1
|
Ghane N, Khalili S, Khorasani SN, Das O, Ramakrishna S, Neisiany RE. Antiepileptic drug-loaded and multifunctional iron oxide@silica@gelatin nanoparticles for acid-triggered drug delivery. Sci Rep 2024; 14:11400. [PMID: 38762571 PMCID: PMC11102556 DOI: 10.1038/s41598-024-62248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Oisik Das
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, National University of Singapore, Singapore, 117574, Singapore
| | - Rasoul Esmaeely Neisiany
- Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
2
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
3
|
Kamankesh M, Yadegar A, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Miri AH, Rad-Malekshahi M, Hamblin MR, Wacker MG. Future Nanotechnology-Based Strategies for Improved Management of Helicobacter pylori Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302532. [PMID: 37697021 DOI: 10.1002/smll.202302532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Indexed: 09/13/2023]
Abstract
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.
Collapse
Affiliation(s)
- Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, PO Box 14155-6455, Tehran, 14144-6455, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Insituto de Salud Carlos III, Valencia, 46022, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore
| |
Collapse
|
4
|
Subhash Hinge N, Kathuria H, Monohar Pandey M. Rivastigmine-DHA ion-pair complex improved loading in hybrid nanoparticles for better amyloid inhibition and nose-to-brain targeting in Alzheimer's. Eur J Pharm Biopharm 2023; 190:131-149. [PMID: 37330117 DOI: 10.1016/j.ejpb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Rivastigmine hydrogen tartrate (RIV-HT) is given orally for Alzheimer's disease. However, oral therapy shows low brain bioavailability, short half-life and gastrointestinal-mediated adverse effects. RIV-HT intranasal delivery can avoid these side effects, but its low brain bioavailability remains challenging. These issues could be solved with hybrid lipid nanoparticles with enough drug loading to enhance RIV-HT brain bioavailability while avoiding oral route side effects. The RIV-HT and docosahexaenoic acid (DHA) ion-pair complex (RIV:DHA) was prepared to improve drug loading into lipid-polymer hybrid (LPH) nanoparticles. Two types of LPH, i.e., cationic (RIV:DHA LPH(+ve)) and anionic LPH (RIV:DHA LPH(-ve)) were developed. The effect of LPH surface charge on in-vitro amyloid inhibition, in-vivo brain concentrations and nose-to-brain drug targeting efficiency were investigated. LPH nanoparticles showed concentration dependant amyloid inhibition. RIV:DHA LPH(+ve) demonstrated relatively enhanced Aβ1-42 peptide inhibition. The thermoresponsive gel embedded with LPH nanoparticles improved nasal drug retention. LPH nanoparticles gel significantly improved pharmacokinetic parameters compared to RIV-HT gel. RIV:DHA LPH(+ve) gel showed better brain concentrations than RIV:DHA LPH(-ve) gel. The histological examination of nasal mucosa treated with LPH nanoparticles gel showed that the delivery system was safe. In conclusion, the LPH nanoparticle gel was safe and efficient in improving the nose-to-brain targeting of RIV, which can potentially be utilized in managing Alzheimer's.
Collapse
Affiliation(s)
- Nikita Subhash Hinge
- Department of Pharmacy, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani- 333031, Rajasthan, India
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Republic of Singapore.
| | - Murali Monohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Vidya Vihar Campus, Pilani- 333031, Rajasthan, India.
| |
Collapse
|
5
|
Li Y, Tai Z, Ma J, Miao F, Xin R, Shen C, Shen M, Zhu Q, Chen Z. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma. J Nanobiotechnology 2023; 21:139. [PMID: 37118807 PMCID: PMC10148442 DOI: 10.1186/s12951-023-01877-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Topical anticancer drugs offer a potential therapeutic modality with high compliance for treating cutaneous squamous cell carcinoma (cSCC). However, the existing topical treatments for cSCC are associated with limited penetrating ability to achieve the desired outcome. Therefore, there remains an urgent requirement to develop drugs with efficient anticancer activity suitable for treating cSCC and to overcome the skin physiological barrier to improve the efficiency of drug delivery to the tumor. RESULTS We introduced lycorine (LR) into the topical treatment for cSCC and developed a cell-penetrating peptide (CPP)-modified cationic transfersome gel loaded with lycorine-oleic acid ionic complex (LR-OA) (LR@DTFs-CPP Gel) and investigated its topical therapeutic effects on cSCC. The anti-cSCC effects of LR and skin penetration of LR-OA transfersomes were confirmed. Simultaneously, cationic lipids and modification of R5H3 peptide of the transfersomes further enhanced the permeability of the skin and tumor as well as the effective delivery of LR to tumor cells. CONCLUSIONS Topical treatment of cSCC-xenografted nude mice with LR@DTFs-CPP Gel showed effective anticancer properties with high safety. This novel formulation provides novel insights into the treatment and pathogenesis of cSCC.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Cuie Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| |
Collapse
|
6
|
Dimiou S, McCabe J, Booth R, Booth J, Nidadavole K, Svensson O, Sparén A, Lindfors L, Paraskevopoulou V, Mead H, Coates L, Workman D, Martin D, Treacher K, Puri S, Taylor LS, Yang B. Selecting Counterions to Improve Ionized Hydrophilic Drug Encapsulation in Polymeric Nanoparticles. Mol Pharm 2023; 20:1138-1155. [PMID: 36653946 DOI: 10.1021/acs.molpharmaceut.2c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hydrophobic ion pairing (HIP) can successfully increase the drug loading and control the release kinetics of ionizable hydrophilic drugs, addressing challenges that prevent these molecules from reaching the clinic. Nevertheless, polymeric nanoparticle (PNP) formulation development requires trial-and-error experimentation to meet the target product profile, which is laborious and costly. Herein, we design a preformulation framework (solid-state screening, computational approach, and solubility in PNP-forming emulsion) to understand counterion-drug-polymer interactions and accelerate the PNP formulation development for HIP systems. The HIP interactions between a small hydrophilic molecule, AZD2811, and counterions with different molecular structures were investigated. Cyclic counterions formed amorphous ion pairs with AZD2811; the 0.7 pamoic acid/1.0 AZD2811 complex had the highest glass transition temperature (Tg; 162 °C) and the greatest drug loading (22%) and remained as phase-separated amorphous nanosized domains inside the polymer matrix. Palmitic acid (linear counterion) showed negligible interactions with AZD2811 (crystalline-free drug/counterion forms), leading to a significantly lower drug loading despite having similar log P and pKa with pamoic acid. Computational calculations illustrated that cyclic counterions interact more strongly with AZD2811 than linear counterions through dispersive interactions (offset π-π interactions). Solubility data indicated that the pamoic acid/AZD2811 complex has a lower organic phase solubility than AZD2811-free base; hence, it may be expected to precipitate more rapidly in the nanodroplets, thus increasing drug loading. Our work provides a generalizable preformulation framework, complementing traditional performance-indicating parameters, to identify optimal counterions rapidly and accelerate the development of hydrophilic drug PNP formulations while achieving high drug loading without laborious trial-and-error experimentation.
Collapse
Affiliation(s)
- Savvas Dimiou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, LondonWC1N 1AX, U.K
| | - James McCabe
- Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Rebecca Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Jonathan Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Kalyan Nidadavole
- Early Product Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Olof Svensson
- Pharmaceutical Technology & Development, Operations, AstraZeneca, GothenburgSE-43183, Sweden
| | - Anders Sparén
- Pharmaceutical Technology & Development, Operations, AstraZeneca, GothenburgSE-43183, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Science, R&D AstraZeneca, GothenburgSE-43183, Sweden
| | - Vasiliki Paraskevopoulou
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Heather Mead
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Lydia Coates
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
| | - Dave Martin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Kevin Treacher
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, MacclesfieldSK10 2NA, U.K
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Granta Park, CambridgeCB21 6GH, U.K
| |
Collapse
|
7
|
Md S, Alhakamy NA, Karim S, Gabr GA, Iqubal MK, Murshid SSA. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics 2021; 13:2120. [PMID: 34959401 PMCID: PMC8708027 DOI: 10.3390/pharmaceutics13122120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancers and is responsible for a large number of deaths worldwide. The pathogenic mechanism of lung cancer is complex and multifactorial in origin. Thus, various signaling pathways as targets for therapy are being examined, and many new drugs are in the pipeline. However, both conventional and target-based drugs have been reported to present significant adverse effects, and both types of drugs can affect the clinical outcome in addition to patient quality of life. Recently, miRNA has been identified as a promising target for lung cancer treatment. Therefore, miRNA mimics, oncomiRs, or miRNA suppressors have been developed and studied for possible anticancer effects. However, these miRNAs also suffer from the limitations of low stability, biodegradation, thermal instability, and other issues. Thus, nanocarrier-based drug delivery for the chemotherapeutic drug delivery in addition to miRNA-based systems have been developed so that existing limitations can be resolved, and enhanced therapeutic outcomes can be achieved. Thus, this review discusses lung cancer's molecular mechanism, currently approved drugs, and their adverse effects. We also discuss miRNA biosynthesis and pathogenetic role, highlight pre-clinical and clinical evidence for use of miRNA in cancer therapy, and discussed limitations of this therapy. Furthermore, nanocarrier-based drug delivery systems to deliver chemotherapeutic drugs and miRNAs are described in detail. In brief, the present review describes the mechanism and up-to-date possible therapeutic approaches for lung cancer treatment and emphasizes future prospects to bring these novel approaches from bench to bedside.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Satam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Sentiss Research Centre, Product Development Department, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
8
|
Hou X, Zeng H, Chi X, Hu X. Pathogen Receptor Membrane-Coating Facet Structures Boost Nanomaterial Immune Escape and Antibacterial Performance. NANO LETTERS 2021; 21:9966-9975. [PMID: 34812644 DOI: 10.1021/acs.nanolett.1c03427] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomaterials show great potential for the treatment of bacterial infections, but their effects remain limited by low antibacterial efficiency and immune clearance. Facet-dependent nanozymes coated with pathogen receptor membranes were fabricated, providing an approach for producing superphotothermal antibacterial nanomaterials with high biocompatibility and low immune clearance. (100)- and (112)-Faceted CuFeSe2 presented excellent photothermal conversion efficiency (46%). However, the peroxidase-like activity of (100)-faceted CuFeSe2 enhanced the decomposition of H2O2 to hydroxyl radicals (•OH) and was markedly greater than that of (112)-faceted CuFeSe2, with nearly 100% of Staphylococcus aureus being killed under near-infrared (NIR) irradiation. Importantly, bacteria-pretreated immune membranes (i.e., pathogen receptor membranes) coated with CuFeSe2 exhibited superior S. aureus-binding ability, presented obvious immune-evading capability, and resulted in targeted delivery to infected sites. As a proof-of-principle demonstration, these findings hold promise for the use of pathogen receptor membrane-coated facet-dependent nanomaterials in clinical applications and the treatment of bacterial infections.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| | - Xue Chi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 30080, People's Republic of China
| |
Collapse
|
9
|
Melancon MP, Yevich S, Avritscher R, Swigost A, Lu L, Tian L, Damasco JA, Dixon K, Cortes AC, Munoz NM, Liang D, Liu D, Tam AL. A novel irinotecan-lipiodol nanoemulsion for intravascular administration: pharmacokinetics and biodistribution in the normal and tumor bearing rat liver. Drug Deliv 2021; 28:240-251. [PMID: 33501859 PMCID: PMC8725905 DOI: 10.1080/10717544.2020.1869863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer is one of the most common cancers in the United States and treatment options are limited for patients who develop liver metastases. Several chemotherapeutic regimens have been used for transvascular liver-directed therapy in the treatment of colorectal liver metastases without clear evidence of superiority of one therapy over another. We describe the development of a novel nanoemulsion through combining irinotecan (IRI), a first line systemic agent used for the treatment of colon cancer, with lipiodol, an oily contrast medium derived from poppy seed oil, and evaluated its pharmacokinetic and biodistribution profile as a function of portal venous chemoembolization (PVCE) versus transarterial chemoembolization (TACE) delivery. The Tessari technique was used to create a stable emulsion (20 mg IRI mixed with 2 mL lipiodol) with resultant particle size ranging from 28.9 nm to 56.4 nm. Pharmacokinetic profile established through venous sampling in Buffalo rats demonstrate that the area under the curve (AUC0−∞) of IRI was significantly less after PVCE with IRI-lipiodol as compared to IRI alone (131 vs. 316 µg*min/mL, p-value = .023), suggesting significantly higher amounts of IRI retention in the liver with the IRI-lipiodol nanoemulsion via first-pass extraction. Subseqent biodistribution studies in tumor-bearing WAG/Rjj rats revealed more IRI present in the tumor following TACE versus PVCE (29.19 ± 12.33 µg/g versus 3.42 ± 1.62; p-value = .0033) or IV (29.19 ± 12.33 µg/g versus 1.05 ± 0.47; p-value = .0035). The IRI-lipiodol nanoemulsion demonstrated an acceptable hepatotoxicity profile in all routes of administration. In conclusion, the IRI-lipiodol nanoemulsion via TACE showed promise and warrants further investigation as an option for the treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Marites P Melancon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Steven Yevich
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rony Avritscher
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam Swigost
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Medstar Georgetown University Hospital, Washington Hospital Center, Washington, DC, USA
| | - Linfeng Lu
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Li Tian
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jossana A Damasco
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine Dixon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea C Cortes
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nina M Munoz
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - David Liu
- The University of British Columbia, Vancouver, Canada
| | - Alda L Tam
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Zaheer Y, Vorup‐Jensen T, Webster TJ, Ahmed M, Khan WS, Ihsan A. Protein based nanomedicine: Promising therapeutic modalities against inflammatory disorders. NANO SELECT 2021. [DOI: 10.1002/nano.202100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yumna Zaheer
- National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS) Faisalabad Punjab 38000 Pakistan
| | - Thomas Vorup‐Jensen
- Department of Biomedicine and Interdisciplinary Nanoscience Center Aarhus University Aarhus Denmark
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston Massachusetts USA
| | - Mukhtiar Ahmed
- Chemistry of Interfaces Luleå University of Technology Luleå Sweden
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS) Faisalabad Punjab 38000 Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College Pakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS) Faisalabad Punjab 38000 Pakistan
| |
Collapse
|
11
|
Bakmaz D, Ulu A, Koytepe S, Ates B. Preparation, characterization, and in vitro release study of vincristine sulfate-loaded chitosan–polyethylene glycol–oleic acid composites. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1887624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dilara Bakmaz
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Suleyman Koytepe
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| |
Collapse
|
12
|
Patel D, Patel M, Soni T, Suhagia B. Topical arginine solid lipid nanoparticles: Development and characterization by QbD approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Opportunities and challenges of fatty acid conjugated therapeutics. Chem Phys Lipids 2021; 236:105053. [PMID: 33484709 DOI: 10.1016/j.chemphyslip.2021.105053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/20/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Instability, poor cellular uptake and unfavorable pharmacokinetics and biodistribution of many therapeutic molecules require modification in their physicochemical properties. The conjugation of these APIs with fatty acids has demonstrated an enhancement in their lipophilicity and stability. The improvement in the formulations that resulted from the conjugation of a drug with a fatty acid includes increased half-life, enhanced cellular uptake and retention, targeted tumor delivery, reduced chemoresistance in cancer, and improved blood-brain-barrier (BBB) penetration. In this review, various therapeutic molecules, including small molecules, peptides and oligonucleotides, that have been conjugated with fatty acid have been thoroughly discussed along with various conjugation strategies. The application of nano-system based delivery is gaining a lot of attention due to its ability to provide controlled drug release, targeting and reducing the extent of side effects. This review also covers various nano-carriers that have been utilized for the delivery of fatty acid drug conjugates. The enhanced lipophilicity of the drug-fatty acid conjugate has shown to enhance the affinity of the drug towards these carriers, thereby increasing the entrapment efficiency and formulation performance.
Collapse
|
14
|
Alpha-Lipoic Acid and Cyanocobalamin Co-Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability. J Pharm Innov 2021. [DOI: 10.1007/s12247-020-09531-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Mendes Miranda SE, Alcântara Lemos JD, Fernandes RS, Silva JDO, Ottoni FM, Townsend DM, Rubello D, Alves RJ, Cassali GD, Ferreira LAM, de Barros ALB. Enhanced antitumor efficacy of lapachol-loaded nanoemulsion in breast cancer tumor model. Biomed Pharmacother 2021; 133:110936. [PMID: 33254016 PMCID: PMC8963532 DOI: 10.1016/j.biopha.2020.110936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Lapachol (LAP) is a natural compound with various biological properties, including anticancer activity. However, its clinical application is limited due to the low aqueous solubility and potential adverse side effects. Nanoemulsions are drug delivery systems that can assist in the administration of hydrophobic drugs, increasing their bioavailability and protecting from degradation. Thus, this study aimed to prepare a LAP-loaded nanoemulsion (NE-LAP), and evaluate its antitumor activity. For this purpose, the nanoemulsion was prepared using a hot homogenization method and characterized morphologically by cryogenic transmission electron microscopy (cryo-TEM). Mean diameter, polydispersity index, and zeta potential was evaluated by DLS, encapsulation efficiency was measured by HPLC. Moreover, the short-term storage stability, the drug release and hemolysis in vitro was determined. Additionally, pharmacokinetic, toxicology and toxicity properties of99mTc-NE-LAP were evaluated in a breast cancer (4T1) tumor model. The cryo-TEM showed spherical globules, and the physicochemical characterization of NE-LAP showed a homogeneous stable nanoemulsion with a mean diameter of ∼170 nm, zeta potential of around -20 mV, and encapsulation greater than 85 %. In vitro studies validated that encapsulation did not impair the cytotoxicity activity of LAP. The nanoemulsion was successfully radiolabeled and 99mTc-NE-LAP showed prolonged blood circulation and tumor affinity was confirmed by tumor-to-muscle ratio. Moreover, NE-LAP showed higher antitumor activity than the free drug and the treatment did not result in any signs of toxicity. Therefore, these findings suggest that NE-LAP can be considered an effective strategy for cancer treatment.
Collapse
Affiliation(s)
- Sued Eustáquio Mendes Miranda
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil; Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Janaína de Alcântara Lemos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Renata Salgado Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano M Ottoni
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Ricardo José Alves
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Andre Luis Branco de Barros
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Kumar A, Behl T, Chadha S. A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Lages EB, Fernandes RS, Silva JDO, de Souza ÂM, Cassali GD, de Barros ALB, Miranda Ferreira LA. Co-delivery of doxorubicin, docosahexaenoic acid, and α-tocopherol succinate by nanostructured lipid carriers has a synergistic effect to enhance antitumor activity and reduce toxicity. Biomed Pharmacother 2020; 132:110876. [PMID: 33113428 DOI: 10.1016/j.biopha.2020.110876] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is widely used in cancer treatment, however, its use is often limited due to its side effects. To avoid these shortcomings, the encapsulation of DOX into nanocarriers has been suggested. Herein, we proposed a novel nanostructured lipid carrier (NLC) formulation loading DOX, docosahexaenoic acid (DHA), and α-tocopherol succinate (TS) for cancer treatment. DHA is an omega-3 fatty acid and TS is a vitamin E derivative. It has been proposed that these compounds can enhance the antitumor activity of chemotherapeutics. Thus, we hypothesized that the combination of DOX, DHA, and TS in NLC (NLC-DHA-DOX-TS) could increase antitumor efficacy and also reduce toxicity. NLC-DHA-DOX-TS was prepared using emulsification-ultrasound. DOX was incorporated after preparing the NLC, which prevented its degradation during manufacture. High DOX encapsulation efficiency was obtained due to the ion-pairing with TS. This ion-pairing increases lipophilicity of DOX and reduces its crystallinity, contributing to its encapsulation in the lipid matrix. Controlled DOX release from the NLC was observed in vitro, with increased drug release at the acidic environment. In vitro cell studies indicated that DOX, DHA, and TS have synergistic effects against 4T1 tumor cells. The in vivo study showed that NLC-DHA-DOX-TS exhibited the greatest antitumor efficacy by reducing tumor growth in 4T1 tumor-bearing mice. In addition, this formulation reduced mice mortality, prevented lung metastasis, and decreased DOX-induced toxicity to the heart and liver, which was demonstrated by hematologic, biochemical, and histologic analyses. These results indicate that NLC-DHA-DOX-TS may be a promising carrier for breast cancer treatment.
Collapse
Affiliation(s)
- Eduardo Burgarelli Lages
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renata Salgado Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângelo Malachias de Souza
- Department of Physics, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Zhang J, Tang X, Huang C, Liu Z, Ye Y. Oleic Acid Copolymer as A Novel Upconversion Nanomaterial to Make Doxorubicin-Loaded Nanomicelles with Dual Responsiveness to pH and NIR. Pharmaceutics 2020; 12:pharmaceutics12070680. [PMID: 32698309 PMCID: PMC7408047 DOI: 10.3390/pharmaceutics12070680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Oleic acid (OA) as main component of plant oil is an important solvent but seldom used in the nanocarrier of anticancer drugs because of strong hydrophobicity and little drug release. In order to develop a new type of OA nanomaterial with dual responses to pH and near infrared light (NIR) to achieve the intelligent delivery of anticancer drugs. The novel OA copolymer (mPEG-PEI-(NBS, OA)) was synthesized by grafting OA and o-nitrobenzyl succinate (NBS) onto mPEGylated polyethyleneimine (mPEG-PEI) by amidation reaction. It was further conjugated with NaYF4:Yb3+/Er3+ nanoparticles, and encapsulated doxorubicin (DOX) through self-assembly to make upconversion nanomicelles with dual response to pH and NIR. Drug release behavior of DOX, physicochemical characteristics of the nanomicelles were evaluated, along with its cytotoxic profile, as well as the degree of cellular uptake in A549 cells. The encapsulation efficiency and drug loading capacity of DOX in the nanomicelles were 73.84% ± 0.58% and 4.62% ± 0.28%, respectively, and the encapsulated DOX was quickly released in an acidic environment exposed to irradiation at 980 nm. The blank nanomicelles exhibited low cytotoxicity and excellent biocompatibility by MTT assay against A549 cells. The DOX-loaded nanomicelles showed remarkable cytotoxicity to A549 cells under NIR, and promoted the cellular uptake of DOX into the cytoplasm and nucleus of cancer cells. OA copolymer can effectively deliver DOX to cancer cells and achieve tumor targeting through a dual response to pH and NIR.
Collapse
Affiliation(s)
| | | | | | | | - Yong Ye
- Correspondence: ; Tel.: +86-20-87110234
| |
Collapse
|
19
|
Haider N, Fatima S, Taha M, Rizwanullah M, Firdous J, Ahmad R, Mazhar F, Khan MA. Nanomedicines in Diagnosis and Treatment of Cancer: An Update. Curr Pharm Des 2020; 26:1216-1231. [DOI: 10.2174/1381612826666200318170716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
:
Nanomedicine has revolutionized the field of cancer detection and treatment by enabling the delivery
of imaging agents and therapeutics into cancer cells. Cancer diagnostic and therapeutic agents can be either encapsulated
or conjugated to nanosystems and accessed to the tumor environment through the passive targeting
approach (EPR effect) of the designed nanomedicine. It may also actively target the tumor exploiting conjugation
of targeting moiety (like antibody, peptides, vitamins, and hormones) to the surface of the nanoparticulate system.
Different diagnostic agents (like contrast agents, radionuclide probes and fluorescent dyes) are conjugated with
the multifunctional nanoparticulate system to achieve simultaneous cancer detection along with targeted therapy.
Nowadays targeted drug delivery, as well as the early cancer diagnosis is a key research area where nanomedicine
is playing a crucial role. This review encompasses the significant recent advancements in drug delivery as well as
molecular imaging and diagnosis of cancer exploiting polymer-based, lipid-based and inorganic nanoparticulate
systems.
Collapse
Affiliation(s)
- Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Sana Fatima
- Department of Ilmul Saidla, National Institute of Unani Medicine, Bengaluru-560091, India
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jamia Firdous
- Department of Pharmacy, Institute of Bio-Medical Education and Research, Mangalayatan University, Aligarh, India
| | - Rafeeque Ahmad
- The New York School of Medical and Dental Assistants, Long Island City, NY 11101, United States
| | - Faizan Mazhar
- Department of Bio-medical and Clinical Science, University of Milan, Italy
| | - Mohammad A. Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
20
|
Yan F, Li H, Zhong Z, Zhou M, Lin Y, Tang C, Li C. Co-Delivery of Prednisolone and Curcumin in Human Serum Albumin Nanoparticles for Effective Treatment of Rheumatoid Arthritis. Int J Nanomedicine 2019; 14:9113-9125. [PMID: 31819422 PMCID: PMC6878998 DOI: 10.2147/ijn.s219413] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background Prednisolone (PD) is extremely effective for treating rheumatoid arthritis (RA). However, it distributes nonspecifically throughout the body and its use is associated with serious side effects, which promoted us to compound it into a phytomedicine for greater efficacy and safety. Methods We combined PD with curcumin (CU), an effective monomer from traditional Chinese medicine, and human serum albumin (HSA) in a nanoparticulate system (N-PD/CU) to compensate for the poor bioavailability of PD and CU. N-PD/CU was prepared by high-pressure homogenization, and its characteristics were evaluated in vitro. Next, we investigated its toxicity and mechanism of anti-inflammatory to macrophages. Finally, its pharmacokinetics, biodistribution and therapeutic efficacy were assessed in rats with adjuvant-induced arthritis (AIA). Results N-PD/CU showed a narrow size distribution around 150.4 ± 2.4 nm, a polydispersity index of 0.22 ± 0.02 and drug loading efficiency (DLE) of 88.75 ± 1.82% for PD and 85.79 ± 1.43% for CU. N-PD/CU showed sustained release of both drugs in vitro. N-PD/CU had no toxicity to macrophages in vitro on concentrations between 0.1 and 1.2 μmol/mL. In activated macrophages, N-PD decreased levels of pro-inflammatory cytokines, while N-CU increased levels of anti-inflammatory IL-10, and N-PD/CU exhibited best therapeutic effect in vitro, suggesting co-delivery of PD and CU may synergistically control the course of RA. In AIA rats, N-PD/CU accumulated in inflamed joints through the effect of extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS effect) in inflammatory lesion and showed higher therapeutic efficacy than single-loaded nanoparticles, either free drug on its own, or a simple mixture of the two drugs. Conclusion This codelivery system based on HSA is a promising platform for combination chemotherapy in RA.
Collapse
Affiliation(s)
- Feili Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Hui Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Can Tang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| |
Collapse
|
21
|
Zhou C, Song X, Guo C, Tan Y, Zhao J, Yang Q, Chen D, Tan T, Sun X, Gong T, Zhang Z. Alternative and Injectable Preformed Albumin-Bound Anticancer Drug Delivery System for Anticancer and Antimetastasis Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42534-42548. [PMID: 31479235 DOI: 10.1021/acsami.9b11307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomimetic design has been extensively investigated. The only FDA-approved biomimetic albumin-bound paclitaxel may not be beneficial to some treated patients due to rapid dissociation upon intravenous infusion and no substantial improvement in the drug's pharmacokinetics or biodistribution. Herein, we developed an alternative and injectable preformed albumin-bound anticancer drug delivery. We combined HSA, Kolliphor HS 15 (HS15), and pirarubicin (THP) via purely physical forces in a thin-film hydration method to obtain an albumin-bound complex of HSA-THP. The lack of any chemical reactions preserves HSA bioactivity, in contrast to the destroyed secondary structure within AN-THP (albumin nanoparticle of THP) for the harsh manipulation during preparation. In vitro, HSA-THP showed a significantly higher cellular uptake efficiency than THP, and the complex was more cytotoxic. In vivo, HSA-THP showed longer half-life than THP. It also exhibited greater tumor accumulation and tumor penetration via gp60- and SPARC-mediated biomimetic transport than THP and AN-THP. As a result, HSA-THP showed strong antitumor and antimetastasis efficacy, with relatively little toxicity. These results suggest the clinical potential of biomimetic tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Chuchu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Xu Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Chenqi Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Yulu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Juan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Qin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Dan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Tiantian Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , No.17, Block 3, Southern Renmin Road , Chengdu 610041 , China
| |
Collapse
|
22
|
Ristroph KD, Prud'homme RK. Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers. NANOSCALE ADVANCES 2019; 1:4207-4237. [PMID: 33442667 PMCID: PMC7771517 DOI: 10.1039/c9na00308h] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/18/2019] [Indexed: 05/26/2023]
Abstract
Hydrophobic ion pairing has emerged as a method to modulate the solubility of charged hydrophilic molecules ranging in class from small molecules to large enzymes. Charged hydrophilic molecules are ionically paired with oppositely-charged molecules that include hydrophobic moieties; the resulting uncharged complex is water-insoluble and will precipitate in aqueous media. Here we review one of the most prominent applications of hydrophobic ion pairing: efficient encapsulation of charged hydrophilic molecules into nano-scale delivery vehicles - nanoparticles or nanocarriers. Hydrophobic complexes are formed and then encapsulated using techniques developed for poorly-water-soluble therapeutics. With this approach, researchers have reported encapsulation efficiencies up to 100% and drug loadings up to 30%. This review covers the fundamentals of hydrophobic ion pairing, including nomenclature, drug eligibility for the technique, commonly-used counterions, and drug release of encapsulated ion paired complexes. We then focus on nanoformulation techniques used in concert with hydrophobic ion pairing and note strengths and weaknesses specific to each. The penultimate section bridges hydrophobic ion pairing with the related fields of polyelectrolyte coacervation and polyelectrolyte-surfactant complexation. We then discuss the state of the art and anticipated future challenges. The review ends with comprehensive tables of reported hydrophobic ion pairing and encapsulation from the literature.
Collapse
Affiliation(s)
- Kurt D. Ristroph
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonNew Jersey 08544USA
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonNew Jersey 08544USA
| |
Collapse
|
23
|
Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109874. [DOI: 10.1016/j.msec.2019.109874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
24
|
Ding D, Sun B, Cui W, Chen Q, Zhang X, Zhang H, He Z, Sun J, Luo C. Integration of phospholipid-drug complex into self-nanoemulsifying drug delivery system to facilitate oral delivery of paclitaxel. Asian J Pharm Sci 2019; 14:552-558. [PMID: 32104482 PMCID: PMC7032203 DOI: 10.1016/j.ajps.2018.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising platform to improve oral absorption of drugs with poor solubility and low permeability. However, large polarity molecules with insufficient lipid solubility, such as paclitaxel (PTX), would suffer from inferior formulation of SNEDDS due to poor compatibility. Herein, phospholipid-drug complex (PLDC) and SNEDDS were integrated into one system to facilitate oral delivery of PTX. First, PTX was formulated into PLDC in response to its inferior physicochemical properties. Then, the prepared PLDC was further formulated into SNEDDS by integrating these two drug delivery technologies into one system (PLDC-SNEDDS). After PLDC-SNEDDS dispersed in aqueous medium, nanoemulsion was formed immediately with an average particle size of ∼30 nm. Furthermore, the nanomulsion of PLDC-SNEDDS showed good colloidal stability in both HCl solution (0.1 mol/l, pH 1.0) and phosphate buffer solution (PBS, pH 6.8). In vivo, PTX-PLDC-SNEDDS showed distinct advantages in terms of oral absorption efficiency, with a 3.42-fold and 2.13-fold higher bioavailability than PTX-PLDC and PTX solution, respectively. Our results suggest that the integration of PLDC into SNEDDS could be utilized to facilitate the oral delivery of hydrophobic drugs with large polarity.
Collapse
Affiliation(s)
- Dawei Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiping Cui
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qin Chen
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xuanbo Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
25
|
Nazeer AA, Vijaykumar SD, Saravanan M. Fatty Acids of Enteromorpha intestinalis Emulsified Drug Delivery Nanoemulsion: Evaluation of Loading Mechanism and Release Kinetics for Drug Delivery. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01543-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Wang Y, Shen J, Yang X, Jin Y, Yang Z, Wang R, Zhang F, Linhardt RJ. Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex. Drug Dev Ind Pharm 2018; 45:124-129. [DOI: 10.1080/03639045.2018.1526183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuhui Wang
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Jinyang Shen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Yang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ye Jin
- Pharmacy Department, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, China
| | - Zhonglin Yang
- State Key laboratory of natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Rufeng Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Departments of Biology, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
27
|
Novel skin penetrating berberine oleate complex capitalizing on hydrophobic ion pairing approach. Int J Pharm 2018; 549:76-86. [PMID: 30053489 DOI: 10.1016/j.ijpharm.2018.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/21/2022]
Abstract
Berberine hydrochloride (Brb) is a well-known herbal drug that holds a great promise in the recent years thanks to its various pharmacological actions. Currently, Brb is extensively researched as a natural surrogate with evidenced potentiality against numerous types of skin diseases including skin cancer. However, Brb's high aqueous solubility and limited permeability hinder its clinical topical application. In the current work, to enhance Brb's dermal availability, hydrophobic ion pairing approach was implemented combining the privileges of altering the solubility characteristics of Brb and the nanometric size that is usually gained during the ion pairing precipitation process. Sodium oleate (SO) was selected as the complexing agent due to its low toxicity and skin penetrating characteristics. Ion paired berberine oleate complex (Brb-OL) was prepared by simple precipitation technique. Brb-OL complex formation was confirmed by differential scanning calorimetry (DSC), infrared spectroscopy (IR), X-ray powder diffraction (XRD) and saturation solubility studies. It was found that Brb-OL complex formed at stoichiometric binding between oleate and Brb had an average particle size of 195.9 nm and zeta potential of -53.6 mV. The proposed Brb-OL showed 251-fold increase in saturation solubility in n-octanol which confirmed the augmented lipid solubility of the complex compared with free drug. Comparative in-vitro release study showed that Brb-OL complex had much slow and sustained release profile compared to that of free Brb. Furthermore, ex-vivo permeation study using rat skin revealed the enhanced skin permeation of ion-paired Brb-OL complex compared with free Brb. In-vivo study on healthy rats confirmed that topical application of hydrogels enriched with Brb-OL had superior skin penetration and deposition than free Brb as revealed by confocal microscope. Conclusively, ion pair formation between Brb and oleate lead to the formation of more lipophilic Brb-OL complex with nanometric particle size which is expected to be a major progressive step towards the development of a topical berberine formulation.
Collapse
|
28
|
Chen T, Gong T, Zhao T, Fu Y, Zhang Z, Gong T. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy. Eur J Pharm Sci 2018; 111:293-302. [DOI: 10.1016/j.ejps.2017.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
|
29
|
Chen T, Song X, Gong T, Fu Y, Yang L, Zhang Z, Gong T. nRGD modified lycobetaine and octreotide combination delivery system to overcome multiple barriers and enhance anti-glioma efficacy. Colloids Surf B Biointerfaces 2017; 156:330-339. [PMID: 28544965 DOI: 10.1016/j.colsurfb.2017.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 12/17/2022]
Abstract
For glioma as one of the most common and lethal primary brain tumors, the presence of BBB, BBTB, vasculogenic mimicry (VM) channels and tumor-associated macrophages (TAMs) are key biological barriers. Here, a novel drug delivery system which could efficiently deliver drugs to glioma by overcoming multi-barriers and increase antitumor efficacy through multi-therapeutic mechanisms was well developed. In this study, a multi-target peptide nRGD was used to transport across the BBB, mediate tumor penetration and target TAMs. Lycobetaine (LBT) was adopted to kill glioma cells and octreotide (OCT) was co-delivered to inhibit VM channels and prevent angiogenesis. LBT-OCT liposomes (LPs) showed controlled release profile in vitro, increased uptake efficiency, improved inhibitory effect against glioma cells and VM formation, and enhanced BBB-crossing capability. The median survival time of glioma-bearing mice administered with LBT-OCT LPs-nRGD was significantly longer than LBT-OCT LPs (P<0.01). Besides, nRGD achieved a stronger inhibitory effect against tumor associated macrophages (TAMs) compared to LPs-iRGD treatment groups in vivo. Thus, LPs-nRGD represented a promising versatile delivery platform for combination drug therapy in glioma treatment.
Collapse
Affiliation(s)
- Tijia Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ting Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liuqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
30
|
Chen T, Li W, Gong T, Fu Y, Ding R, Gong T, Zhang Z. Analysis of Lycobetaine in Rat Plasma by LC-ESI-MS/MS. J Chromatogr Sci 2017; 55:301-308. [PMID: 27903551 DOI: 10.1093/chromsci/bmw185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/13/2022]
Abstract
In this study, a selective and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometric method was developed and validated for the determination of lycobetaine in rat plasma. Berberine was selected as the internal standard, and rat plasma samples were pretreated via protein precipitation and further separated on a diamonsil octadecyl-silylated silica column using 0.2% (v/v) aqueous formic acid and methanol as the mobile phase. Selected reaction monitoring was performed using the transitions m/z 266.1 → 208.1 and m/z 336.1 → 320.0 to determine the concentrations of lycobetaine and internal standard, respectively. The injection volume was 1 µL, and the calibration curve was linear (R2 = 0.9998), while the validated lower limit of quantification was 25 ng/mL. Precision varied from 3.4% to 9.9%, and accuracy varied from -2.6% to 8.7%. Lycobetaine remained stable under all relevant analytical conditions tested in the study. The method was successfully applied to determine the plasma concentration of lycobetaine in a pharmacokinetic study. After intravenous administration of 10 mg/kg and oral administration of 200 mg/kg lycobetaine in rats, the pharmacokinetic parameters were calculated and the oral bioavailability of lycobetaine was determined as 7.30% ± 1.44%.
Collapse
Affiliation(s)
- Tijia Chen
- Key laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Wenhao Li
- Key laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ting Gong
- Key laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yao Fu
- Key laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Rui Ding
- Department of Biochemistry, Beijing Institute for Drug Control, Beijing 100035, PR China
| | - Tao Gong
- Key laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
31
|
Oliveira MS, Goulart GCA, Ferreira LAM, Carneiro G. Hydrophobic ion pairing as a strategy to improve drug encapsulation into lipid nanocarriers for the cancer treatment. Expert Opin Drug Deliv 2016; 14:983-995. [DOI: 10.1080/17425247.2017.1266329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mariana Silva Oliveira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gisele Castro Assis Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| |
Collapse
|
32
|
Mahmood A, Prüfert F, Efiana NA, Ashraf MI, Hermann M, Hussain S, Bernkop-Schnürch A. Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opin Drug Deliv 2016; 13:1503-1512. [PMID: 27458781 DOI: 10.1080/17425247.2016.1213236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The aim of study was to investigate whether cell-penetrating peptides could amplify cellular uptake of plasmid DNA (pDNA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) by mucosal epithelial cells, thereby enhancing transfection efficiency. METHODS HIV-1 Tat peptide-oleoyl conjugate (TAT-OL) was synthesized through amide bond formation between HIV-1 Tat-protein 49-57 (TAT) and oleoyl-chloride (OL). SNEDDS formulation contained 29.7% each of Cremophor EL, Capmul MCM and Crodamol, 9.9% propylene glycol and 1% TAT-OL. SNEDDS with OL instead of TAT-OL served as control. RESULTS Fluorescent-microscopy demonstrated 0.5% (m/v) nanoemulsions were suitable for subsequent studies. Mucus diffusion of nanoemulsion loaded with fluorescein diacetate (FDA) was 1.5-fold increased by incorporation of TAT-OL. Confocal microscopy confirmed that droplets of nanoemulsions were successfully internalized. Furthermore, quantitative analysis showed that addition of TAT-OL increases uptake of nanoemulsions by 2.3- and 2.6-folds after 2 and 4 hours of incubation, respectively. Cellular internalization pathways were found with substantial decrease in uptake in presence of indomethacin and chlorpromazine. Transfection efficiency investigated on HEK-293-cells was found to be 1.7- and 1.8-fold higher for SNEDDS loaded with TAT-OL compared to Lipofectin and control, respectively. CONCLUSION In comparison to prevailing lipid and polymer-based delivery systems, these novel cell-penetrating SNEDDS likely represent most effective, simplistic and expedite dosage form for mucosal gene delivery.
Collapse
Affiliation(s)
- Arshad Mahmood
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Felix Prüfert
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Nuri Ari Efiana
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Muhammad Imtiaz Ashraf
- b Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery , Medical University Innsbruck , Innsbruck , Austria.,c Department for General, Visceral and Transplantation Surgery , Campus Virchow-Klinikum, Charité Universitätsmedizin , Berlin , Germany
| | - Martin Hermann
- d Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Innsbruck , Austria
| | - Shah Hussain
- e Institute of Analytical Chemistry and Radiochemistry , University of Innsbruck , Innsbruck , Austria
| | - Andreas Bernkop-Schnürch
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
33
|
Sun B, Luo C, Li L, Wang M, Du Y, Di D, Zhang D, Ren G, Pan X, Fu Q, Sun J, He Z. Core-matched encapsulation of an oleate prodrug into nanostructured lipid carriers with high drug loading capability to facilitate the oral delivery of docetaxel. Colloids Surf B Biointerfaces 2016; 143:47-55. [DOI: 10.1016/j.colsurfb.2016.02.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
34
|
Alzorqi I, Ketabchi MR, Sudheer S, Manickam S. Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-D-glucan polysaccharides. ULTRASONICS SONOCHEMISTRY 2016; 31:71-84. [PMID: 26964925 DOI: 10.1016/j.ultsonch.2015.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Polysaccharides of β-D-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-D-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design--CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-D-glucan-loaded nanoemulsions exhibited good stability over 90 days under different storage conditions (4 °C and 25 °C). The studies using palm olein based β-D-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-D-glucan.
Collapse
Affiliation(s)
- Ibrahim Alzorqi
- Manufacturing and Industrial Processes Research Division, The University of Nottingham Malaysia Campus, Faculty of Engineering, Jalan Broga, 43500 Semenyih, Selangor D.E., Malaysia
| | - Mohammad Reza Ketabchi
- Manufacturing and Industrial Processes Research Division, The University of Nottingham Malaysia Campus, Faculty of Engineering, Jalan Broga, 43500 Semenyih, Selangor D.E., Malaysia
| | - Surya Sudheer
- Manufacturing and Industrial Processes Research Division, The University of Nottingham Malaysia Campus, Faculty of Engineering, Jalan Broga, 43500 Semenyih, Selangor D.E., Malaysia
| | - Sivakumar Manickam
- Manufacturing and Industrial Processes Research Division, The University of Nottingham Malaysia Campus, Faculty of Engineering, Jalan Broga, 43500 Semenyih, Selangor D.E., Malaysia.
| |
Collapse
|
35
|
Cheng Y, Liu M, Hu H, Liu D, Zhou S. Development, Optimization, and Characterization of PEGylated Nanoemulsion of Prostaglandin E1 for Long Circulation. AAPS PharmSciTech 2016. [PMID: 26195071 DOI: 10.1208/s12249-015-0366-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lipo-PGE1 is the most widely used formulation of PGE1 in clinic. However, PGE1 is easier to leak out from lipo-PGE1 and this will lead to the phlebophlogosis when intravenous injection. The stability of lipo-PGE1 in storage and in vivo is also discounted. The aim of this study is to develop a long-circulating prostaglandin E1-loaded nanoemulsion modified with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) to improve the stability and pharmacokinetics profiles of lipo-PGE1. PEGylated PGE1 nanoemulsion was prepared using a dispersing-homogenized method. The stability of nanoemulsion in 1 month was investigated. Pharmacokinetic studies were employed to evaluate the in vivo profile of the optimized nanoemulsion. The optimized nanoemulsion PGE1-PEG2000(1%)-NE showed an oil droplet size <100 nm with a surface charge of -14 mV. Approximately, 97% of the PGE1 was encapsulated in the nanoemulsion. The particle size, zeta potential, and drug loading of PGE1-PEG2000(1%)-NE were stable in 1 month. After PGE1-PEG2000(1%)-NE was intravenously administered to rats, the area under curve (AUC) and half-life of PGE1 were, respectively, 1.47-fold and 5.98-fold higher than those of lipo-PGE1 (commercial formulation). PGE1-PEG2000(1%)-NE was an ideal formulation for prolonging the elimination time of PGE1. This novel parenteral colloidal delivery system of PGE1 has a promising potential in clinic use.
Collapse
|
36
|
Hörmann K, Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions - A review. J Control Release 2015; 223:85-98. [PMID: 26699427 DOI: 10.1016/j.jconrel.2015.12.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/12/2015] [Indexed: 12/18/2022]
Abstract
Lipid nanosized emulsions or nanoemulsions (NE) are oil in water dispersions with an oil droplet size of about 200nm. This size of oil droplets dispersed in a continuous water phase is a prerequisite for the parenteral, namely intravenous administration. Many parenteral nutrition and drug emulsions on the market confirm the safe use of NE over years. Parenteral emulsions loaded with APIs (active pharmaceutical ingredients) are considered as drug delivery systems (DDS). DDS focuses on the regulation of the in vivo dynamics, such as absorption, distribution, metabolism, and extended bioavailability, thereby improving the effectiveness and the safety of the drugs. Using an emulsion as a DDS, or through the use of surface diversification of the dispersed oil droplets of emulsions, a targeted increase of the API concentration in some parts of the human body can be achieved. This review focuses on NE similar to the marketed once with no or only low amount of additional surfactants beside the emulsifier from a manufacturing point of view (technique, used raw materials).
Collapse
Affiliation(s)
- Karl Hörmann
- Fresenius Kabi Austria GmbH, Hafnerstraße 36, A-8055 Graz, Austria
| | - Andreas Zimmer
- Karl-Franzens-University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Member of BioTechMed Graz, Universitätsplatz 1, A-8010 Graz, Austria.
| |
Collapse
|
37
|
Shetab Boushehri MA, Lamprecht A. Nanoparticles as drug carriers: current issues with in vitro testing. Nanomedicine (Lond) 2015; 10:3213-30. [DOI: 10.2217/nnm.15.154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Incorporation of nanotechnology in the field of drug delivery has created exciting opportunities for the purposeful design of nanocarriers with potentials such as targeted delivery or controlled release of the incorporated cargo, improvement of bioavailability and reduction of therapeutic side-effects. Prior to in vivo administration, nanocarriers should undergo a set of in vitro evaluation procedures to ensure their stability, safety, conformity and ability to fulfill the desired mission. In this paper, current issues with in vitro evaluation techniques used for nanocarrier characterization (assessment of particle size, surface charge, drug release and toxicity) will be discussed. Furthermore, sufficiency of in vitro evaluation procedures for the prediction of in vivo scenarios and the necessary considerations to improve the correlation between the two settings will be debated.
Collapse
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
- Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France
| |
Collapse
|
38
|
Yi X, Lian X, Dong J, Wan Z, Xia C, Song X, Fu Y, Gong T, Zhang Z. Co-delivery of Pirarubicin and Paclitaxel by Human Serum Albumin Nanoparticles to Enhance Antitumor Effect and Reduce Systemic Toxicity in Breast Cancers. Mol Pharm 2015; 12:4085-98. [DOI: 10.1021/acs.molpharmaceut.5b00536] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoli Yi
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Xianghong Lian
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Jianxia Dong
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Zhuoya Wan
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Chunyu Xia
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Xu Song
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Yao Fu
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Tao Gong
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| | - Zhirong Zhang
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, Ministry of Education, Sichuan University, Sichuan, People’s Republic of China
| |
Collapse
|
39
|
Zhang J, Li J, Ju Y, Fu Y, Gong T, Zhang Z. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system. Mol Pharm 2015; 12:504-13. [PMID: 25536306 DOI: 10.1021/mp5005806] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipid complex (PLC) based self-nanoemulsifying drug delivery system (PLC-SNEDDS) has been developed for efficient delivery of drugs with poor solubility and low permeability. In the present study, a BCS class IV drug and a P-glycoprotein (P-gp) substrate, morin, was selected as the model drug to elucidate the oral absorption mechanism of PLC-SNEDDS. PLC-SNEDDS was superior to PLC in protecting morin from degradation by intestinal enzymes in vitro. In situ perfusion study showed increased intestinal permeability by PLC was duodenum-specific. In contrast, PLC-SNEDDS increased morin permeability in all intestinal segments and induced a change in the main absorption site of morin from colon to ileum. Moreover, ileum conducted the lymphatic transport of PLC-SNEDDS, which was proven by microscopic intestinal visualization of Nile red labeled PLC-SNEDDS and lymph fluids in vivo. Low cytotoxicity and increased Caco-2 cell uptake suggested a safe and efficient delivery of PLC-SNEDDS. The increased membrane fluidity and disrupted actin filaments were closely associated with the increased cell uptake of PLC-SNEDDS. PLC-SNEDDS could be internalized into enterocytes as an intact form in a cholesterol-dependent manner via clathrin-mediated endocytosis and macropinocytosis. The enhanced oral absorption of morin was attributed to the P-gp inhibition by Cremophor RH and the intact internalization of M-PLC-SNEDDS into Caco-2 cells bypassing P-gp recognition. Our findings thus provide new insights into the development of novel nanoemulsions for poorly absorbed drugs.
Collapse
Affiliation(s)
- Jinjie Zhang
- Key Laboratory of Drug Targeting, Ministry of Education, Sichuan University , No. 17. Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Gao XC, Qi HP, Bai JH, Huang L, Cui H. Effects of Oleic Acid on the Corneal Permeability of Compounds and Evaluation of its Ocular Irritation of Rabbit Eyes. Curr Eye Res 2014; 39:1161-8. [DOI: 10.3109/02713683.2014.904361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Lee EH, Hong SS, Kim SH, Lee MK, Lim JS, Lim SJ. Computed tomography-guided screening of surfactant effect on blood circulation time of emulsions: application to the design of an emulsion formulation for paclitaxel. Pharm Res 2014; 31:2022-34. [PMID: 24549824 DOI: 10.1007/s11095-014-1304-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/14/2014] [Indexed: 01/25/2023]
Abstract
PURPOSE In an effort to apply the imaging techniques currently used in disease diagnosis for monitoring the pharmacokinetics and biodisposition of particulate drug carriers, we sought to use computed tomography (CT) scanning methodology to investigate the impact of surfactant on the blood residence time of emulsions. METHODS We prepared the iodinated oil Lipiodol emulsions with different compositions of surfactants and investigated the impact of surfactant on the blood residence time of emulsions by CT scanning. RESULTS The blood circulation time of emulsions was prolonged by including Tween 80 or DSPE-PEG (polyethylene glycol 2000) in emulsions. Tween 80 was less effective than DSPE-PEG in terms of prolongation effect, but the blood circulating time of emulsions was prolonged in a Tween 80 content-dependent manner. As a proof-of-concept demonstration of the usefulness of CT-guided screening in the process of formulating drugs that need to be loaded in emulsions, paclitaxel was loaded in emulsions prepared with 87 or 65% Tween 80-containing surfactant mixtures. A pharmacokinetics study showed that paclitaxel loaded in 87% Tween 80 emulsions circulated longer in the bloodstream compared to those in 65% Tween 80 emulsions, as predicted by CT imaging. CONCLUSIONS CT-visible, Lipiodol emulsions enabled the simple evaluation of surfactant composition effects on the biodisposition of emulsions.
Collapse
Affiliation(s)
- Eun-Hye Lee
- Department of Bioscience and Bioengineering, Sejong University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|