1
|
Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci 2024; 357:123043. [PMID: 39233200 DOI: 10.1016/j.lfs.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The skin is essential for body protection and regulating physiological processes. It is the largest organ and serves as the first-line barrier against UV radiation, harmful substances, and infections. Skin cancer is considered the most prevalent type of cancer worldwide, while melanoma skin cancer is having high mortality rates. Skin cancer, including melanoma and non-melanoma forms, is primarily caused by prolonged exposure to UV sunlight and pollution. Currently, treatments for skin cancer include surgery, chemotherapy, and radiotherapy. However, several factors hinder the effectiveness of these treatments, such as low efficacy, the necessity for high concentrations of active components to achieve a therapeutic effect, and poor drug permeation into the stratum corneum or lesions. Additionally, low bioavailability at the target site necessitates high doses, leading to skin irritation and further obstructing drug absorption through the stratum corneum. To overcome these challenges, recent research focuses on developing a medication delivery system based on nanotechnology as an alternative to this traditional approach. Nano-drug delivery systems have demonstrated great promise in treating skin cancer by providing a more effective means of delivering drugs with better stability and drug absorption. An overview of various lipid-based nanocarriers is given in this review article that are utilized to carry natural compounds to treat skin cancer.
Collapse
Affiliation(s)
- Mithilesh Chaurasiya
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gaurav Kumar
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Smita Paul
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shweta Singh Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kumar G, Jain P, Virmani T, Sharma A, Akhtar MS, Aldosari SA, Khan MF, Duarte SOD, Fonte P. Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin. Ther Deliv 2024; 15:717-735. [PMID: 39259258 DOI: 10.1080/20415990.2024.2386928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Apigenin, a potent natural flavonoid, has emerged as a key therapeutic agent due to its multifaceted medicinal properties in combating various diseases. However, apigenin's clinical utility is greatly limited by its poor water solubility, low bioavailability and stability issues. To address these challenges, this review paper explores the innovative field of nanotechnology-based delivery systems, which have shown significant promise in improving the delivery and effectiveness of apigenin. This paper also explores the synergistic potential of co-delivering apigenin with conventional therapeutic agents. Despite the advantageous properties of these nanoformulations, critical challenges such as scalable production, regulatory approvals and comprehensive long-term safety assessments remain key hurdles in their clinical adoption which must be addressed for commercialization of apigenin-based formulations.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, 201313, India
| | - Pushpika Jain
- School of Pharmaceutical Sciences, MVN University, Haryana, 121105, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University, Greater Noida, Uttar Pradesh, 201313, India
| | - Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sofia O D Duarte
- iBB - Institute for Bioengineering & Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health & Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering & Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health & Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
- Department of Chemistry & Pharmacy, Faculty of Sciences & Technology, University of Algarve, Gambelas Campus, Faro, 8005-139, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro, 8005-139, Portugal
| |
Collapse
|
3
|
Dastgheib ZS, Abolmaali SS, Farahavar G, Salmanpour M, Tamaddon AM. Gold nanostructures in melanoma: Advances in treatment, diagnosis, and theranostic applications. Heliyon 2024; 10:e35655. [PMID: 39170173 PMCID: PMC11336847 DOI: 10.1016/j.heliyon.2024.e35655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Melanoma, a lethal form of skin cancer, poses a significant challenge in oncology due to its aggressive nature and high mortality rates. Gold nanostructures, including gold nanoparticles (GNPs), offer myriad opportunities in melanoma therapy and imaging due to their facile synthesis and functionalization, robust stability, tunable physicochemical and optical properties, and biocompatibility. This review explores the emerging role of gold nanostructures and their composites in revolutionizing melanoma treatment paradigms, bridging the gap between nanotechnology and clinical oncology, and offering insights for researchers, clinicians, and stakeholders. It begins by elucidating the potential of nanotechnology-driven approaches in cancer therapy, highlighting the unique physicochemical properties and versatility of GNPs in biomedical applications. Various therapeutic modalities, including photothermal therapy, photodynamic therapy, targeted drug delivery, gene delivery, and nanovaccines, are discussed in detail, along with insights from ongoing clinical trials. In addition, the utility of GNPs in melanoma imaging and theranostics is explored, showcasing their potential in diagnosis, treatment monitoring, and personalized medicine. Furthermore, safety considerations and potential toxicities associated with GNPs are addressed, underscoring the importance of comprehensive risk assessment in clinical translation. Finally, the review concludes by discussing current challenges and future directions, emphasizing the need for innovative strategies to maximize the clinical impact of GNPs in melanoma therapy.
Collapse
Affiliation(s)
- Zahra Sadat Dastgheib
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research Center, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| |
Collapse
|
4
|
Gupta N, Gupta G, Razdan K, Albekairi NA, Alshammari A, Singh D. Development of nanoemulgel of 5-Fluorouracil for skin melanoma using glycyrrhizin as a penetration enhancer. Saudi Pharm J 2024; 32:101999. [PMID: 38454919 PMCID: PMC10918269 DOI: 10.1016/j.jsps.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to enhance the topical delivery of 5-Fluorouracil (5-FU), a cancer treatment, by developing a nanoemulgel formulation. Glycyrrhizin (GLY), a natural penetration enhancer has been investigated to exhibit synergistic effects with 5-FU in inhibiting melanoma cell proliferation and inducing apoptosis, Hence, GLY, along with suitable lipids was utilized to create an optimized nanoemulsion (NE) based gel. Solubility studies and ternary phase diagram revealed isopropyl myristate (IPM), Span 80, Tween 80 as Smix and Transcutol P as co-surfactant. IPM demonstrates excellent solubilizing properties facilitates higher drug loading, ensuring efficient delivery to the target site.,The optimized formulation consisting of 40 % IPM, 30 % of mixture of Tween80: Span80 (Smix) and 15 % Transcutol P provides with a nanometric size of 64.1 ± 5.13 nm and drug loading of 97.3 ± 5.83 %. The optimized formulation observed with no creaming and breakeing of NE and found thermodynamically stable during different stress conditions (temperatures of 4.0 °C and 45.0 °C) and physical thawing (-21.0 ± 0.50 °C to 20.0 ± 0.50 °C). The NE was then transformed into a nanoemulgel (NEG) using 1.5 % w/w Carbopol base and 0.1 % w/w glycyrrhizin. The ex vivo permeability studies showed significant enhancements in drug permeability with the GLY-based 5-FU-NEG formulation compared to pure 5-FU gel in excised pig skin upto1440 min in PBS 7.4 as receptor media. The IC50 values for Plain 5-FU gel, 5-FU-NEG, and GLY-based 5-FU-NEG were found to be 20 µg/mL, 1.1 µg/mL, and 0.1 µg/mL, respectively in B16F10 cell lines. The percentage intracellular uptake of GLY-5-FU-NEG and 5-FU-NEG was found to be 44.3 % and 53.6 %, respectively. GLY-based 5-FU-NEG formulation showed alterations in cell cycle distribution, in compared to 5-FU-NE gel. The overall findings suggest that the GLY-based 5-FU-NEG holds promise for improving anti-melanoma activity.
Collapse
Affiliation(s)
- Nimish Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - G.D. Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Karan Razdan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
- University Institute of Pharma Sciences, Chandigarh University, Gharuan (140413), Mohali, India
| |
Collapse
|
5
|
Sabaghi Y, PourFarzad F, Zolghadr L, Bahrami A, Shojazadeh T, Farasat A, Gheibi N. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochem Biophys Res Commun 2024; 690:149219. [PMID: 37995451 DOI: 10.1016/j.bbrc.2023.149219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.
Collapse
Affiliation(s)
- Yalda Sabaghi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
| | - Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Shojazadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclnal Antibodi Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
6
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Cai Y, Chu Y, Gong Y, Hong Y, Song F, Wang H, Zhang H, Sun X. Enhanced Transdermal Peptide-Modified Flexible Liposomes for Efficient Percutaneous Delivery of Chrysomycin A to Treat Subcutaneous Melanoma and Intradermal MRSA Infection. Adv Healthc Mater 2023; 12:e2300881. [PMID: 37267625 DOI: 10.1002/adhm.202300881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Superficial skin diseases, including skin infections and tumors, are common healthcare burdens. In this study, the in vivo activity of chrysomycin A (CA) is explored, and a transdermal liposomal CA formulation is further constructed for the simultaneous treatment of cutaneous melanoma and cutaneous methicillin-resistant Staphylococcus aureus (MRSA) infection. The prepared liposomes (TD-LP-CA) display a strong antitumor effect with an IC50 value of less than 0.1 µm in B16-F10 cells, suppress the proliferation of MRSA with a minimum inhibitory concentration (MIC) of 1 µm, and eradicate established MRSA biofilms at 10× MIC in vitro. More importantly, TD-LP-CA shows enhanced stratum corneum (SC) penetration, reaching more than 500 µm beneath the skin's surface due to modification with the TD peptide, and demonstrates excellent subcutaneous tumor penetration after skin application in vivo. TD-LP-CA displays an excellent therapeutic effect against intradermal MRSA infection in mice after topical dermal administration, as well as a moderate inhibitory effect on subcutaneous melanoma with a 75% tumor inhibition rate. The liposomes prepared herein can be a promising carrier for transcutaneous CA transfer for the treatment of superficial diseases such as skin tumors and infections due to their ability to overcome the skin barrier.
Collapse
Affiliation(s)
- Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuteng Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yulu Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Fishery Resources Employment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Huawei Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
8
|
Biomimetic Nanoscale Materials for Skin Cancer Therapy and Detection. J Skin Cancer 2022; 2022:2961996. [PMID: 35433050 PMCID: PMC9010180 DOI: 10.1155/2022/2961996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Skin cancer has developed as one of the most common types of cancer in the world, with a significant impact on public health impact and the economy. Nanotechnology methods for cancer treatment are appealing since they allow for the effective transport of medicines and other biologically active substances to specific tissues while minimizing harmful consequences. It is one of the most significant fields of research for treating skin cancer. Various nanomaterials have been employed in skin cancer therapy. The current review will summarize numerous methods of treating and diagnosing skin cancer in the earliest stages. There are numerous skin cancer indicators available for the prompt diagnosis of this type of disease. Traditional approaches to skin cancer diagnosis are explored, as are their shortcomings. Electrochemical and optical biosensors for skin cancer diagnosis and management were also discussed. Finally, various difficulties concerning the cost and ease of use of innovative methods should be addressed and overcome.
Collapse
|
9
|
Hartmann T, Perron R, Razavi M. Utilization of Nanoparticles, Nanodevices, and Nanotechnology in the Treatment Course of Cutaneous Melanoma. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Hartmann
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Rebecca Perron
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Mehdi Razavi
- College of Medicine University of Central Florida Orlando FL 32827 USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster Department of Internal Medicine College of Medicine University of Central Florida Orlando FL 32827 USA
- Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
10
|
Wang X, Cui Z, Zeng B, Qiong Z, Long Z. Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark 2022; 34:533-543. [PMID: 35275523 DOI: 10.3233/cbm-210409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melanoma, a skin cancer derived from malignant melanocytes, is characterized by high aggressiveness and mortality. However, its exact etiology is unknown. Recently, the roles of exosomes and exosomal microRNAs (miRNAs) in the progression and therapy of various disorders, including melanoma, have gained attention. We investigated the impact of miR-138-5p from exosomes released by human mesenchymal stem cells (HMSCs) on the pathogenesis of melanoma. We isolated exosomes from HMSCs (HMSC-exos) by ultracentrifugation and verified them by specific biomarkers and transmission electron microscopy. We used CCK8, flow cytometry, quantitative real-time PCR (qRT-PCR), and Western blots to investigate cell proliferation, apoptosis, and mRNA and protein levels, respectively. Additionally, we used luciferase assays to examine the relationship between miR-138-5p and SOX4. Administration of HMSC-exos dramatically repressed the growth of melanoma cells. Elevated miR-138-5p levels in HMSC-exos were linked to increased cell apoptosis, and miR-138-5p downregulation had the opposite effects on cells. SOX4 was targeted by miR-138-5p through direct binding to the SOX4 3'UTR. In melanoma tissues, miR-138-5p was downregulated, and SOX4 was upregulated and was negatively correlated. MiR-138-5p plays a crucial role in melanoma progression. The negative regulation of SOX4 transcription mediates the function of miR-138-5p. These findings provide a novel concept of melanoma pathogenesis and identify a valuable target (miR-138-5p/SOX4 axis) in treating this disease.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China.,Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Zhengfeng Cui
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China.,Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Basangdan Zeng
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Zhaxi Qiong
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Ziwen Long
- Department of Gastric Cancer Sugery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021; 599:120413. [PMID: 33667562 DOI: 10.1016/j.ijpharm.2021.120413] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023]
Abstract
Melanoma is a highly aggressive form of skin cancer with a very poor prognosis and excessive resistance to current conventional treatments. Recently, the application of the liposomal delivery system in the management of skin melanoma has been widely investigated. Liposomal nanocarriers are biocompatible and less toxic to host cells, enabling the efficient and safe delivery of different therapeutic agents into the tumor site and further promoting their antitumor activities. Therefore, the liposomal delivery system effectively increases the success of current melanoma therapies and overcomes resistance. In this review, we present an overview of liposome-based targeted drug delivery methods and highlight recent advances towards the development of liposome-based carriers for therapeutic genes. We also discuss the new insights regarding the efficacy and clinical significance of combinatorial treatment of liposomal formulations with immunotherapy and conventional therapies in melanoma patients for a better understanding and successfully managing cancer.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Barati
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Corrigendum to "Drug Delivery Nanoparticles in Skin Cancers". BIOMED RESEARCH INTERNATIONAL 2021; 2021:6158298. [PMID: 33644227 PMCID: PMC7902146 DOI: 10.1155/2021/6158298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/17/2022]
|
13
|
Cassano R, Cuconato M, Calviello G, Serini S, Trombino S. Recent Advances in Nanotechnology for the Treatment of Melanoma. Molecules 2021; 26:785. [PMID: 33546290 PMCID: PMC7913377 DOI: 10.3390/molecules26040785] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive forms of skin cancer, with few possibilities for therapeutic approaches, due to its multi-drug resistance and, consequently, low survival rate for patients. Conventional therapies for treatment melanoma include radiotherapy, chemotherapy, targeted therapy, and immunotherapy, which have various side effects. For this reason, in recent years, pharmaceutical and biomedical research has focused on new sito-specific alternative therapeutic strategies. In this regard, nanotechnology offers numerous benefits which could improve the life expectancy of melanoma patients with very low adverse effects. This review aims to examine the latest advances in nanotechnology as an innovative strategy for treating melanoma. In particular, the use of different types of nanoparticles, such as vesicles, polymers, metal-based, carbon nanotubes, dendrimers, solid lipid, microneedles, and their combination with immunotherapies and vaccines will be discussed.
Collapse
Affiliation(s)
- Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.C.)
| | - Massimo Cuconato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.C.)
| | - Gabriella Calviello
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; (G.C.); (S.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Simona Serini
- Department of Translational Medicine and Surgery, Section of General Pathology, School of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito, 00168 Rome, Italy; (G.C.); (S.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito, 00168 Rome, Italy
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.C.)
| |
Collapse
|
14
|
Jasim KA, Waheed IF, Topps M, Gesquiere AJ. Multifunctional system for combined chemodynamic–photodynamic therapy employing the endothelin axis based on conjugated polymer nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py00964h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most nanomedicines that attack tumors by Reactive Oxygen Species (ROS) based on lipid peroxidation mechanisms require external activation to work.
Collapse
Affiliation(s)
- Khalaf A. Jasim
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq
| | - Ibrahim F. Waheed
- Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq
| | - Martin Topps
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Andre J. Gesquiere
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- The College of Optics and Photonics (CREOL), University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
15
|
Review of PIP2 in Cellular Signaling, Functions and Diseases. Int J Mol Sci 2020; 21:ijms21218342. [PMID: 33172190 PMCID: PMC7664428 DOI: 10.3390/ijms21218342] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell-matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. In this review, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.
Collapse
|
16
|
Cordeiro AP, Feuser PE, Figueiredo PG, Cunha ESD, Martinez GR, Machado-de-Ávila RA, Rocha MEM, Araújo PHHD, Sayer C. In vitro synergic activity of diethyldithiocarbamate and 4-nitrochalcone loaded in beeswax nanoparticles against melanoma (B16F10) cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111651. [PMID: 33545819 DOI: 10.1016/j.msec.2020.111651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 11/27/2022]
Abstract
The use of nanoparticles as drug delivery systems to simultaneously carry several therapeutic agents is an attractive idea to create new synergic treatments and to develop the next generation of cancer therapies. Therefore, the goal of this study was the simultaneous encapsulation of a hydrophilic drug, sodium diethyldithiocarbamate (DETC), and a hydrophobic drug, 4-nitrochalcone (4NC), in beeswax nanoparticles (BNs) to evaluate the in vitro synergic activity of this combination against melanoma (B16F10) cells. BNs were prepared by water/oil/water double emulsion in the absence of organic solvents. Transmission electron microscopy imaging and dynamic light scattering analyses indicated the formation of BNs with a semispherical shape, average diameter below 250 nm, relatively narrow distributions, and negative zeta potential. The double emulsion technique proved to be effective for the simultaneous encapsulation of DETC and 4NC with efficiencies of 86.2% and 98.7%, respectively, and this encapsulation did not affect the physicochemical properties of the BNs. DETC and 4NC loaded in BNs exhibited a higher cytotoxicity toward B16F10 cells than free 4NC and DETC. This simultaneous encapsulation led to a synergic effect of DETC and 4NC on B16F10 cells, decreasing the cell viability from 46% (DETC BNs) and 54% (4NC BNs) to 64% (DETC+4NC BNs). Therefore, the IC50 of DETC+4NC was also lower than that of either when individually encapsulated, and that of free DETC or 4NC. Therefore, DETC and 4NC were efficiently simultaneously encapsulated in BNs and this drug combination was able to generate an in vitro synergic therapeutic effect on B16F10 cells.
Collapse
Affiliation(s)
- Arthur Poester Cordeiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | | | | | | | | | | | - Claudia Sayer
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil.
| |
Collapse
|
17
|
Wei S, Quan G, Lu C, Pan X, Wu C. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy. Biomater Sci 2020; 8:5739-5750. [PMID: 32945301 DOI: 10.1039/d0bm00914h] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photothermal therapy (PTT) based on aggregation-induced emission luminogen (AIEgen) is very promising for superficial tumor therapy due to the superior photostability and photothermal conversion efficiency of AIEgens. However, the systemic administration of AIEgen remains challenging, mainly because of solubility dissatisfaction and biodistribution. Here, a dissolving microneedle (MN) system loaded with AIEgen (NIR950) was developed for topical administration to treat malignant skin tumor melanoma. Firstly, NIR950-loaded polymeric micelles (NIR950@PMs) were prepared via a nanoprecipitation method to increase the drug solubility. Then, micelles were concentrated on needle tips of MN (NIR950@PMs@MN) by a two-step molding method. NIR950@PMs showed no distinct decline in emission intensity under continuous laser irradiation for an hour. Moreover, the pH-responsive micelles can be protonated in an acidic tumor microenvironment to facilitate the intracellular uptake. By virtue of dissolving MN, NIR950@PMs could rapidly accumulate at the tumor site and reach a suitable temperature for killing cancer cells under laser irradiation. With only single administration and one-time laser irradiation, the NIR950@PMs@MN could notably eliminate melanoma tumors with a low dose of NIR950. Overall, this dissolving MN system loaded with NIR950 showed remarkable photostability and also achieved a valid photothermal effect, which indicate great potential for clinical superficial tumor therapy.
Collapse
Affiliation(s)
- Sihui Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Melanoma is an aggressive form of skin cancer with a very high mortality rate. Early diagnosis of the disease, the utilization of more potent pharmacological agents, and more effective drug delivery systems are essential to achieve an optimal treatment plan. The applications of nanotechnology to improve therapeutic efficacy and early diagnosis for melanoma treatment have received great interest among researchers and clinicians. In this review, we summarize the recent progress of utilizing various nanomaterials for theranostics of melanoma. The key importance of using nanomaterials for theranostics of melanoma is to improve efficacy and reduce side effects, ensuring safe implementation in clinical use. As opposed to conventional in vitro diagnostic methods, in vivo medical imaging technologies have the advantages of being a type of non-invasive, real-time monitoring. Several common nanoparticles, including ultrasmall superparamagnetic iron oxide nanoparticles, silica nanoparticles, and carbon-based nanoparticles, have been applied to deliver chemotherapeutic agents for the theranostics of melanoma. The application of nanomaterials for theranostics in molecular imaging (MRI, PET, US, OI, etc.) plays an important role in targeting drug delivery of melanoma, by monitoring the distribution site of the molecular imaging probe and the therapeutic drug in the body in real-time. Hence, it is worthwhile to anticipate the approval of these nanomaterials for theranostics in molecular imaging by the US Food and Drug Administration in clinical trials.
Collapse
|
19
|
Arasi MB, Pedini F, Valentini S, Felli N, Felicetti F. Advances in Natural or Synthetic Nanoparticles for Metastatic Melanoma Therapy and Diagnosis. Cancers (Basel) 2020; 12:cancers12102893. [PMID: 33050185 PMCID: PMC7601614 DOI: 10.3390/cancers12102893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Advanced melanoma is still a major challenge in oncology. In the early stages, melanoma can be treated successfully with surgery and the survival rate is high, nevertheless the survival rate drops drastically after metastasis dissemination. The identification of parameters predictive of the prognosis to support clinical decisions and of new efficacious therapies are important to ensure patients the best possible prognosis. Recent progress in nanotechnology allowed the development of nanoparticles able to protect drugs from degradation and to deliver the drug to the tumor. Modification of the nanoparticle surface by specific molecules improves retention and accumulation in the target tissue. In this review, we describe the potential role of nanoparticles in advanced melanoma treatment and discuss the current efforts of designing polymeric nanoparticles for controlled drug release at the site upon injection. In addition, we highlight the advances as well as the challenges of exosome-based nanocarriers as drug vehicles. We place special focus on the advantages of these natural nanocarriers in delivering various cargoes in advanced melanoma treatment. We also describe the current advances in knowledge of melanoma-related exosomes, including their biogenesis, molecular contents and biological functions, focusing our attention on their utilization for early diagnosis and prognosis in melanoma disease.
Collapse
|
20
|
New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Mol Biol Rep 2020; 47:9021-9032. [DOI: 10.1007/s11033-020-05886-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
|
21
|
Cheon SH, Seo BY, Lee YJ, Sim D, Lee SB, Guruprasath P, Singh TD, Lee BH, Sarangthem V, Park RW. Targeting of Cisplatin-Resistant Melanoma Using a Multivalent Ligand Presenting an Elastin-like Polypeptide. ACS Biomater Sci Eng 2020; 6:5024-5031. [PMID: 33455295 DOI: 10.1021/acsbiomaterials.0c00599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acquired drug resistance is a common occurrence and the main cause of melanoma treatment failure. Melanoma cells frequently developed resistance against cisplatin during chemotherapy, and thus, targeting delivery systems have been devised to decrease drug resistance, increase therapeutic efficacy, and reduce side effects. We genetically engineered a macromolecular carrier using the recursive directional ligation method that specifically targets cisplatin-resistant (Cis-R) melanoma. This carrier is composed of an elastin-like polypeptide (ELP) and multiple copies of Cis-R melanoma-targeting ligands (M-peptide). The designed M16E108 contains 16 targeting ligands incorporated within an ELP and has an ideal thermal phase transition at 39 °C. When treated to melanoma cells, M16E108 specifically accumulated in Cis-R B16F10 melanoma cells and accumulated to a lesser extent in parental B16F10 cells. Consistently, M16E108 exhibited efficient homing and longer retention in tumor tissues in Cis-R melanoma-bearing mice than in parental B16F10 melanoma-bearing mice. Thus, M16E108 was found to display considerable potential as a novel agent that specifically targets cisplatin-resistant melanoma.
Collapse
Affiliation(s)
- Sun-Ha Cheon
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Bo-Yeon Seo
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Jin Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seon-Boon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Padmanaban Guruprasath
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.,Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
22
|
Bruschi ML, da Silva JB, Rosseto HC. Photodynamic Therapy of Psoriasis Using Photosensitizers of Vegetable Origin. Curr Pharm Des 2020; 25:2279-2291. [PMID: 31258060 DOI: 10.2174/1381612825666190618122024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Psoriasis is an immune-mediated, chronic and recurrent inflammatory skin disease, prevalent worldwide, and represents an important burden in life quality of patients. The most common clinical variant is termed as psoriasis vulgaris or plaque psoriasis, which with an individualized and carefully monitored therapy can decrease the patients' morbidity and improving their life quality. The aim is to achieve disease control, minimize the adverse drug effects, and tailor the treatment to individual patient factors. Photodynamic therapy (PDT) is based on local or systemic administration of a non-toxic photosensitizer followed by irradiation with a particular wavelength to generate reactive oxygen species (ROS), mainly highly cytotoxic singlet oxygen (1O2). The generation of these species results in the attack to substrates involved in biological cycles causing necrosis and apoptosis of affected tissues. Photosensitizers are found in natural products and also obtained by partial syntheses from abundant natural starting compounds. They can be isolated at low cost and in large amounts from plants or algae. Therefore, this manuscript reviews the use of molecules from vegetal sources as photosensitizer agents for the PDT of psoriasis. Psoriasis pathogenesis, management and treatment were reviewed. PDT principles, fundamentals and utilization for the treatment of psoriasis were also discussed. Photosensitizers for PDT of psoriasis are also reviewed focusing on those from vegetal sources. Despite the PDT is utilized for the treatment of psoriasis, very little amount of photosensitizers from plant sources are utilized, such as chlorophyll derivatives and hypericin; however, other natural photosensitizers such as curcumin, could also be investigated. They could constitute a very important, safe and cheap alternative for the successful photodynamic treatment of psoriasis.
Collapse
Affiliation(s)
- Marcos L Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Hélen C Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| |
Collapse
|
23
|
Wu KJ, Ho SH, Dong JY, Fu L, Wang SP, Liu H, Wu C, Leung CH, Wang HMD, Ma DL. Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS APPLIED BIO MATERIALS 2020; 3:2017-2027. [DOI: 10.1021/acsabm.9b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Yi Dong
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Ling Fu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
24
|
Fandzloch M, Jaromin A, Zaremba-Czogalla M, Wojtczak A, Lewińska A, Sitkowski J, Wiśniewska J, Łakomska I, Gubernator J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans 2020; 49:1207-1219. [PMID: 31903475 DOI: 10.1039/c9dt03464a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two types of ruthenium(ii) complexes containing 1,2,4-triazolo[1,5-a]pyrimidines of the general formulas [RuCl2(dmso)3(L)] ((1)-(3)) and [RuCl2(dmso)2(L)2] ((4)-(6)), where L represents 1,2,4-triazolo[1,5-a]pyrimidine (tp for (1)), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp for (2)), 7-isobutyl-5-methyl-1,2,4-trizolo[1,5-a]pyrimidine (ibmtp for (3)), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for (4)), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for (5)) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for (6)), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, and 15N), and X-ray (for (3), (4), and (5)). All these complexes have been thoroughly screened for their in vitro cytotoxicity against melanoma cell lines A375 and Hs294T, indicating cis,cis,cis-[RuCl2(dbtp)2(dmso)2] (5) as the most active representative, in addition to being non-toxic to normal human fibroblasts (NHDF) and not inducing hemolysis of human erythrocytes. In order to develop an intravenous formulation for (5), liposomes composed of soybean phosphatidylcholine (SPC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) were prepared and subsequently characterized. (5)-Loaded liposomes, with spherical morphology, assessed by transmission electron microscope (TEM), exhibited satisfactory encapsulation efficiency and stability. In in vitro experiments, PEG-modified (5)-loaded liposomes were more effective (10-fold) than free (5) for growth inhibition of both human melanoma cell lines. Furthermore, such an approach resulted in the reduction of cancer cell viability that was even 10-fold greater than that observed for free cisplatin.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland and Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland and Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
25
|
Gyukity-Sebestyén E, Harmati M, Dobra G, Németh IB, Mihály J, Zvara Á, Hunyadi-Gulyás É, Katona R, Nagy I, Horváth P, Bálind Á, Szkalisity Á, Kovács M, Pankotai T, Borsos B, Erdélyi M, Szegletes Z, Veréb ZJ, Buzás EI, Kemény L, Bíró T, Buzás K. Melanoma-Derived Exosomes Induce PD-1 Overexpression and Tumor Progression via Mesenchymal Stem Cell Oncogenic Reprogramming. Front Immunol 2019; 10:2459. [PMID: 31681332 PMCID: PMC6813737 DOI: 10.3389/fimmu.2019.02459] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/01/2019] [Indexed: 01/31/2023] Open
Abstract
Recently, it has been described that programmed cell death protein 1 (PD-1) overexpressing melanoma cells are highly aggressive. However, until now it has not been defined which factors lead to the generation of PD-1 overexpressing subpopulations. Here, we present that melanoma-derived exosomes, conveying oncogenic molecular reprogramming, induce the formation of a melanoma-like, PD-1 overexpressing cell population (mMSCPD-1+) from naïve mesenchymal stem cells (MSCs). Exosomes and mMSCPD-1+ cells induce tumor progression and expression of oncogenic factors in vivo. Finally, we revealed a characteristic, tumorigenic signaling network combining the upregulated molecules (e.g., PD-1, MET, RAF1, BCL2, MTOR) and their upstream exosomal regulating proteins and miRNAs. Our study highlights the complexity of exosomal communication during tumor progression and contributes to the detailed understanding of metastatic processes.
Collapse
Affiliation(s)
- Edina Gyukity-Sebestyén
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School of Interdisciplinary Sciences, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mária Harmati
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School of Interdisciplinary Sciences, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Dobra
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School of Interdisciplinary Sciences, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István B. Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Johanna Mihály
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Institute of Genetics, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Róbert Katona
- Artificial Chromosome and Stem Cell Research Laboratory, Institute of Genetics, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - István Nagy
- Sequencing Platform, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Péter Horváth
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Árpád Bálind
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Ábel Szkalisity
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Kovács
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Barbara Borsos
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Advanced Optical Imaging Group, Department of Optics and Quantum Electronics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Szegletes
- Atomic Force Microscope Laboratory, Institute of Biophysics, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán J. Veréb
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Edit I. Buzás
- MTA-SE Immuno-proteogenomics Extracellular Vesicle Research Group, Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Buzás
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre of Hungarian Academy of Sciences, Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Hou X, Pang Y, Li X, Yang C, Liu W, Jiang G, Liu Y. Core‑shell type thermo‑nanoparticles loaded with temozolomide combined with photothermal therapy in melanoma cells. Oncol Rep 2019; 42:2512-2520. [PMID: 31545500 PMCID: PMC6826326 DOI: 10.3892/or.2019.7329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
A novel core-shell type thermo-nanoparticle (CSTNP) co-loaded with temozolomide (TMZ) and the fluorescein new indocyanine green dye IR820 (termed IT-CSTNPs) was designed and combined with a near-infrared (NIR) laser to realize its photothermal conversion. The IT-CSTNPs were prepared using a two-step synthesis method and comprised a thermosensitive shell and a biodegradable core. IR820 and TMZ were entrapped in the shell and the core, respectively. Dynamic light scattering results demonstrated that the average hydrodynamic size of the IT-CSTNPs was 196.4±3.1 nm with a ζ potential of −24.9±1.3 mV. The encapsulation efficiencies of TMZ and IR820 were 6.1 and 16.6%, respectively. Temperature increase curves under NIR laser irradiation indicated that the IT-CSTNPs exhibited the desired photothermal conversion efficiency. The in vitro drug release curves revealed a suitable release capability of IT-CSTNP under physiological conditions, whereas NIR laser irradiation accelerated the drug release. Inverted fluorescence microscopy and flow cytometry results revealed that the uptake of IT-CSTNPs by A375 melanoma cells occurred in a concentration-dependent manner. Confocal laser scanning microscopy results indicated that IT-CSTNPs entered tumour cells via endocytosis and were located in intercellular lysosomes. In summary, the present study explored the photothermal conversion capability, cellular uptake, and intracellular localization of IT-CSTNPs.
Collapse
Affiliation(s)
- Xiaoyang Hou
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yanyu Pang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xinxin Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, P.R. China
| | - Wenlou Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yanqun Liu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
27
|
Cadinoiu AN, Rata DM, Atanase LI, Daraba OM, Gherghel D, Vochita G, Popa M. Aptamer-Functionalized Liposomes as a Potential Treatment for Basal Cell Carcinoma. Polymers (Basel) 2019; 11:E1515. [PMID: 31540426 PMCID: PMC6780726 DOI: 10.3390/polym11091515] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/10/2023] Open
Abstract
More than one out of every three new cancers is a skin cancer, and the large majority are basal cell carcinomas (BCC). Targeted therapy targets the cancer's specific genes, proteins, or tissue environment that contributes to cancer growth and survival and blocks the growth as well as the spread of cancer cells while limiting damage to healthy cells. Therefore, in the present study AS1411 aptamer-functionalized liposomes for the treatment of BCC were obtained and characterized. Aptamer conjugation increased liposome size, suggesting that the presence of an additional hydrophilic molecule on the liposomal surface increased the hydrodynamic diameter. As expected, the negatively charged DNA aptamer reduced the surface potential of the liposomes. Vertical Franz diffusion cells with artificial membranes were used to evaluate the in vitro release of 5-fluorouracil (5-FU). The aptamer moieties increase the stability of the liposomes and act as a supplementary steric barrier leading to a lower cumulative amount of the released 5-FU. The in vitro cell viability, targeting capability and apoptotic effects of liposomes on the human dermal fibroblasts and on the basal cell carcinoma TE 354.T cell lines were also evaluated. The results indicate that the functionalized liposomes are more efficient as nanocarriers than the non-functionalized ones.
Collapse
Affiliation(s)
- Anca N Cadinoiu
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Delia M Rata
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Leonard I Atanase
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Oana M Daraba
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Daniela Gherghel
- NIRDBS - Institute of Biological Research Iasi, Department of Experimental and Applied Biology, Lascar Catargi 47, Iasi 700107, Romania.
| | - Gabriela Vochita
- NIRDBS - Institute of Biological Research Iasi, Department of Experimental and Applied Biology, Lascar Catargi 47, Iasi 700107, Romania.
| | - Marcel Popa
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
- Academy of Romanian Scientists, Splaiul Independentei Street, No. 54, Bucharest 050094, Romania.
| |
Collapse
|
28
|
Sharma V, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin Cancer Biol 2019; 59:133-146. [PMID: 31408722 DOI: 10.1016/j.semcancer.2019.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is the major cause of deaths in women worldwide. Detection and treatment of breast cancer at earlier stages of the disease has shown encouraging results. Modern genomic technologies facilitated several therapeutic options however the diagnosis of the disease at an advanced stage claim more deaths. Therefore more research directed towards genomics and proteomics into this area may lead to novel biomarkers thereby enhancing the survival rates in breast cancer patients. Phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was shown to be hyperactivated in most of the breast carcinomas resulting in excessive growth, proliferation, and tumor development. Development of nanotechnology has provided many interesting avenues to target the PI3K/Akt/mTOR pathway both at the pre-clinical and clinical stages. Therefore, the current review summarizes the underlying mechanism and the importance of targeting PI3K/Akt/mTOR pathway, novel biomarkers and use of nanotechnological interventions in breast cancer.
Collapse
Affiliation(s)
- VarRuchi Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, LA USA
| | - Panneerselvam Priya
- Department of Electrical and Electronics Engineering, Thiruvalluvar College of Engineering and Technology, Vandavasi, 604505, Tamil Nadu, India
| |
Collapse
|
29
|
Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, Filip GA. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem 2019; 25:5540-5563. [PMID: 29278205 DOI: 10.2174/0929867325666171226115626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Malignant melanoma is one of the most aggressive malignant tumors, with unpredictable evolution. Despite numerous therapeutic options, like chemotherapy, BRAF inhibitors and immunotherapy, advanced melanoma prognosis remains severe. Photodynamic therapy (PDT) has been successfully used as the first line or palliative therapy for the treatment of lung, esophageal, bladder, non melanoma skin and head and neck cancers. However, classical PDT has shown some drawbacks that limit its clinical application in melanoma. OBJECTIVE The most important challenge is to overcome melanoma resistance, due to melanosomal trapping, presence of melanin, enhanced oxidative stress defense, defects in the apoptotic pathways, immune evasion, neoangiogenesis stimulation. METHOD In this review we considered: (1) main signaling molecular pathways deregulated in melanoma as potential targets for personalized therapy, including PDT, (2) results of the clinical studies regarding PDT of melanoma, especially advanced metastatic stage, (3) progresses made in the design of anti-melanoma photosensitizers (4) inhibition of tumor neoangiogenesis, as well as (5) advantages of the derived therapies like photothermal therapy, sonodynamic therapy. RESULTS PDT represents a promising alternative palliative treatment for advanced melanoma patients, mainly due to its minimal invasive character and low side effects. Efficient melanoma PDT requires: (1) improved, tumor targeted, NIR absorbing photosensitizers, capable of inducing high amounts of different ROS inside tumor and vasculature cells, possibly allowing a theranostic approach; (2) an efficient adjuvant immune therapy. CONCLUSION Combination of PDT with immune stimulation might be the key to overcome the melanoma resistance and to obtain better, sustainable clinical results.
Collapse
Affiliation(s)
- Ioana Baldea
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Lorin Giurgiu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Ioana Diana Teacoe
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Diana Elena Olteanu
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Florin Catalin Olteanu
- Industrial Engineering and Management Department, Transylvania University, Brasov, Romania
| | - Simona Clichici
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Physiology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Abstract
Malignant melanoma is an aggressive skin cancer with limited therapeutic options. Cancer is the second largest cause of death in society and one of the most difficult diseases to treat. Advances in biotechnology have enabled the current use of nanotechnology via the application of nanomaterials, especially as drug delivery systems for the transportation of very small particles. In this context, carbon nanotubes, with a potential role in the diagnosis and treatment of melanoma, are still an emerging research field. Their properties have been extensively studied for the use of antineoplastics drugs, as well as for DNA and RNA interference for the treatment of cancer. However, the most important challenge in nanomedicine is to decrease the toxicity and increase the biocompatibility of the nanomaterials used to transport therapeutic molecules. In this sense, this article addresses the recent advances in the use of carbon nanotubes in melanoma therapy and highlights the opportunities and challenges in this area. The advances and challenges involving these topics are essential to the success of nanoconjugate systems, and studies improving the comprehension of these nanosystems contribute to the development of specific antitumor therapies.
Collapse
|
31
|
Padayachee ER, Adeola HA, Van Wyk JC, Nsole Biteghe FA, Chetty S, Khumalo NP, Barth S. Applications of SNAP-tag technology in skin cancer therapy. Health Sci Rep 2019; 2:e103. [PMID: 30809593 PMCID: PMC6375544 DOI: 10.1002/hsr2.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer treatment in the 21st century has seen immense advances in optical imaging and immunotherapy. Significant progress has been made in the bioengineering and production of immunoconjugates to achieve the goal of specifically targeting tumors. DISCUSSION In the 21st century, antibody drug conjugates (ADCs) have been the focus of immunotherapeutic strategies in cancer. ADCs combine the unique targeting of monoclonal antibodies (mAbs) with the cancer killing ability of cytotoxic drugs. However, due to random conjugation methods of drug to antibody, ADCs are associated with poor antigen specificity and low cytotoxicity, resulting in a drug to antibody ratio (DAR) >1. This means that the cytotoxic drugs in ADCs are conjugated randomly to antibodies, by cysteine or lysine residues. This generates heterogeneous ADC populations with 0 to 8 drugs per an antibody, each with distinct pharmacokinetic, efficacy, and toxicity properties. Additionally, heterogeneity is created not only by different antibody to ligand ratios but also by different sites of conjugation. Hence, much effort has been made to find and establish antibody conjugation strategies that enable us to better control stoichiometry and site-specificity. This includes utilizing protein self-labeling tags as fusion partners to the original protein. Site-specific conjugation is a significant characteristic of these engineered proteins. SNAP-tag is one such engineered self-labeling protein tag shown to have promising potential in cancer treatment. The SNAP-tag is fused to an antibody of choice and covalently reacts specifically in a 1:1 ratio with benzylguanine (BG) substrates, eg, fluorophores or photosensitizers, to target skin cancer. This makes SNAP-tag a versatile technique in optical imaging and photoimmunotherapy of skin cancer. CONCLUSION SNAP-tag technology has the potential to contribute greatly to a broad range of molecular oncological applications because it combines efficacious tumor targeting, minimized local and systemic toxicity, and noninvasive assessment of diagnostic/prognostic molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Eden Rebecca Padayachee
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Henry Ademola Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Jennifer Catherine Van Wyk
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Fleury Augustine Nsole Biteghe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Shivan Chetty
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla Patience Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
32
|
Parisi E, Garcia AM, Marson D, Posocco P, Marchesan S. Supramolecular Tripeptide Hydrogel Assembly with 5-Fluorouracil. Gels 2019; 5:E5. [PMID: 30691142 PMCID: PMC6473331 DOI: 10.3390/gels5010005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
In this work, we present Thioflavin T fluorescence, transmission electron microscopy (TEM), circular dichroism (CD), Fourier-transformed infrared (FT-IR), and oscillatory rheometry studies applied to an antineoplastic drug, 5-fluorouracil (5-FU), embedded in a heterochiral tripeptide hydrogel to obtain a drug delivery supramolecular system. The release of 5-fluorouracil was monitored over time by reverse-phase high-performance liquid chromatography (HPLC) and its interaction with the tripeptide assemblies was probed by all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Evelina Parisi
- Chemical & Pharmaceutical Sciences Department, University of Trieste; Via L. Giorgieri 1, 34127 Trieste, Italy.
| | - Ana M Garcia
- Chemical & Pharmaceutical Sciences Department, University of Trieste; Via L. Giorgieri 1, 34127 Trieste, Italy.
| | - Domenico Marson
- Department of Engineering and Architecture, University of Trieste; Via A. Valerio 6/1, 34127 Trieste, Italy.
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste; Via A. Valerio 6/1, 34127 Trieste, Italy.
| | - Silvia Marchesan
- Chemical & Pharmaceutical Sciences Department, University of Trieste; Via L. Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
33
|
Makhlouf A, Hajdu I, Hartimath SV, Alizadeh E, Wharton K, Wasan KM, Badea I, Fonge H. 111In-Labeled Glycoprotein Nonmetastatic b (GPNMB) Targeted Gemini Surfactant-Based Nanoparticles against Melanoma: In Vitro Characterization and in Vivo Evaluation in Melanoma Mouse Xenograft Model. Mol Pharm 2019; 16:542-551. [DOI: 10.1021/acs.molpharmaceut.8b00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Amal Makhlouf
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, 12411 Cairo, Egypt
| | - Istvan Hajdu
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Siddesh V. Hartimath
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
| | - Elahe Alizadeh
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
| | - Kayla Wharton
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kishor M. Wasan
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
- Saskatchewan Centre for Cyclotron Sciences (SCCS), The Fedoruk Centre, 120 Maintenance Road, Saskatoon, Saskatchewan S7N 5C4, Canada
- Department of Medical Imaging, Royal University Hospital Saskatoon, 103 University Drive, Saskatoon, Saskatchewan S7N 0W8, Canada
| |
Collapse
|
34
|
Tassinari V, Cesarini V, Silvestris DA, Gallo A. The adaptive potential of RNA editing-mediated miRNA-retargeting in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:291-300. [PMID: 30605729 DOI: 10.1016/j.bbagrm.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing is a post-transcriptional mechanism that converts the genomically coded Adenosine (A) into Inosine (I) at the RNA level. This type of RNA editing is the most frequent in humans and is mediated by the ADAR enzymes. RNA editing can alter the genetic code of mRNAs, but also affect the functions of noncoding RNAs such as miRNAs. Recent studies have identified thousands of microRNA editing events in different cancer types. However, the important role played by miRNA-editing in cancer has been reported for just a few microRNAs. Herein, we recapitulate the current studies on cancer-related microRNA editing and discuss their importance in tumor growth and progression. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Valentina Tassinari
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy
| | - Valeriana Cesarini
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy
| | - Domenico Alessandro Silvestris
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù (OPBG), Viale di San Paolo, 15, 00146 Rome, Italy.
| |
Collapse
|
35
|
Mohammadpour A, Derakhshan M, Darabi H, Hedayat P, Momeni M. Melanoma: Where we are and where we go. J Cell Physiol 2018; 234:3307-3320. [PMID: 30362507 DOI: 10.1002/jcp.27286] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Melanoma is known as an aggressive tumor which shows an increasing incidence and poor prognosis in the metastatic phase. Hence, it seems that diagnosis and effective management (including early diagnosis, choosing of the effective therapeutic platform, caring, and training of patients for early detection) are major aspects of melanoma therapy. Early detection of melanoma is a key point for melanoma therapy. There are various diagnosis options such as assessing of biopsy, imaging techniques, and biomarkers (i.e., several proteins, polymorphism, and liquid biopsy). Among the various biomarkers, assessing circulating tumor cells, cell-free DNAs, cell-free RNAs, and microRNAs (miRNAs) have emerged as powerful diagnosis tools for melanoma patients. Deregulations of these molecules are associated with melanoma pathogenesis. After detection of melanoma, choosing of effective therapeutic regimen is a key step for recovery of melanoma patients. Several studies indicated that various therapeutic approaches including surgery, immunotherapy, systematic therapy, radiation therapy and antibodies therapy could be used as potential therapeutic candidates for melanoma therapy. Caring for melanoma patients is one of the important components of melanoma therapy. Caring and training for melanoma patients could contribute to better monitoring of patients in response to various therapeutic options. Here, we summarized various diagnosis approaches such as assessing biopsy, imaging techniques, and utilization of various biomarkers (i.e., proteins, CTCs, cfDNAs, and miRNAs) as a diagnostic biomarker for detection and monitoring patients with melanoma. Moreover, we highlighted various therapeutic options and caring aspects in patients with melanoma.
Collapse
Affiliation(s)
- Ali Mohammadpour
- Faculty of Nursing and Midwifery, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Derakhshan
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Hassan Darabi
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Hedayat
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Mohammad Momeni
- Department of Radiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Mishra H, Mishra PK, Ekielski A, Jaggi M, Iqbal Z, Talegaonkar S. Melanoma treatment: from conventional to nanotechnology. J Cancer Res Clin Oncol 2018; 144:2283-2302. [DOI: 10.1007/s00432-018-2726-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 11/24/2022]
|
37
|
Rangel-Vázquez NA, Villanueva-García DN, Kalla J. Structural analysis of adsorption processes of 5FU and imiquimodon hydrogels using AMBER/PM3 hybrid model. REVISTA COLOMBIANA DE QUÍMICA 2018. [DOI: 10.15446/rev.colomb.quim.v47n2.67352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El modelo hibrido AMBER/PM3permitió determinar las propiedades estructurales del 5FU e imiquimod individualmente y después de la adsorción en hidrogeles de quitosano entrecruzados con genipina, respectivamente. Se observó que la energía libre de Gibbs (ΔG) disminuye con la adsorción, sin embargo, en ambos procesos se encontró estabilidad termodinámica y espontaneidad; ΔG fue verificado mediante el incremento en los momentos dipolares. Por otro lado, el coeficiente de partición estableció el carácter hidrofìlico con respecto al agua presente en el hidrogel, el cual aumenta con la adsorción. El FTIR evidenció que existen desplazamientos en las señales. Se observaron las bandas de puente de hidrógeno, atribuidas a la formación de enlaces, para realizar la adsorción de los fármacos. La adsorción fue verificada mediante los MESP y los análisis de superficie, en donde se apreció la distribución de zonas nucleofílicas y electrofílicas.
Collapse
|
38
|
CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma. Oncotarget 2018; 7:64778-64784. [PMID: 27556188 PMCID: PMC5323115 DOI: 10.18632/oncotarget.11415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.
Collapse
|
39
|
Naidoo C, Kruger CA, Abrahamse H. Photodynamic Therapy for Metastatic Melanoma Treatment: A Review. Technol Cancer Res Treat 2018; 17:1533033818791795. [PMID: 30099929 PMCID: PMC6090489 DOI: 10.1177/1533033818791795] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 01/21/2023] Open
Abstract
This review article is based on specifically targeted nanoparticles that have been used in the treatment of melanoma. According to the Skin Cancer Foundation, within 2017 an estimated 9730 people will die due to invasive melanoma. Conventional treatments for nonmalignant melanoma include surgery, chemotherapy, and radiation. For the treatment of metastatic melanoma, 3 therapeutic agents have been approved by the Food and Drug Administration: dacarbazine, recombinant interferon α-2b, and high-dose interleukin 2. Photodynamic therapy is an alternative therapy that activates a photosensitizer at a specific wavelength forming reactive oxygen species which in turn induces cell death; it is noninvasive with far less side effects when compared to conventional treatments. Nanoparticles are generally conjugated to photosynthetic drugs, since they are biocompatible, stabile, and durable, as well as have a high loading capacity, which improve either passive or active photosensitizer drug delivery to targeted cells. Therefore, various photosynthetic drugs and nanoparticle drug delivery systems specifically targeted for melanoma were analyzed in this review article in relation to either their passive or their active cellular uptake mechanisms in order to deduce the efficacy of photodynamic therapy treatment for metastatic melanoma which currently remains ongoing. The overall findings from this review concluded that no current photodynamic therapy studies have been performed in relation to active nanoparticle platform photosensitizer drug carrier systems for the treatment of metastatic melanoma, and so this type of research requires further investigation into developing a more efficient active nano-photosensitizer carrier smart drug that can be conjugated to specific cell surface receptors and combinative monoclonal antibodies so that a further enhanced and more efficient form of targeted photodynamic therapy for the treatment of metastatic melanoma can be established.
Collapse
Affiliation(s)
- Channay Naidoo
- Laser Research Centre, Faculty of Health Sciences, University of
Johannesburg, Johannesburg, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of
Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of
Johannesburg, Johannesburg, South Africa
| |
Collapse
|
40
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
41
|
Chen J, Huang XF, Shao R, Chen C, Deng C. Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes. Front Neurosci 2017; 11:643. [PMID: 29209160 PMCID: PMC5702456 DOI: 10.3389/fnins.2017.00643] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Antipsychotic drugs (APDs) are widely prescribed to control various mental disorders. As mental disorders are chronic diseases, these drugs are often used over a life-time. However, APDs can cause serious glucometabolic side-effects including type 2 diabetes and hyperglycaemic emergency, leading to medication non-compliance. At present, there is no effective approach to overcome these side-effects. Understanding the mechanisms for APD-induced diabetes should be helpful in prevention and treatment of these side-effects of APDs and thus improve the clinical outcomes of APDs. In this review, the potential mechanisms for APD-induced diabetes are summarized so that novel approaches can be considered to relieve APD-induced diabetes. APD-induced diabetes could be mediated by multiple mechanisms: (1) APDs can inhibit the insulin signaling pathway in the target cells such as muscle cells, hepatocytes and adipocytes to cause insulin resistance; (2) APD-induced obesity can result in high levels of free fatty acids (FFA) and inflammation, which can also cause insulin resistance. (3) APDs can cause direct damage to β-cells, leading to dysfunction and apoptosis of β-cells. A recent theory considers that both β-cell damage and insulin resistance are necessary factors for the development of diabetes. In high-fat diet-induced diabetes, the compensatory ability of β-cells is gradually damaged, while APDs cause direct β-cell damage, accounting for the severe form of APD-induced diabetes. Based on these mechanisms, effective prevention of APD-induced diabetes may need an integrated approach to combat various effects of APDs on multiple pathways.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Renfu Shao
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Deng
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
42
|
Afrooz H, Ahmadi F, Fallahzadeh F, Mousavi-Fard SH, Alipour S. Design and characterization of paclitaxel-verapamil co-encapsulated PLGA nanoparticles: Potential system for overcoming P-glycoprotein mediated MDR. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
de Paula LB, Primo FL, Tedesco AC. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev 2017; 9:761-773. [PMID: 28823025 DOI: 10.1007/s12551-017-0293-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most recurrent and malignant astrocytic glioma found in adults. Biologically, GBMs are highly aggressive tumors that often show diffuse infiltration of the brain parenchyma, making complete surgical resection difficult. GBM is not curable with surgery alone because tumor cells typically invade the surrounding brain, rendering complete resection unsafe. Consequently, present-day therapy for malignant glioma remains a great challenge. The location of the invasive tumor cells presents several barriers to therapeutic delivery. The blood-brain barrier regulates the trafficking of molecules to and from the brain. While high-grade brain tumors contain some "leakiness" in their neovasculature, the mechanisms of GBM onset and progression remain largely unknown. Recent advances in the understanding of the signaling pathways that underlie GBM pathogenesis have led to the development of new therapeutic approaches targeting multiple oncogenic signaling aberrations associated with the GBM. Among these, drug delivery nanosystems have been produced to target therapeutic agents and improve their biodistribution and therapeutic index in the tumor. These systems mainly include polymer or lipid-based carriers such as liposomes, metal nanoparticles, polymeric nanospheres and nanocapsules, micelles, dendrimers, nanocrystals, and nanogold. Photodynamic therapy (PDT) is a promising treatment for a variety of oncological diseases. PDT is an efficient, simple, and versatile method that is based on a combination of a photosensitive drug and light (generally laser-diode or laser); these factors are separately relatively harmless but when used together in the presence of oxygen molecules, free radicals are produced that initiate a sequence of biological events, including phototoxicity, vascular damage, and immune responses. Photodynamic pathways activate a cascade of activities, including apoptotic and necrotic cell death in both the tumor and the neovasculature, leading to a permanent lesion and destruction of GBM cells that remain in the healthy tissue. Glioblastoma tumors differ at the molecular level. For example, gene amplification epidermal growth factor receptor and its receptor are more highly expressed in primary GBM than in secondary GBM. Despite these distinguishing features, both types of tumors (primary and secondary) arise as a result dysregulation of numerous intracellular signaling pathways and have standard features, such as increased cell proliferation, survival and resistance to apoptosis, and loss of adhesion and migration, and may show a high degree of invasiveness. PDT may promote significant tumor regression and extend the lifetime of patients who experience glioma progression.
Collapse
Affiliation(s)
- Leonardo B de Paula
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Fernando L Primo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14801-903, São Paulo, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, 14040-901, São Paulo, Brazil.
| |
Collapse
|
44
|
Naserzadeh P, Ansari Esfeh F, Kaviani M, Ashtari K, Kheirbakhsh R, Salimi A, Pourahmad J. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe 2O 3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells. Cutan Ocul Toxicol 2017; 37:157-166. [PMID: 28768445 DOI: 10.1080/15569527.2017.1363227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Nanomaterials (NM) exhibit novel anticancer properties. MATERIALS AND METHODS The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe2O3 nanoparticles, were compared with normal and melanoma cells. RESULTS All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. CONCLUSIONS Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fatemeh Ansari Esfeh
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahboubeh Kaviani
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Khadijeh Ashtari
- d Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Raheleh Kheirbakhsh
- b Cancer Biology Research Center , Cancer Institute of Iran, Tehran University of Medical Sciences , Tehran , Iran
| | - Ahmad Salimi
- c Department of Pharmacology and Toxicology, School of Pharmacy , Ardabil University of Medical Science , Ardabil , Iran
| | - Jalal Pourahmad
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
45
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, Asghar K. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther 2017; 10:463-476. [PMID: 28176942 PMCID: PMC5268369 DOI: 10.2147/ott.s119362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Amnah Mahroo
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Kaenat Nasir
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Rai Khalid Farooq
- Department of Physiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nasir Jalal
- Department of Molecular and Cellular Pharmacology, Health Sciences Platform, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Kashif Asghar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad; Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
46
|
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240:77-92. [PMID: 26518723 PMCID: PMC4896846 DOI: 10.1016/j.jconrel.2015.10.049] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has - and will continue to have - a profound impact on both clinical outcomes and the development of new products.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Lauren K Macri
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
47
|
Beeharry MK, Liu WT, Yao XX, Yan M, Zhu ZG. A critical analysis of the cytoreductive surgery with hyperthermic intraperitoneal chemotherapy combo in the clinical management of advanced gastric cancer: an effective multimodality approach with scope for improvement. Transl Gastroenterol Hepatol 2016; 1:77. [PMID: 28138643 DOI: 10.21037/tgh.2016.08.05] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
Peritoneal carcinomatosis (PC) is manifested in up to 40% of gastric cancer (GC) patients, after which their 5-year survival drops to less than 5%. The currently most acceptable treatment option for advanced GC (AGC) is systemic chemo and radio therapies with however generally very unsatisfying results and this led to a resurgence of interest in regional therapies like cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Small trials have indicated an association with prolonged survival when applying this technique to AGC manifesting with PC. High procedure-related morbidity and mortality associated with the CRS-HIPEC approach have however brought by a polemic on the merits of the latter: with the advent of regulatory approval of more effective as well as novel, more personalized treatment options in AGC, along with advances in tailoring investigational agents specifically for peritoneal delivery, there clearly is a need to outline the appropriate role of CRS-HIPEC in this disease. In a clear objective to improve the therapeutic efficiency of HIPEC, there have been immense developments in the technical aspects of this technology including the use of nanotechnology in more precise drug delivery systems (DDS) or choice of more efficient drugs such as gene-target technology, laparoscopy and so on. Henceforth, in this review, we will be highlighting the past and current status of the CRS + HIPEC procedure, shedding light on the pros and cons in order to boost up the efficiency of this multimodality approach.
Collapse
Affiliation(s)
- Maneesh K Beeharry
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Tao Liu
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xue-Xin Yao
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Yan
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng-Gang Zhu
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
48
|
Drewes CC, Fiel LA, Bexiga CG, Asbahr ACC, Uchiyama MK, Cogliati B, Araki K, Guterres SS, Pohlmann AR, Farsky SP. Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models. Int J Nanomedicine 2016; 11:1261-79. [PMID: 27099491 PMCID: PMC4821388 DOI: 10.2147/ijn.s101543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Melanoma is a severe metastatic skin cancer with poor prognosis and no effective treatment. Therefore, novel therapeutic approaches using nanotechnology have been proposed to improve therapeutic effectiveness. Lipid-core nanocapsules (LNCs), prepared with poly(ε-caprolactone), capric/caprylic triglyceride, and sorbitan monostearate and stabilized by polysorbate 80, are efficient as drug delivery systems. Here, we investigated the effects of acetyleugenol-loaded LNC (AcE-LNC) on human SK-Mel-28 melanoma cells and its therapeutic efficacies on melanoma induced by B16F10 in C57B6 mice. LNC and AcE-LNC had z-average diameters and zeta potential close to 210 nm and -10.0 mV, respectively. CytoViva(®) microscopy images showed that LNC and AcE-LNC penetrated into SK-Mel-28 cells, and remained in the cytoplasm. AcE-LNC in vitro treatment (18-90×10(9) particles/mL; 1 hour) induced late apoptosis and necrosis; LNC and AcE-LNC (3-18×10(9) particles/mL; 48 hours) treatments reduced cell proliferation and delayed the cell cycle. Elevated levels of nitric oxide were found in supernatant of LNC and AcE-LNC, which were not dependent on nitric oxide synthase expressions. Daily intraperitoneal or oral treatment (days 3-10 after tumor injection) with LNC or AcE-LNC (1×10(12) particles/day), but not with AcE (50 mg/kg/day, same dose as AcE-LNC), reduced the volume of the tumor; nevertheless, intraperitoneal treatment caused toxicity. Oral LNC treatment was more efficient than AcE-LNC treatment. Moreover, oral treatment with nonencapsulated capric/caprylic triglyceride did not inhibit tumor development, implying that nanocapsule supramolecular structure is important to the therapeutic effects. Together, data herein presented highlight the relevance of the supramolecular structure of LNCs to toxicity on SK-Mel-28 cells and to the therapeutic efficacy on melanoma development in mice, conferring novel therapeutic mechanisms to LNC further than a drug delivery system.
Collapse
Affiliation(s)
- Carine C Drewes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana A Fiel
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Celina G Bexiga
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina C Asbahr
- Postgraduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mayara K Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Bruno Cogliati
- Department of Pathology, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Sílvia S Guterres
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana R Pohlmann
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandra P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Saeed M, van Brakel M, Zalba S, Schooten E, Rens JAP, Koning GA, Debets R, Ten Hagen TLM. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody. Int J Nanomedicine 2016; 11:955-75. [PMID: 27022262 PMCID: PMC4792179 DOI: 10.2147/ijn.s96123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cytometry and confocal microscopy. Notably, the scFv with nonenhanced affinity of M1/A1, but not the one with enhanced affinity, was exclusively bound to and internalized by melanoma tumor cells expressing M1/A1. Taken together, antigen-mediated targeting of tumor cells as well as promoting internalization of nanoparticles by these tumor cells is mediated by TCR-like scFv and can contribute to melanoma-specific targeting.
Collapse
Affiliation(s)
- Mesha Saeed
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sara Zalba
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Erik Schooten
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost A P Rens
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Gerben A Koning
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Timo L M Ten Hagen
- Laboratory of Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
50
|
Brys AK, Gowda R, Loriaux DB, Robertson GP, Mosca PJ. Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnol Adv 2016; 34:565-577. [PMID: 26826558 DOI: 10.1016/j.biotechadv.2016.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/15/2015] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
Drug toxicity and resistance remain formidable challenges in cancer treatment and represent an area of increasing attention in the case of melanoma. Nanotechnology represents a paradigm-shifting field with the potential to mitigate drug resistance while improving drug delivery and minimizing toxicity. Recent clinical and pre-clinical studies have demonstrated how a diverse array of nanoparticles may be harnessed to circumvent known mechanisms of drug resistance in melanoma to improve therapeutic efficacy. In this review, we discuss known mechanisms of resistance to various melanoma therapies and possible nanotechnology-based strategies that could be used to overcome these barriers and improve the pharmacologic arsenal available to combat advanced stage melanoma.
Collapse
Affiliation(s)
- Adam K Brys
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, NC 27710, United States
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Daniel B Loriaux
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, NC 27710, United States
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Paul J Mosca
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|