1
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2024; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
2
|
Athaydes Seabra Ferreira H, Ricardo Aluotto Scalzo Júnior S, Kelton Santos de Faria K, Henrique Costa Silva G, Túllio Rodrigues Alves M, Oliveira Lobo A, Pires Goulart Guimarães P. Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles. Int J Pharm 2024; 665:124696. [PMID: 39265853 DOI: 10.1016/j.ijpharm.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Advances in gene therapy, exemplified by mRNA vaccines against COVID-19, highlight the importance of lipid nanoparticles (LNPs) for nucleic acid delivery despite challenging storage conditions. Substituting mRNA with pDNA in LNPs may enhance stability and efficacy, yet maintaining LNP stability poses challenges, particularly during freeze-drying. Cryoprotectants offer potential to mitigate destabilization, improving LNP properties and in vivo performance. Here, we evaluated the effects of different concentrations of various cryoprotectants on the freeze-drying process of pDNA-loaded LNPs, assessing their physicochemical characteristics and transfection efficiency. Stability was examined under various storage conditions, confirming biological efficacy post-storage. Our results highlight the role of cryoprotectants in optimizing freeze-drying for the extended shelf life of nucleic acid-loaded LNPs. Trehalose emerged as an efficient cryoprotectant, maintaining LNP stability after the freeze-drying process for up to 2 years, with diameters and transfection efficiency comparable to fresh formulations. These findings demonstrate the optimized concentration of cryoprotectants to sustain LNP stability despite freeze-drying and prolonged storage, providing valuable insights for nucleic acid-based therapies.
Collapse
Affiliation(s)
- Heloísa Athaydes Seabra Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Sérgio Ricardo Aluotto Scalzo Júnior
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Kevin Kelton Santos de Faria
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Gabriel Henrique Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Marco Túllio Rodrigues Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Anderson Oliveira Lobo
- Department of Materials Engineering, Federal University of Piauí, Teresina, 64049-550, Piauí, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| |
Collapse
|
3
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vinales I, Silva-Espinoza JC, Medina BA, Urbay JEM, Beltran MA, Salinas DE, Ramirez-Ramos MA, Maldonado RA, Poon W, Penichet ML, Almeida IC, Michael K. Selective Transfection of a Transferrin Receptor-Expressing Cell Line with DNA-Lipid Nanoparticles. ACS OMEGA 2024; 9:39533-39545. [PMID: 39346819 PMCID: PMC11425831 DOI: 10.1021/acsomega.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024]
Abstract
Despite considerable progress in using lipid nanoparticle (LNP) vehicles for gene delivery, achieving selective transfection of specific cell types remains a significant challenge, hindering the advancement of new gene or gene-editing therapies. Although LNPs have been equipped with ligands aimed at targeting specific cellular receptors, achieving complete selectivity continues to be elusive. The exact reasons for this limited selectivity are not fully understood, as cell targeting involves a complex interplay of various cellular factors. Assessing how much ligand/receptor binding contributes to selectivity is challenging due to these additional influencing factors. Nonetheless, such data are important for developing new nanocarriers and setting realistic expectations for selectivity. Here, we have quantified the selective, targeted transfection using two uniquely engineered cell lines that eliminate unpredictable and interfering cellular influences. We have compared the targeted transfection of Chinese ovary hamster (CHO) cells engineered to express the human transferrin receptor 1 (hTfR1), CHO-TRVb-hTfR1, with CHO cells that completely lack any transferrin receptor, CHO-TRVb-neo cells (negative control). Thus, the two cell lines differ only in the presence/absence of hTfR1. The transfection was performed with pDNA-encapsulating LNPs equipped with the DT7 peptide ligand that specifically binds to hTfR1 and enables targeted transfection. The LNP's pDNA encoded for the monomeric GreenLantern (mGL) reporter protein, whose fluorescence was used to quantify transfection. We report a novel LNP composition designed to achieve an optimal particle size and ζ-potential, efficient pDNA encapsulation, hTfR1-targeting capability, and sufficient polyethylene glycol sheltering to minimize random cell targeting. The transfection efficiency was quantified in both cell lines separately through flow cytometry based on the expression of the fluorescent gene product. Our results demonstrated an LNP dose-dependent mGL expression, with a 5-fold preference for the CHO-TRVb-hTfR1 when compared to CHO-TRVb-neo. In another experiment, when both cell lines were mixed at a 1:1 ratio, the DT7-decorated LNP achieved a 3-fold higher transfection of the CHO-TRVb-hTfR1 over the CHO-TRVb-neo cells. Based on the low-level transfection of the CHO-TRVb-neo cells in both experiments, our results suggest that 17-25% of the transfection occurred in a nonspecific manner. The observed transfection selectivity for the CHO-TRVb-hTfR1 cells was based entirely on the hTfR1/DT7 interaction. This work showed that the platform of two engineered cell lines which differ only in the hTfR1 can greatly facilitate the development of LNPs with hTfR1-targeting ligands.
Collapse
Affiliation(s)
- Irodiel Vinales
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan Carlos Silva-Espinoza
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Bryan A. Medina
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan E. M. Urbay
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Miguel A. Beltran
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Dante E. Salinas
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Marco A. Ramirez-Ramos
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rosa A. Maldonado
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Wilson Poon
- Department
of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Manuel L. Penichet
- Division
of Surgical Oncology, Department of Surgery, David Geffen School of
Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Microbiology, Immunology and Molecular Genetics, David Geffen School
of Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- The Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive
Cancer Center, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Igor C. Almeida
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Katja Michael
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Palanki R, Han EL, Murray AM, Maganti R, Tang S, Swingle KL, Kim D, Yamagata H, Safford HC, Mrksich K, Peranteau WH, Mitchell MJ. Optimized microfluidic formulation and organic excipients for improved lipid nanoparticle mediated genome editing. LAB ON A CHIP 2024; 24:3790-3801. [PMID: 39037068 PMCID: PMC11302771 DOI: 10.1039/d4lc00283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
mRNA-based gene editing platforms have tremendous promise in the treatment of genetic diseases. However, for this potential to be realized in vivo, these nucleic acid cargos must be delivered safely and effectively to cells of interest. Ionizable lipid nanoparticles (LNPs), the most clinically advanced non-viral RNA delivery system, have been well-studied for the delivery of mRNA but have not been systematically optimized for the delivery of mRNA-based CRISPR-Cas9 platforms. In this study, we investigated the effect of microfluidic and lipid excipient parameters on LNP gene editing efficacy. Through in vitro screening in liver cells, we discovered distinct trends in delivery based on phospholipid, cholesterol, and lipid-PEG structure in LNP formulations. Combination of top-performing lipid excipients produced an LNP formulation that resulted in 3-fold greater gene editing in vitro and facilitated 3-fold greater reduction of a therapeutically-relevant protein in vivo relative to the unoptimized LNP formulation. Thus, systematic optimization of LNP formulation parameters revealed a novel LNP formulation that has strong potential for delivery of gene editors to the liver to treat metabolic disease.
Collapse
Affiliation(s)
- Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Amanda M Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rohin Maganti
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Sophia Tang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hannah Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Khawar MB, Afzal A, Si Y, Sun H. Steering the course of CAR T cell therapy with lipid nanoparticles. J Nanobiotechnology 2024; 22:380. [PMID: 38943167 PMCID: PMC11212433 DOI: 10.1186/s12951-024-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Lipid nanoparticles (LNPs) have proven themselves as transformative actors in chimeric antigen receptor (CAR) T cell therapy, surpassing traditional methods and addressing challenges like immunogenicity, reduced toxicity, and improved safety. Promising preclinical results signal a shift toward safer and more effective CAR T cell treatments. Ongoing research aims to validate these findings in clinical trials, marking a new era guided by LNPs utility in CAR therapy. Herein, we explore the preference for LNPs over traditional methods, highlighting the versatility of LNPs and their effective delivery of nucleic acids. Additionally, we address key challenges in clinical considerations, heralding a new era in CAR T cell therapy.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.
| |
Collapse
|
7
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2024:10.1007/s12094-024-03577-3. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
8
|
Egwu CO, Aloke C, Onwe KT, Umoke CI, Nwafor J, Eyo RA, Chukwu JA, Ufebe GO, Ladokun J, Audu DT, Agwu AO, Obasi DC, Okoro CO. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules 2024; 29:2584. [PMID: 38893460 PMCID: PMC11173789 DOI: 10.3390/molecules29112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 06/21/2024] Open
Abstract
There is a myriad of diseases that plague the world ranging from infectious, cancer and other chronic diseases with varying interventions. However, the dynamism of causative agents of infectious diseases and incessant mutations accompanying other forms of chronic diseases like cancer, have worsened the treatment outcomes. These factors often lead to treatment failure via different drug resistance mechanisms. More so, the cost of developing newer drugs is huge. This underscores the need for a paradigm shift in the drug delivery approach in order to achieve desired treatment outcomes. There is intensified research in nanomedicine, which has shown promises in improving the therapeutic outcome of drugs at preclinical stages with increased efficacy and reduced toxicity. Regardless of the huge benefits of nanotechnology in drug delivery, challenges such as regulatory approval, scalability, cost implication and potential toxicity must be addressed via streamlining of regulatory hurdles and increased research funding. In conclusion, the idea of nanotechnology in drug delivery holds immense promise for optimizing therapeutic outcomes. This work presents opportunities to revolutionize treatment strategies, providing expert opinions on translating the huge amount of research in nanomedicine into clinical benefits for patients with resistant infections and cancer.
Collapse
Affiliation(s)
- Chinedu O. Egwu
- Medical Research Council, London School of Hygiene and Tropical Medicine, Banjul 220, The Gambia
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Chinyere Aloke
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Kenneth T. Onwe
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Chukwunalu Igbudu Umoke
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Joseph Nwafor
- Anatomy Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (K.T.O.); (C.I.U.); (J.N.)
| | - Robert A. Eyo
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Adaeze Chukwu
- World Health Organization, United Nations House Plot 617/618 Central Area District, P.M.B. 2861, Abuja 900211, Nigeria;
| | - Godswill O. Ufebe
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - Jennifer Ladokun
- Society for Family Health, 20 Omotayo Ojo Street, Allen, Ikeja 100246, Nigeria;
| | - David Tersoo Audu
- UNICEF Sokoto Field Office, 2 Rahamaniyya Street, Off Sama Road, Sokoto 840224, Nigeria;
| | - Anthony O. Agwu
- Medical Biochemistry Department, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, P.M.B. 1010, Ikwo 482131, Nigeria; (C.A.); (R.A.E.); (G.O.U.); (A.O.A.)
| | - David Chukwu Obasi
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| | - Chukwuemeka O. Okoro
- Department of Medical Biochemistry, David Umahi Federal University of Health Sciences, Uburu 491105, Nigeria; (D.C.O.); (C.O.O.)
| |
Collapse
|
9
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
10
|
da Silva WN, Carvalho Costa PA, Scalzo Júnior SRA, Ferreira HAS, Prazeres PHDM, Campos CLV, Rodrigues Alves MT, Alves da Silva NJ, de Castro Santos AL, Guimarães LC, Chen Ferris ME, Thatte A, Hamilton A, Bicalho KA, Lobo AO, Santiago HDC, da Silva Barcelos L, Figueiredo MM, Teixeira MM, Vasconcelos Costa V, Mitchell MJ, Frézard F, Pires Goulart Guimaraes P. Ionizable Lipid Nanoparticle-Mediated TRAIL mRNA Delivery in the Tumor Microenvironment to Inhibit Colon Cancer Progression. Int J Nanomedicine 2024; 19:2655-2673. [PMID: 38500680 PMCID: PMC10946446 DOI: 10.2147/ijn.s452896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Walison Nunes da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Heloísa A S Ferreira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | - Lays Cordeiro Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Eduarda Chen Ferris
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ajay Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucíola da Silva Barcelos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
11
|
Guimaraes LC, Costa PAC, Scalzo Júnior SRA, Ferreira HAS, Braga ACS, de Oliveira LC, Figueiredo MM, Shepherd S, Hamilton A, Queiroz-Junior CM, da Silva WN, da Silva NJA, Rodrigues Alves MT, Santos AK, de Faria KKS, Marim FM, Fukumasu H, Birbrair A, Teixeira-Carvalho A, de Aguiar RS, Mitchell MJ, Teixeira MM, Vasconcelos Costa V, Frezard F, Guimaraes PPG. Nanoparticle-based DNA vaccine protects against SARS-CoV-2 variants in female preclinical models. Nat Commun 2024; 15:590. [PMID: 38238326 PMCID: PMC10796936 DOI: 10.1038/s41467-024-44830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
A safe and effective vaccine with long-term protection against SARS-CoV-2 variants of concern (VOCs) is a global health priority. Here, we develop lipid nanoparticles (LNPs) to provide safe and effective delivery of plasmid DNA (pDNA) and show protection against VOCs in female small animal models. Using a library of LNPs encapsulating unique barcoded DNA (b-DNA), we screen for b-DNA delivery after intramuscular administration. The top-performing LNPs are further tested for their capacity of pDNA uptake in antigen-presenting cells in vitro. The lead LNP is used to encapsulate pDNA encoding the HexaPro version of SARS-CoV-2 spike (LNP-HPS) and immunogenicity and protection is tested in vivo. LNP-HPS elicit a robust protective effect against SARS-CoV-2 Gamma (P.1), correlating with reduced lethality, decreased viral load in the lungs and reduced lung damage. LNP-HPS induce potent humoral and T cell responses against P.1, and generate high levels of neutralizing antibodies against P.1 and Omicron (B.1.1.529). Our findings indicate that the protective efficacy and immunogenicity elicited by LNP-HPS are comparable to those achieved by the approved COVID-19 vaccine from Biontech/Pfizer in animal models. Together, these findings suggest that LNP-HPS hold great promise as a vaccine candidate against VOCs.
Collapse
Affiliation(s)
- Lays Cordeiro Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Sérgio Ricardo Aluotto Scalzo Júnior
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Heloísa Athaydes Seabra Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ana Carolina Soares Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Leonardo Camilo de Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | - Sarah Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | | | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Natália Jordana Alves da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Marco Túllio Rodrigues Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Anderson Kenedy Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Kevin Kelton Santos de Faria
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Fernanda Martins Marim
- Department of Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Heidge Fukumasu
- Department of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Madison, 53706, WI, USA
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, 30190-009, Minas Gerais, Brazil
| | - Renato Santana de Aguiar
- Department of Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Frederic Frezard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Pedro Pires Goulart Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|