1
|
Kounatidis D, Vallianou NG, Rebelos E, Kouveletsou M, Kontrafouri P, Eleftheriadou I, Diakoumopoulou E, Karampela I, Tentolouris N, Dalamaga M. The Many Facets of PPAR-γ Agonism in Obesity and Associated Comorbidities: Benefits, Risks, Challenges, and Future Directions. Curr Obes Rep 2025; 14:19. [PMID: 39934485 DOI: 10.1007/s13679-025-00612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE OF REVIEW Obesity is strongly associated with cardiometabolic disorders and certain malignancies, emphasizing the key role of adipose tissue in human health. While incretin mimetics have shown effectiveness in glycemic control and weight loss, a holistic strategy for combating obesity and associated comorbidities remains elusive. This review explores peroxisome proliferator-activated receptor gamma (PPAR-γ) agonism as a potential therapeutic approach, highlighting its benefits, addressing its limitations, and outlining future directions for developing more effective treatment strategies. RECENT FINDINGS Both natural and synthetic PPAR-γ agonists hold significant therapeutic potential as insulin sensitizers, while also demonstrating anti-inflammatory properties and playing a critical role in regulating lipid metabolism. However, the clinical use of natural agonists is limited by poor bioavailability, while synthetic agents like thiazolidinediones are associated with adverse effects, including fluid retention, weight gain, and bone loss. Current research is focused on developing modified, tissue-specific PPAR-γ agonists, as well as dual PPAR-α/PPAR-γ agonists, with improved safety profiles to mitigate these side effects. Nanotechnology-based drug delivery systems also hold promise for enhancing bioavailability and therapeutic efficacy. Furthermore, the transformative potential of machine learning and artificial intelligence offers opportunities to accelerate advancements in this field. PPAR-γ agonists exhibit significant potential in addressing metabolic syndrome, cardiovascular disease, and cancer. However, their clinical use is restricted by safety concerns and suboptimal pharmacokinetics. Innovations in modified PPAR-γ agonists, nanotechnology-based delivery systems, and computational tools hold promise for creating safer and more effective therapeutic options for obesity and its associated disorders.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paraskevi Kontrafouri
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
2
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
3
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Xie Z, Gao B, Liu J, He J, Liu Y, Gao F. Gallic Acid-Modified Polyethylenimine-Polypropylene Carbonate-Polyethylenimine Nanoparticles: Synthesis, Characterization, and Anti-Periodontitis Evaluation. ACS OMEGA 2024; 9:14475-14488. [PMID: 38559964 PMCID: PMC10976379 DOI: 10.1021/acsomega.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The aim of the research was to develop novel gallic acid (GA)-modified amphiphilic nanoparticles of polyethylenimine (PEI)-polypropylene carbonate (PPC)-PEI (PEPE) and comprehensively assess its properties as an antiperiodontitis nanoparticle targeting the Toll-like receptor (TLR). The first step is to evaluate the binding potential of GA to the core trigger receptors TLR2 and TLR4/MD2 for periodontitis using molecular docking techniques. Following this, we conducted NMR, transmission electron microscopy, and dynamic light scattering analyses on the synthesized PEPE nanoparticles. As the final step, we investigated the synthetic results and in vitro antiperiodontitis properties of GA-PEPE nanoparticles. The investigation revealed that GA exhibits potential for targeted binding to TLR2 and the TLR4/MD2 complex. Furthermore, we successfully developed 91.19 nm positively charged PEPE nanoparticles. Spectroscopic analysis indicated the successful synthesis of GA-modified PEPE. Additionally, CCK8 results demonstrated that GA modification significantly reduced the biotoxicity of PEPE. The in vitro antiperiodontitis properties assessment illustrated that 6.25 μM of GA-PEPE nanoparticles significantly reduced the expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. The GA-PEPE nanoparticles, with their targeted TLR binding capabilities, were found to possess excellent biocompatibility and antiperiodontitis properties. GA-PEPE nanoparticles will provide highly innovative input into the development of anti- periodontitis nanoparticles.
Collapse
Affiliation(s)
- Zunxuan Xie
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Boyang Gao
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Jinyao Liu
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Jiaming He
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Yuyan Liu
- Department
of endodontics, Jilin University, Hospital
of stomatology, Changchun 130041, China
| | - Fengxiang Gao
- Chinese
Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun 130022, China
| |
Collapse
|
5
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Chen H, Luo X, Huang W, Cui W, Hu N. Mitochondrial-Oriented Injectable Hydrogel Microspheres Maintain Homeostasis of Chondrocyte Metabolism to Promote Subcellular Therapy in Osteoarthritis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0306. [PMID: 38274127 PMCID: PMC10809599 DOI: 10.34133/research.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Subcellular mitochondria serve as sensors for energy metabolism and redox balance, and the dynamic regulation of functional and dysfunctional mitochondria plays a crucial role in determining cells' fate. Selective removal of dysfunctional mitochondria at the subcellular level can provide chondrocytes with energy to prevent degeneration, thereby treating osteoarthritis. Herein, to achieve an ideal subcellular therapy, cartilage affinity peptide (WYRGRL)-decorated liposomes loaded with mitophagy activator (urolithin A) were integrated into hyaluronic acid methacrylate hydrogel microspheres through microfluidic technology, named HM@WY-Lip/UA, that could efficiently target chondrocytes and selectively remove subcellular dysfunctional mitochondria. As a result, this system demonstrated an advantage in mitochondria function restoration, reactive oxygen species scavenging, cell survival rescue, and chondrocyte homeostasis maintenance through increasing mitophagy. In a rat post-traumatic osteoarthritis model, the intra-articular injection of HM@WY-Lip/UA ameliorated cartilage matrix degradation, osteophyte formation, and subchondral bone sclerosis at 8 weeks. Overall, this study indicated that HM@WY-Lip/UA provided a protective effect on cartilage degeneration in an efficacious and clinically relevant manner, and a mitochondrial-oriented strategy has great potential in the subcellular therapy of osteoarthritis.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Pengcheng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|