential therapeutic agents for an extensive range of diseases. In this study, we cost-effectively isolated exosome-like nanoparticles from green onion (Allium fistulosum) using polyethylene glycol and examined their biological activity in HT-22 cells exposed to glutamate. The isolated green onion-derived exosome-like nanoparticle (GDEN) had an average diameter of 167.4 nm and a zeta potential of -16.06 mV. GDEN effectively inhibited glutamate-induced Ca2+ influx and lipid peroxidation, thereby preventing ferroptotic cell death in HT-22 mouse hippocampal cells. Additionally, GDEN reduced the intracellular iron accumulation by modulating the expression of proteins associated with iron metabolism, including transferrin receptor 1, ferroportin 1, divalent metal transporter 1, and ferritin. Notably, GDEN upregulated the expression of glutathione peroxidase 4, a potent antioxidant protein involved in ferroptosis, along with an increase in glutathione synthesis. These findings indicate that GDENs have the potential to serve as bioactives from natural sources against glutamate-induced neuronal cell death, like ferroptosis. This study advances the investigation into the potential medical applications of GDEN and may provide a new approach for the utilization of these bioactive components against neuronal disorders.
Collapse
Affiliation(s)
| | | | | | - Han Geuk Seo
- Department of Animal Food Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.J.Y.); (J.P.W.); (H.G.L.)
| |
Collapse
|
6
|
Vahab SA, V VK, Kumar VS. Exosome-based drug delivery systems for enhanced neurological therapeutics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01710-x. [PMID: 39325272 DOI: 10.1007/s13346-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are small extracellular vesicles naturally secreted by cells into body fluids, enriched with bioactive molecules such as RNAs, proteins, and lipids. These nanosized vesicles play a crucial role in physiological and pathological processes by facilitating intercellular communication and modulating cellular responses, particularly within the central nervous system (CNS). Their ability to cross the blood-brain barrier and reflect the characteristics of their parent cells makes exosomal cargo a promising candidate for biomarkers in the early diagnosis and clinical assessment of neurological conditions. This review offers a comprehensive overview of current knowledge on the characterization of mammalian-derived exosomes, their application as drug delivery systems for neurological disorders, and ongoing clinical trials involving exosome-loaded cargo. Despite their promising attributes, a significant challenge remains the lack of standardized isolation methods, as current techniques are often complex, costly, and require sophisticated equipment, affecting the scalability and affordability of exosome-based therapies. The review highlights the engineering potential of exosomes, emphasizing their ability to be customized for targeted therapeutic delivery through surface modification or conjugation. Future advancements in addressing these challenges and leveraging the unique properties of exosomes could lead to innovative and effective therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Safa A Vahab
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vyshma K V
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Vrinda S Kumar
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India.
| |
Collapse
|
7
|
Shkryl Y, Tsydeneshieva Z, Menchinskaya E, Rusapetova T, Grishchenko O, Mironova A, Bulgakov D, Gorpenchenko T, Kazarin V, Tchernoded G, Bulgakov V, Aminin D, Yugay Y. Exosome-like Nanoparticles, High in Trans-δ-Viniferin Derivatives, Produced from Grape Cell Cultures: Preparation, Characterization, and Anticancer Properties. Biomedicines 2024; 12:2142. [PMID: 39335655 PMCID: PMC11428831 DOI: 10.3390/biomedicines12092142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Recent interest in plant-derived exosome-like nanoparticles (ENs) has surged due to their therapeutic potential, which includes antioxidant, anti-inflammatory, and anticancer activities. These properties are attributed to their cargo of bioactive metabolites and other endogenous molecules. However, the properties of ENs isolated from plant cell cultures remain less explored. Methods: In this investigation, grape callus-derived ENs (GCENs) were isolated using differential ultracentrifugation techniques. Structural analysis through electron microscopy, nanoparticle tracking analysis, and western blotting confirmed that GCENs qualify as exosome-like nanovesicles. Results: These GCENs contained significant amounts of microRNAs and proteins characteristic of plant-derived ENs, as well as trans-δ-viniferin, a notable stilbenoid known for its health-promoting properties. Functional assays revealed that the GCENs reduced the viability of the triple-negative breast cancer cell line MDA-MB-231 in a dose-dependent manner. Moreover, the GCENs exhibited negligible effects on the viability of normal human embryonic kidney (HEK) 293 cells, indicating selective cytotoxicity. Notably, treatment with these GCENs led to cell cycle arrest in the G1 phase and triggered apoptosis in the MDA-MB-231 cell line. Conclusions: Overall, this study underscores the potential of grape callus-derived nanovectors as natural carriers of stilbenoids and proposes their application as a novel and effective approach in the management of cancer.
Collapse
Affiliation(s)
- Yury Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Zhargalma Tsydeneshieva
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
- Advance Engineering School “Institute of Biotechnology, Bioengineering and Food Systems”, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.M.); (D.A.)
| | - Tatiana Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Olga Grishchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Anastasia Mironova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Dmitry Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Tatiana Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Vitaly Kazarin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Galina Tchernoded
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Victor Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.M.); (D.A.)
| | - Yulia Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (Y.S.); (Z.T.); (T.R.); (O.G.); (A.M.); (D.B.); (T.G.); (V.K.); (G.T.); (V.B.)
| |
Collapse
|
8
|
Ubanako P, Mirza S, Ruff P, Penny C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges. Front Mol Biosci 2024; 11:1447953. [PMID: 39355533 PMCID: PMC11442288 DOI: 10.3389/fmolb.2024.1447953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
The discovery of novel and innovative therapeutic strategies for cancer treatment and management remains a major global challenge. Exosomes are endogenous nanoscale extracellular vesicles that have garnered increasing attention as innovative vehicles for advanced drug delivery and targeted therapy. The attractive physicochemical and biological properties of exosomes, including increased permeability, biocompatibility, extended half-life in circulation, reduced toxicity and immunogenicity, and multiple functionalization strategies, have made them preferred drug delivery vehicles in cancer and other diseases. Small interfering RNAs (siRNAs) are remarkably able to target any known gene: an attribute harnessed to knock down cancer-associated genes as a viable strategy in cancer management. Extensive research on exosome-mediated delivery of siRNAs for targeting diverse types of cancer has yielded promising results for anticancer therapy, with some formulations progressing through clinical trials. This review catalogs recent advances in exosome-mediated siRNA delivery in several types of cancer, including the manifold benefits and minimal drawbacks of such innovative delivery systems. Additionally, we have highlighted the potential of plant-derived exosomes as innovative drug delivery systems for cancer treatment, offering numerous advantages such as biocompatibility, scalability, and reduced toxicity compared to traditional methods. These exosomes, with their unique characteristics and potential for effective siRNA delivery, represent a significant advancement in nanomedicine and cancer therapeutics. Further exploration of their manufacturing processes and biological mechanisms could significantly advance natural medicine and enhance the efficacy of exosome-based therapies.
Collapse
Affiliation(s)
- Philemon Ubanako
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Lee S, Jung SY, Yoo D, Go D, Park JY, Lee JM, Um W. Alternatives of mesenchymal stem cell-derived exosomes as potential therapeutic platforms. Front Bioeng Biotechnol 2024; 12:1478517. [PMID: 39315312 PMCID: PMC11417005 DOI: 10.3389/fbioe.2024.1478517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With outstanding therapeutic potential in the tissue regeneration and anti-inflammation, mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a prominent therapeutic in recent. However, poor production yield and reproducibility have remained as significant challenges of their practical applications. To surmount these challenges, various alternative materials with stem cell-like functions, have been recently investigated, however, there has been no comprehensive analysis in these alternatives so far. Here, we discuss the recent progress of alternatives of MSC-EXOs, including exosomes and exosome-like nanovesicles from various biological sources such as plants, milk, microbes, and body fluids. Moreover, we extensively compare each alternative by summarizing their unique functions and mode of actions to suggest the expected therapeutic target and future directions for developing alternatives for MSC-EXOs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Min Lee
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
11
|
Chen X, He L, Chen Y, Zheng G, Su Y, Chen Y, Zheng D, Lu Y. Evaluating stability and bioactivity of Rehmannia-derived nanovesicles during storage. Sci Rep 2024; 14:19966. [PMID: 39198513 PMCID: PMC11358329 DOI: 10.1038/s41598-024-70334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Plant-derived nanovesicles (PDNVs) have garnered growing attention in the biomedical field owing to their abundance in plant-derived ribonucleic acids (RNA), proteins, lipids and metabolites. The question about the preservation of PDNVs is a crucial and unavoidable concern in both experiments' settings and their potential clinical application. The objective of this research was to examine the impact of varying storage temperatures on the stability and bioactivity of Rehmannia-derived nanovesicles (RDNVs). The results showed that RDNVs aggregated after 2 weeks of storage period at 4 °C, and the particle size of some RDNVs gradually increased with time, along with the increase of solution potential. After 2 months of storage, all RDNVs exhibited varying levels of aggregation irrespective of storage temperature. The bioactivities of nanovesicles under different temperature storage conditions revealed a gradual decline in cell proliferation inhibition bioactivity over time, significantly lower than that of freshly prepared RDNVs. In contrast, the preservation of anti-migratory activity in RDNVs was found to be more effective when subjected to rapid freezing in liquid nitrogen followed by storage at - 80 °C, as opposed to direct storage at - 80 °C. These findings suggest that temperature alone may not be sufficient in safeguarding the activity and stability of RDNVs, highlighting the necessity for the development of novel protective agents for PDNVs.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yao Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Genggeng Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yating Su
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yingcong Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Zhang J, Zhou C, Tan M, Cao Y, Ren Y, Peng L. Optimization and Characterization of PEG Extraction Process for Tartary Buckwheat-Derived Nanoparticles. Foods 2024; 13:2624. [PMID: 39200551 PMCID: PMC11353963 DOI: 10.3390/foods13162624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Plant-derived edible nanovesicles serve as crucial nanocarriers for targeted delivery of bioactive substances, including miRNAs and phytochemicals, to specific tissues. They have emerged as a significant focus in precision nutrient delivery research. In this study, Tartary-buckwheat-derived nanoparticles (TBDNs) were isolated and purified using a combination of differential centrifugation and PEG precipitation. A response surface test was employed to optimize the extraction process of TBDNs in terms of yield, total phenol and flavonoid content, as well as antioxidant activity. The results demonstrated that TBDNs exhibited the highest yield and activity at a 10% concentration of PEG, pH 5, and centrifugation temperature of 4 °C. Under these conditions, the measured yield of TBDNs was 1.7795 g/kg, with a total phenol content of 178.648 mg/100 g, total flavonoid content of 145.421 mg/100 g, and DPPH-radical-scavenging rate reaching 86.37%. Characterization through a transmission electron microscope and nanoparticle-size-tracking analyzer revealed that TBDNs possessed a teato-type vesicle structure with dispersed vesicle clusters present within them. Furthermore, the extracted TBDNs were found to have an average particle size of 182.8 nm with the main peak observed at 162.8 nm when tested for particle size distribution analysis. These findings provide a novel method for extracting TBDNs while laying the groundwork for future investigations into their activities.
Collapse
Affiliation(s)
| | | | | | | | | | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China; (J.Z.); (C.Z.); (M.T.); (Y.C.); (Y.R.)
| |
Collapse
|
13
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Shen C, Li X, Qin J, Duan L. Characterization of miRNA profiling in konjac-derived exosome-like nanoparticles and elucidation of their multifaceted roles in human health. FRONTIERS IN PLANT SCIENCE 2024; 15:1444683. [PMID: 39175488 PMCID: PMC11338808 DOI: 10.3389/fpls.2024.1444683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Plant-derived exosome-like nanoparticles (ELNs) have demonstrated cross-kingdom capabilities in regulating intercellular communication, facilitating drug delivery, and providing therapeutic interventions in humans. However, the functional attributes of konjac-derived ELNs (K-ELNs) remain largely unexplored. This study investigates the isolation, characterization, and functional analysis of K-ELNs, along with the profiling and differential expression analysis of associated miRNAs in both K-ELNs and Konjac tissues. K-ELNs were successfully isolated and characterized from two konjac species using ultracentrifugation, followed by Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). Small RNA sequencing identified a total of 3,259 miRNAs across all samples. Differential expression analysis revealed significant differences in miRNA profiles between K-ELNs and tissue samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of target genes provided insights into their roles in modulating pathways associated with diseases such as cancer and neurodegenerative disorders. Additionally, six miRNAs were selected for validation of sequencing results via RT-qPCR. The 5'RLM-RACE method was employed to validate the cleavage sites between differentially expressed miRNAs (DEMs) and their predicted target genes, further substantiating the regulatory roles of miRNAs in konjac. The findings of this study enhance our understanding of the molecular mechanisms underlying the biological functions and applications of K-ELNs, laying the groundwork for future research into their potential therapeutic roles in human health.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, Ankang, China
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, Ankang, China
| | - Jianfeng Qin
- Ankang Municipality Agricultural Science Research Institute, Ankang, China
| | - Longfei Duan
- Ankang Municipality Agricultural Science Research Institute, Ankang, China
| |
Collapse
|
15
|
Gu W, Guo W, Ren Z, Zhang Y, Han M, Zhao Q, Gao Y, Mao Y, Wang S. A bioactive nanocomposite integrated specific TAMs target and synergistic TAMs repolarization for effective cancer immunotherapy. Bioact Mater 2024; 38:472-485. [PMID: 38779591 PMCID: PMC11109736 DOI: 10.1016/j.bioactmat.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Reactive oxygen species (ROS) generated from photosensitizers exhibit great potential for repolarizing immunosuppressive tumor-associated macrophages (TAMs) toward the anti-tumor M1 phenotype, representing a promising cancer immunotherapy strategy. Nevertheless, their effectiveness in eliminating solid tumors is generally limited by the instability and inadequate TAMs-specific targeting of photosensitizers. Here, a novel core-shell integrated nano platform is proposed to achieve a coordinated strategy of repolarizing TAMs for potentiating cancer immunotherapy. Colloidal mesoporous silica nanoparticles (CMSN) are fabricated to encapsulate photosensitizer-Indocyanine Green (ICG) to improve their stability. Then ginseng-derived exosome (GsE) was coated on the surface of ICG/CMSN for targeting TAMs, as well as repolarizing TAMs concurrently, named ICG/CMSN@GsE. As expected, with the synergism of ICG and GsE, ICG/CMSN@GsE exhibited better stability, mild generation of ROS, favorable specificity toward M2-like macrophages, enhancing drug retention in tumors and superior TAMs repolarization potency, then exerted a potent antitumor effect. In vivo, experiment results also confirm the synergistic suppression of tumor growth accompanied by the increased presence of anti-tumor M1-like macrophages and maximal tumor damage. Taken together, by integrating the superiorities of TAMs targeting specificity and synergistic TAMs repolarization effect into a single nanoplatform, ICG/CMSN@GsE can readily serve as a safe and high-performance nanoplatform for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Wen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Zhishuang Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yimeng Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Meiqi Han
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yikun Gao
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
16
|
Liu Y, Qi H, Zong J, Li M, Yang Y, Li X, Li T, Cho JY, Yu T. Oral Piwi-Interacting RNA Delivery Mediated by Green Tea-Derived Exosome-Like Nanovesicles for the Treatment of Aortic Dissection. Adv Healthc Mater 2024:e2401466. [PMID: 39087398 DOI: 10.1002/adhm.202401466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Aortic dissection (AD) is a severe cardiovascular disease necessitating active therapeutic strategies for early intervention and prevention. Nucleic acid drugs, known for their potent molecule-targeting therapeutic properties, offer potential for genetic suppression of AD. Piwi-interacting RNAs, a class of small RNAs, hold promise for managing cardiovascular diseases. Limited research on these RNAs and AD exists. This study demonstrates that an antagomir targeting heart-apoptosis-associated piRNA (HAAPIR) effectively regulates vascular remodeling, mitigating AD occurrence and progression through the myocyte enhancer factor 2D (Mef2D) and matrix metallopeptidase 9 (MMP9) pathways. Green tea-derived plant exosome-like nanovesicles (PELNs) are used for oral administration of antagomir. The antagomir-HAAPIR-nanovesicle complex, after purification and optimization, exhibits a high packing rate, while the antagomir is resistant to enzyme digestion. Administered to mice, the complex targets the aortic lesion, reducing AD incidence and improving survival. Moreover, MMP9 and Mef2D expression decrease significantly, inhibiting the phenotypic conversion of human aortic smooth muscle cells. PELNs encapsulate the antagomir-HAAPIR complex, maintaining stability, mediating transport into the bloodstream, and delivering Piwi-interacting RNAs to AD sites. Thus, HAAPIR is a potential target for persistent clinical AD prevention and treatment, and nanovesicle-encapsulated nucleic acids offer a promising cardiovascular disease treatment, providing insights for other therapeutic targets.
Collapse
Affiliation(s)
- Yan Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, P. R. China
- Department of Integrative Biotechnology, Sungkyunkwan University, 300 Chuncheon-Dong, Suwon, 16419, Republic of Korea
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, P. R. China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, P. R. China
| | - Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, P. R. China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, P. R. China
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 300 Chuncheon-Dong, Suwon, 16419, Republic of Korea
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, P. R. China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
17
|
Zhao B, Lin H, Jiang X, Li W, Gao Y, Li M, Yu Y, Chen N, Gao J. Exosome-like nanoparticles derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery. Theranostics 2024; 14:4598-4621. [PMID: 39239509 PMCID: PMC11373634 DOI: 10.7150/thno.97096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024] Open
Abstract
Over the past ten years, significant advancements have been made in exploring plant-derived exosome-like nanoparticles (PELNs) for disease therapeutics and drug delivery. PELNs, as inherent nanoscale particles comprised of proteins, lipids, nucleic acids, and secondary metabolites, exhibit the capacity for cellular uptake by human cells. This intercellular interaction transcends biological boundaries, effectively influencing biological functions in animals. PELNs have outstanding biocompatibility, low immunogenicity, enhanced safety, and environmentally friendly sustainability. This article summarized the preparation methods and characteristics of PELNs. It provided a systematic review of the varied roles of PELNs derived from fruits, vegetables, and herbs in disease therapeutics and drug delivery. The challenges in their production and application were discussed, and future prospects in this rapidly evolving field were explored.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Ninggang Chen
- Department of Dermatology Medical Cosmetology Center, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
19
|
Bai C, Liu J, Zhang X, Li Y, Qin Q, Song H, Yuan C, Huang Z. Research status and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother 2024; 174:116543. [PMID: 38608523 DOI: 10.1016/j.biopha.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.
Collapse
Affiliation(s)
- Chunmei Bai
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China.
| | - Xumin Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Haixia Song
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Caixia Yuan
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Ziwei Huang
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| |
Collapse
|
20
|
Jiang D, Li Z, Liu H, Liu H, Xia X, Xiang X. Plant exosome-like nanovesicles derived from sesame leaves as carriers for luteolin delivery: Molecular docking, stability and bioactivity. Food Chem 2024; 438:137963. [PMID: 37976878 DOI: 10.1016/j.foodchem.2023.137963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The growing recognition of luteolin (Lu) as a vital functional component is attributed to its notable bioactive properties. However, the effective use of Lu is hindered by its inherent limitations related to water solubility, stability, and bioavailability. Here, we aim to develop sesame leaves-derived exosome-like nanovesicles (Exo) for Lu delivery (Exo@Lu) as vehicles. The encapsulation mechanism, solubility, stability, and bioactivity of Exo@Lu were thoroughly evaluated. Exo enriched abundant lipids, proteins, and phenolic compounds with an encapsulation efficiency of ∼ 91.9 % and a loading capacity of ∼ 20.5 % for Lu. The primary binding forces responsible for the encapsulation were hydrogen bonds and van der Waals forces. After encapsulation, the water solubility and stability of Lu were significantly improved under various conditions, including thermal, light, storage, ionic strength, and pH. Exo@Lu maintained structural integrity during simulated digestion, enhancing bioaccessibility and efficacy in mitigating oxidative stress and inflammatory response compared to Exo and free Lu.
Collapse
Affiliation(s)
- Dan Jiang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ziliang Li
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hongyan Liu
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Huihui Liu
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Xiaoyang Xia
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Xia Xiang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| |
Collapse
|
21
|
Kumar MN, Kalarikkal SP, Jayaram Y, Narayanan J, Sundaram GM. Protocol to produce plant-based hybrid nanovesicles from fresh turmeric and pepper using polyethylene glycol. STAR Protoc 2024; 5:102924. [PMID: 38430518 PMCID: PMC10918324 DOI: 10.1016/j.xpro.2024.102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 03/04/2024] Open
Abstract
In addition to proteins, microRNAs, and lipids, plant-derived exosome-like nanovesicles (ENVs) are also enriched with host plant bioactives. Both curcumin and piperine are water insoluble, lack bioavailability, and are extracted by non-ecofriendly solvents. Herein, we present an eco-friendly protocol for co-isolating both curcumin and piperine in the form of hybrid ENVs. We describe steps for sample pre-processing, combined homogenization of plant materials, filtration, and differential centrifugation. We then detail procedures for polyethylene glycol-based fusion and precipitation of hybrid ENVs. For complete details on the use and execution of this protocol, please refer to Kumar et al.1.
Collapse
Affiliation(s)
- Meghana N Kumar
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka 570020, India.
| | - Sreeram Peringattu Kalarikkal
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka 570020, India
| | - Yashaswini Jayaram
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka 570020, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Chennai, Tamil Nadu 600006, India
| | - Gopinath M Sundaram
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus, Mysuru, Karnataka 570020, India.
| |
Collapse
|
22
|
Hao S, Yang H, Hu J, Luo L, Yuan Y, Liu L. Bioactive compounds and biological functions of medicinal plant-derived extracellular vesicles. Pharmacol Res 2024; 200:107062. [PMID: 38211637 DOI: 10.1016/j.phrs.2024.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Extracellular vesicles (EVs) are tiny lipid bilayer-enclosed membrane particles released from a variety of cell types into the surrounding environment. These EVs have massive participated in cell-to-cell communication and interspecies communication. In recent years, plant-derived extracellular vesicles (PDEVs) and "exosome-like" EVs populations found in distinct plants have attracted widespread attention. Especially, research on medicinal plant-derived extracellular vesicles (MPDEVs) are increasing, which are considered a kind of promising natural compound. This review summarizes current knowledge on MPDEVs in terms of bioactive compounds, including small RNA, protein, lipid, and metabolite, have been found on the surface and/or in the lumen of MPDEVs. Moreover, both in vitro and in vivo experiments have shown that MPDEVs exert broad biomedical functions, such as anti-inflammatory, anticancer, antioxidant, modulate microbiota, etc. MPDEVs may be a better substitute than animal-derived extracellular vesicles (ADEVs) because of safety and biocompatibility in the future.
Collapse
Affiliation(s)
- Siyu Hao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyu Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Guangxi University of Chinese Medicine, School of Pharmacy, Nanning, China
| | - Jiaojiao Hu
- China Agricultural University, Department of Nutrition and Health, Beijing, China; Guangxi University of Chinese Medicine, School of Pharmacy, Nanning, China
| | - Lili Luo
- China Agricultural University, Department of Nutrition and Health, Beijing, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Libing Liu
- China Agricultural University, Department of Nutrition and Health, Beijing, China.
| |
Collapse
|
23
|
Mondal J, Pillarisetti S, Junnuthula V, Surwase SS, Hwang SR, Park IK, Lee YK. Extracellular vesicles and exosome-like nanovesicles as pioneering oral drug delivery systems. Front Bioeng Biotechnol 2024; 11:1307878. [PMID: 38260737 PMCID: PMC10800420 DOI: 10.3389/fbioe.2023.1307878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
As extracellular vesicle (EV)-based nanotechnology has developed rapidly, it has made unprecedented opportunities for nanomedicine possible. EVs and exosome-like nanovesicles (ELNVs) are natural nanocarriers with unique structural, compositional, and morphological characteristics that provide excellent physical, chemical, and biochemical properties. In this literature, we examine the characteristics of EVs, including how they are administered orally and their therapeutic activity. According to the current examples of EVs and ELNVs for oral delivery, milk and plant EVs can exert therapeutic effects through their protein, nucleic acid, and lipid components. Furthermore, several methods for loading drugs into exosomes and targeting exosomes have been employed to investigate their therapeutic capability. Moreover, we discuss EVs as potential drug carriers and the potential role of ELNVs for disease prevention and treatment or as potential drug carriers in the future. In conclusion, the issues associated with the development of EVs and ELNVs from sources such as milk and plants, as well as concerns with standardized applications of these EVs, are discussed.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | - Sachin S. Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Republic of Korea
| |
Collapse
|
24
|
Mignini I, Piccirilli G, Termite F, Paratore M, Esposto G, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Extracellular Vesicles: Novel Potential Therapeutic Agents in Inflammatory Bowel Diseases. Cells 2023; 13:90. [PMID: 38201294 PMCID: PMC10778449 DOI: 10.3390/cells13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Patients affected by inflammatory bowel diseases (IBD) can nowadays benefit from a growing number of pharmacological options. However, in moderate-to-severe cases, the therapeutic response is still far from optimal, and treatment changes and optimizations are often required. Thus, researchers in this field are strongly engaged in studies aiming to identify new potential therapeutic targets. Extracellular vesicles (EVs) are tiny subcellular bodies with a phospholipid bilayer envelope containing bioactive molecules, which are released from different cells and are involved in intercellular communication. Recent pre-clinical data show their emerging role in the pathogenesis and treatment of IBD. In our review, we summarize current evidence about the function of EVs as active therapeutic agents in ulcerative colitis and Crohn's disease, analyzing the properties of EVs derived from different cellular sources and the mechanisms through which they may improve intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (G.P.); (F.T.); (M.P.); (G.E.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|