1
|
Nguyen MA, Dinh NT, Do Thi MH, Nguyen Thi D, Pham UT, Tran TQ, Nguyen VM, Le NH, Nguyen DT, Pham DTN. Simple and Rapid Method of Microwell Array Fabrication for Drug Testing on 3D Cancer Spheroids. ACS OMEGA 2024; 9:16949-16958. [PMID: 38645317 PMCID: PMC11024980 DOI: 10.1021/acsomega.3c05873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 04/23/2024]
Abstract
Three-dimensional (3D) cell culture systems are becoming increasingly popular due to their ability to mimic the complex process of angiogenesis in cancer, providing more accurate and physiologically relevant data than traditional two-dimensional (2D) cell culture systems. Microwell systems are particularly useful in this context as they provide a microenvironment that more closely resembles the in vivo environment than traditional microwells. Poly(ethylene glycol) (PEG) microwells are particularly advantageous due to their bio-inertness and the ability to tailor their material characteristics depending on the PEG molecular weight. Although there are several methods available for microwell fabrication, most of them are time-consuming and expensive. The current study utilizes a low-cost laser etching technique on poly(methyl methacrylate) materials followed by molding with PDMS to produce microwells. The optimal conditions for making concave microwells are an engraving parameter speed of 600 mm/s, power of 20%, and a design diameter of the microwell of 0.4 mm. The artificial tumor achieved its full size after 7 days of cell growth in a microwell system, and the cells developed drugs through a live/dead assay test. The results of the drug testing revealed that the IC50 value of zerumbone-loaded liposomes in HepG2 was 4.53 pM, which is greater than the IC50 value of zerumbone. The HepG2 cancer sphere's 3D platform for medication testing revealed that zerumbone-loaded liposomes were very effective at high doses. These findings generally imply that zerumbone-loaded liposomes have the capacity to target the liver and maintain medication delivery.
Collapse
Affiliation(s)
- Mai Anh Nguyen
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
| | - Nhung Thi Dinh
- Hanoi
University of Science and Technology (HUST), 1 Dai Co Viet st., Hai Ba Trung
dist., Hanoi 100000, Vietnam
| | - My Hanh Do Thi
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
| | - Dung Nguyen Thi
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
| | - Uyen Thu Pham
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
- University
of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay
dist., Hanoi 100000, Vietnam
| | - Toan Quoc Tran
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
- Institute
of Natural Products Chemistry, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 100000, Vietnam
| | - Vuong Minh Nguyen
- Institute
of Natural Products Chemistry, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 100000, Vietnam
| | - Nhung Hong Le
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
- Institute
of Natural Products Chemistry, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 100000, Vietnam
| | - Duong Thanh Nguyen
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology (VAST), 18 Hoang Quoc Viet st., Cau Giay dist., Hanoi 100000, Vietnam
| | - Dung Thuy Nguyen Pham
- NTT Institute
of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho
Chi Minh City 70000, Vietnam
- Faculty
of Environmental and Food Engineering, Nguyen
Tat Thanh University, Ho Chi Minh
City 70000, Vietnam
| |
Collapse
|
2
|
T S, R SK, Nair AR. Biosynthesis of Zinc Oxide-Zerumbone (ZnO-Zer) Nanoflakes Towards Evaluating Its Antibacterial and Reactive Oxygen Species (ROS)-Dependent Cytotoxic Activity. J Fluoresc 2023:10.1007/s10895-023-03560-1. [PMID: 38148408 DOI: 10.1007/s10895-023-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Being the second most prevalent metal oxide, zinc oxide (ZnO) nanomaterials have been widely studied and found to exhibit promising applications in various domains of biomedicine and agriculture. Considering the enhanced bioactivities displayed by secondary metabolite (SM) derived ZnO nanomaterials, present study was undertaken to evaluate the efficacy of ZnO nanoflake (NF) derived from Zerumbone (Zer), a sesquiterpenoid from Zingiber zerumbet rhizome with diverse pharmacological properties. ZnO NF prepared by homogeneous precipitation method using ZnSO4.7H2O (0.1 M) and NaOH (0.2 M) as precursors with and without the addition of Zer (0.38 mM) were characterized by powder UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and Field emission scanning electron microscope (FESEM) analysis. Optical and physical properties of ZnO-Zer NF were found to match with the typical ZnO nanomaterial properties. XRD analysis revealed reduction in size (15 nm) of the green synthesized ZnO-Zer NF compared to ZnO NF (21 nm). ZnO-Zer NF displayed linear correlation between concentration and antimicrobial activity to Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Determination of cytotoxic potential of the synthesized ZnO-Zer NF in cervical cancer cells (HeLa) showed higher cytotoxicity of ZnO-Zer NF (39.32 ± 3.01%) compared to Zer alone (27.02 ± 1.22%). Present study revealing improvement in bioactivity of Zer following conjugation with ZnO NF signifies potential of NF formation in improving therapeutic application of Zer that otherwise displays low solubility limiting its bioavailability.
Collapse
Affiliation(s)
- Shilpa T
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Sanjay Kumar R
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Aswati R Nair
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
3
|
Khademi R, Mohammadi Z, Khademi R, Saghazadeh A, Rezaei N. Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies. NANOSCALE ADVANCES 2023; 5:571-595. [PMID: 36756502 PMCID: PMC9890594 DOI: 10.1039/d2na00483f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/19/2022] [Indexed: 05/23/2023]
Abstract
Background: Leukemia is a malignant disease that threatens human health and life. Nano-delivery systems improve drug solubility, bioavailability, and blood circulation time, and release drugs selectively at desired sites using targeting or sensing strategies. As drug carriers, they could improve therapeutic outcomes while reducing systemic toxicity. They have also shown promise in improving leukemia detection and diagnosis. The study aimed to assess the potential of nanotechnology-based diagnostics and therapeutics in preclinical human acute lymphoblastic leukemia (h-ALL). Methods: We performed a systematic search through April 2022. Articles written in English reporting the toxicity, efficacy, and safety of nanotechnology-based drugs (in the aspect of treatment) and specificity, limit of detection (LOD), or sensitivity (in the aspect of the detection field) in preclinical h-ALL were included. The study was performed according to PRISMA instructions. The methodological quality was assessed using the QualSyst tool. Results: A total of 63 original articles evaluating nanotechnology-based therapeutics and 35 original studies evaluating nanotechnology-based diagnostics were included in this review. As therapeutics in ALL, nanomaterials offer controlled release, targeting or sensing ligands, targeted gene therapy, photodynamic therapy and photothermic therapy, and reversal of multidrug-resistant ALL. A narrative synthesis of studies revealed that nanoparticles improve the ratio of efficacy to the toxicity of anti-leukemic drugs. They have also been developed as a vehicle for biomolecules (such as antibodies) that can help detect and monitor leukemic biomarkers. Therefore, nanomaterials can help with early diagnostics and personalized treatment of ALL. Conclusion: This review discussed nanotechnology-based preclinical strategies to achieve ALL diagnosis and therapy advancement. This involves modern drug delivery apparatuses and detection devices for prompt and targeted disease diagnostics. Nonetheless, we are yet in the experimental phase and investigational stage in the field of nanomedicine, with many features remained to be discovered as well as numerous problems to be solved.
Collapse
Affiliation(s)
- Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Department of Medical Laboratory Sciences, School of Para-medicine, Ahvaz Jundishapour University of Medical Sciences Ahvaz Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Sciences Babol Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Babol Iran
| | - Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences Dr Qarib St, Keshavarz Blvd Tehran 14194 Iran +98-21-6692-9235 +98-21-6692-9234
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences Dr Qarib St, Keshavarz Blvd Tehran 14194 Iran +98-21-6692-9235 +98-21-6692-9234
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN) Tehran Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Photodynamic potential of hexadecafluoro zinc phthalocyanine in nanostructured lipid carriers: physicochemical characterization, drug delivery and antimicrobial effect against Candida albicans. Lasers Med Sci 2022; 37:3183-3191. [PMID: 35723829 DOI: 10.1007/s10103-022-03594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
This study aims to develop and characterize NCL loaded with ZnF16Pc (Pc) for application in antimicrobial photodynamic therapy. For the development of the NLC, the fusion-emulsification technique followed by sonication was applied. NLC and Pc-NLC were characterized in terms of mean diameter (Dm.n), polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (%EE), transmission electron microscopy (TEM), differential scanning (DSC), photobleaching and singlet oxygen generation in cellular systems (SOSG), and in vitro release assays performed by the beaker method, using dialysis membranes. Cell viability was performed by colony forming units (CFU/mL). The mean size of NLC and Pc-NLC was 158 nm ± 1.49 to 161.80 nm and showed PdI < 0.3 and ZP between -17.8 and -19.9, and stable during storage time (90 days). The TEM presented spherical particles, the Pc-NLC promoted the encapsulation of 75.57% ± 0.58. DSC analysis confirmed that there was no incompatibility between Pc and NLC. The analysis of the photodegradation profile proved to be photostable after encapsulation and this corroborates the data obtained by SOSG. In vitro release showed controlled and prolonged release. PDT Pc-NLC exhibited greater antifungal effect against C. albicans (3 log10 reduction) than Pc-NLC without light (1 log10 reduction). NLC can be an alternative to the application of Pc and improve the effect during PDT treatment.
Collapse
|
5
|
Ilimaquinone (Marine Sponge Metabolite) Induces Apoptosis in HCT-116 Human Colorectal Carcinoma Cells via Mitochondrial-Mediated Apoptosis Pathway. Mar Drugs 2022; 20:md20090582. [PMID: 36135771 PMCID: PMC9503335 DOI: 10.3390/md20090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Ilimaquinone (IQ), a metabolite found in marine sponges, has been reported to have a number of biological properties, including potential anticancer activity against colon cancer. However, no clear understanding of the precise mechanism involved is known. The aim of this study was to examine the molecular mechanism by which IQ acts on HCT-116 cells. The anticancer activity of IQ was investigated by means of a cell viability assay followed by the determination of induction of apoptosis by means of the use of acridine orange–ethidium bromide (AO/EB) staining, Annexin V/PI double staining, DNA fragmentation assays, and TUNEL assays. The mitochondrial membrane potential (ΔΨm) was detected using the JC-1 staining technique, and the apoptosis-associated proteins were analyzed using real-time qRT-PCR. A molecular docking study of IQ with apoptosis-associated proteins was also conducted in order to assess the interaction between IQ and them. Our results suggest that IQ significantly suppressed the viability of HCT-116 cells in a dose-dependent manner. Fluorescent microscopy, flow cytometry, DNA fragmentation and the TUNEL assay in treated cells demonstrated apoptotic death mode. As an additional confirmation of apoptosis, the increased level of caspase-3 and caspase-9 expression and the downregulation of Bcl-2 and mitochondrial dysfunction were observed in HCT-116 cells after treatment with IQ, which was accompanied by a decrease in mitochondrial membrane potential (ΔΨm). Overall, the results of our studies demonstrate that IQ could trigger mitochondria-mediated apoptosis as demonstrated by a decrease in ΔΨm, activation of caspase-9/-3, damage of DNA and a decrease in the proportion of Bcl-2 through the mitochondrial-mediated apoptosis pathway.
Collapse
|
6
|
Netto JB, Melo ESA, Oliveira AGS, Sousa LR, Santiago LR, Santos DM, Chagas RCR, Gonçalves AS, Thomé RG, Santos HB, Reis RM, Ribeiro RIMA. Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study. Braz J Med Biol Res 2022; 55:e12076. [PMID: 36000612 PMCID: PMC9394692 DOI: 10.1590/1414-431x2022e12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma is the most prevalent and malignant brain tumor identified in adults. Surgical resection followed by radiotherapy and chemotherapy, mainly with temozolomide (TMZ), is the chosen treatment for this type of tumor. However, the average survival of patients is around 15 months. Novel approaches to glioblastoma treatment are greatly needed. Here, we aimed to investigate the anti-glioblastoma effect of the combination of matteucinol (Mat) (dihydroxyflavanone derived from Miconia chamissois Naudin) with the chemotherapeutic TMZ in vitro using tumor (U-251MG) and normal astrocyte (NHA) cell lines and in vivo using the chick embryo chorioallantoic membrane (CAM) assay. The combination was cytotoxic and selective for tumor cells (28 μg/mL Mat and 9.71 μg/mL TMZ). Additionally, the combination did not alter cell adhesion but caused morphological changes characteristic of apoptosis in vitro. Notably, the combination was also able to reduce tumor growth in the chick embryo model (CAM assay). The docking results showed that Mat was the best ligand to the cell death membrane receptor TNFR1 and to TNFR1/TMZ complex, suggesting that these two molecules may be working together increasing their potential. In conclusion, Mat-TMZ can be a good candidate for pharmacokinetic studies in view of clinical use for the treatment of glioblastoma.
Collapse
Affiliation(s)
- J B Netto
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - E S A Melo
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | | | - L R Sousa
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - L R Santiago
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - D M Santos
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - R C R Chagas
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - A S Gonçalves
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Vila Velha, ES, Brasil.,Universidade Federal do Espírito Santo, Goiabeiras, ES, Brasil
| | - R G Thomé
- Laboratório de Processamento de Tecidos, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - H B Santos
- Laboratório de Processamento de Tecidos, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| | - R M Reis
- Centro de Pesquisa em Oncologia Molecular, Hospital do Câncer de Barretos, Barretos, SP, Brasil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R I M A Ribeiro
- Laboratório de Patologia Experimental, Universidade Federal de São João del-Rei, Divinópolis, MG, Brasil
| |
Collapse
|
7
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
8
|
Guo Q, Shi TQ, Peng QQ, Sun XM, Ji XJ, Huang H. Harnessing Yarrowia lipolytica Peroxisomes as a Subcellular Factory for α-Humulene Overproduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13831-13837. [PMID: 34751575 DOI: 10.1021/acs.jafc.1c05897] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sesquiterpene α-humulene has been shown to have anti-inflammatory and anticancer activities, which has led to its vast application potential in medicine. However, α-humulene production methods including phytoextraction and chemical synthesis currently were limited to low yield, high costs, and expensive catalysts, which cannot meet the increasing market demand. In this study, Yarrowia lipolytica was developed as a robust cell factory for α-humulene production. The peroxisome in Y. lipolytica was first engineered to boost the synthesis of the sesquiterpene α-humulene. By compartmentalization of the α-humulene biosynthesis pathway, improving ATP and acetyl-CoA supply, and optimizing the gene copy numbers of rate-limiting enzymes, the engineered strain GQ2012 could produce 3.2 g/L α-humulene in a 5 L bioreactor, the highest α-humulene titer reported so far. Our study provides a valuable reference for highly sustainable production of terpenoids by peroxisome engineering in Y. lipolytica.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
9
|
Schnoell J, Stanisz I, Jank BJ, Stanek V, Schmid R, Brunner M, Heiduschka G, Kotowski U. Zerumbone acts as a radiosensitizer in head and neck squamous cell carcinoma. Invest New Drugs 2021; 40:224-231. [PMID: 34613571 PMCID: PMC8993726 DOI: 10.1007/s10637-021-01190-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Introduction. Zerumbone is a phytochemical compound of the ginger plant Zingiber zerumbet with cytotoxic effects in various cancer cell lines. To date, zerumbone has shown an antiproliferative effect in oral squamous cell carcinoma cells lines. However, the effect of combination with radiation or cisplatin in head and neck squamous cell carcinoma (HNSCC) is unclear. The aim of this study was to investigate the effect of zerumbone alone, and in combination with irradiation and cisplatin on HNSCC cell lines. Methods. The three HNSCC cell lines SCC25, Cal27 and FaDu were treated with zerumbone, radiation and/or cisplatin. Cell viability and clonogenic assays were performed. The interaction between zerumbone and radiation or cisplatin was evaluated using the combination index. Apoptosis was measured by flow cytometry and cell migration was assessed using a wound healing assay. Results. Treatment with zerumbone resulted in a dose dependent induction of cytotoxicity and apoptosis in all three cell lines. The combination with cisplatin revealed a synergistic to additive effect in Cal27. The clonogenic assay showed a significant radiosensitizing effect in all three cell lines. The wound healing assay showed a reduction of cell migration in Cal27. Conclusion. The natural compound zerumbone shows a cytotoxic and proapoptotic effect on HNSCC cell lines. Furthermore, zerumbone enhances the radiation effect in all three cell lines and thus may be a suitable candidate for combination therapy in HNSCC.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Isabella Stanisz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Victoria Stanek
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Rainer Schmid
- Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - Markus Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria.
| | - Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University Vienna, Vienna, Austria
| |
Collapse
|
10
|
Premi S. Role of Melanin Chemiexcitation in Melanoma Progression and Drug Resistance. Front Oncol 2020; 10:1305. [PMID: 32850409 PMCID: PMC7425655 DOI: 10.3389/fonc.2020.01305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023] Open
Abstract
Melanoma is the deadliest type of skin cancer. Human melanomas often show hyperactivity of nitric oxide synthase (NOS) and NADPH oxidase (NOX), which, respectively, generate nitric oxide (NO · ) and superoxide (O2 ·- ). The NO · and O2 - react instantly with each other to generate peroxynitrite (ONOO-) which is the driver of melanin chemiexcitation. Melanoma precursors, the melanocytes, are specialized skin cells that synthesize melanin, a potent shield against sunlight's ultraviolet (UV) radiation. However, melanin chemiexcitation paradoxically demonstrates the melanomagenic properties of melanin. In a loop, the NOS activity regulates melanin synthesis, and melanin is utilized by the chemiexcitation pathway to generate carcinogenic melanin-carbonyls in an excited triplet state. These carbonyl compounds induce UV-specific DNA damage without UV. Additionally, the carbonyl compounds are highly reactive and can make melanomagenic adducts with proteins, DNA and other biomolecules. Here we review the role of the melanin chemiexcitation pathway in melanoma initiation, progression, and drug resistance. We conclude by hypothesizing a non-classical, positive loop in melanoma where melanin chemiexcitation generates carcinogenic reactive carbonyl species (RCS) and DNA damage in normal melanocytes. In parallel, NOS and NOX regulate melanin synthesis generating raw material for chemiexcitation, and the resulting RCS and reactive nitrogen species (RNS) regulate cellular proteome and transcriptome in favor of melanoma progression, metastasis, and resistance against targeted therapies.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
11
|
Bhattacharya P, Chatterjee K, Swarnakar S, Banerjee S. Green Synthesis of Zinc Oxide Nanoparticles via Algal Route and its Action on Cancerous Cells and Pathogenic Microbes. ACTA ACUST UNITED AC 2020. [DOI: 10.21467/anr.3.1.15-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Application of metal oxide nanoparticles for treatment of melanoma cells and microbes is being investigated. Zinc oxide nanoparticles (ZnO NPs) deserve special mention where particles cause destruction of melanoma cells with minimal damage to healthy cells. In the present study, pure phase ZnO NPs with particle size of 3.1 nm were synthesized by green route using algal extract. Skin melanoma (B16F10) cells were treated with synthesized ZnO NP and compared with commercial ZnO NPs and analysed for ED50 for cellular viability using 3% (w/v) of the doses. Sensitivity of B16F10 cells towards green synthesized ZnO NP was found to be more than commercial ZnO NPs. Results showed greater reduction in viability of cells exposed to green synthesized ZnO NPs and with increasing dose of the ZnO NPs, percentage viability of cells gradually reduced. 50% decrease in cellular viability (ED50) was obtained for green synthesized ZnO NP at 3% dose while commercial ZnO exhibited ED50 at 6% of doses. The ZnO NP also showed antimicrobial activity against Pseudomonas sp. and Staphylococcus sp. Zone of inhibition (ZOI) exhibited by Pseudomonas aeruginosa and Staphylococcus aureus for disc diffusion and well diffusion assay was around 10-22 mm and 9-12mm respectively.
Collapse
Affiliation(s)
| | | | | | - Sathi Banerjee
- Metallurgical and Materials Engineering Department, Jadavpur University
| |
Collapse
|
12
|
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020; 15:2439-2483. [PMID: 32346289 PMCID: PMC7169473 DOI: 10.2147/ijn.s227805] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Sulaymaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nahidah Ibrahim Hammadi
- Department of Histology, College of Veterinary Medicine, University of Al-Anbar, Ramadi, Republic of Iraq
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Kawa Mohammad Amin
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Kepala Batas13200, Pulau Pinang, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
13
|
Zhang C, Li M, Zhao GR, Lu W. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1382-1389. [PMID: 31944688 DOI: 10.1021/acs.jafc.9b07290] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic engineering of Saccharomyces cerevisiae focusing on the cytoplasm for sustainable terpenoid production is commonly practiced. However, engineering organelles for terpenoid production is rarely reported. Herein, peroxisomes, together with the cytoplasm, were engineered to boost sesquiterpene α-humulene synthesis in S. cerevisiae. The farnesyl diphosphate synthetic pathway and α-humulene synthase were successfully expressed inside yeast peroxisomes to enable high-level α-humulene production with glucose as the sole carbon source. With the combination of peroxisomal and cytoplasmic engineering, α-humulene production was increased by 2.5-fold compared to that in cytoplasm-engineered recombinant strains. Finally, the α-humulene titer of 1726.78 mg/L was achieved by fed-batch fermentation in a 5 L bioreactor. The strategy presented here offers an efficient method for terpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Chuanbo Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Man Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Guang-Rong Zhao
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
- Key Laboratory of System Bioengineering, Ministry of Education Tianjin University , Tianjin 300350 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300350 , People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
- Key Laboratory of System Bioengineering, Ministry of Education Tianjin University , Tianjin 300350 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300350 , People's Republic of China
| |
Collapse
|
14
|
Martinez-Torres AC, Gomez-Morales L, Martinez-Loria AB, Uscanga-Palomeque AC, Vazquez-Guillen JM, Rodriguez-Padilla C. Cytotoxic activity of IMMUNEPOTENT CRP against non-small cell lung cancer cell lines. PeerJ 2019; 7:e7759. [PMID: 31579619 PMCID: PMC6768219 DOI: 10.7717/peerj.7759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND IMMUNEPOTENT-CRP® (I-CRP) is a bovine dialyzable leukocyte extract containing transfer factor. It is a cost-effective, unspecific active immunotherapy that has been used in patients with non-small cell lung cancer (NSCLC) as an adjuvant to reduce the side-effects of chemotherapy and radiotherapy, and has shown cytotoxic activity in vitro on different cancer cell lines. However, its mechanism of action against lung cancer cells has not been assessed. Therefore, the objective of this work was to assess the cytotoxic mechanism of I-CRP on lung cancer cell lines. METHODS We assessed cell viability through MTT assay on the NSCLC cell lines A549, A427, Calu-1, and INER-51 after treatment with I-CRP. To further understand the mechanisms of cell viability diminution we used fluorescence-activated cell sorting to evaluate cell death (annexin-V and propidium iodide [PI] staining), cell cycle and DNA degradation (PI staining), mitochondrial alterations (TMRE staining), and reactive oxygen species (ROS) production (DCFDA staining). Additionally, we evaluated caspase and ROS dependence of cell death by pretreating the cells with the pan-caspase inhibitor Q-VD-OPH and the antioxidant N-acetylcysteine (NAC), respectively. RESULTS Our data shows that I-CRP is cytotoxic to NSCLC cell lines in a dose and time dependent manner, without substantial differences between the four cell lines tested (A549, A427, Calu-1, and INER-51). Cytotoxicity is induced through regulated cell death and cell cycle arrest induction. I-CRP-induced cell death in NSCLC cell lines is characterized by DNA degradation, mitochondrial damage, and ROS production. Moreover, cell death is independent of caspases but relies on ROS production, as it is abrogated with NAC. CONCLUSION Altogether, these results improve the knowledge about the cytotoxic activity of I-CRP on NSCLC cells, indicating that cell death, cell cycle arrest, DNA degradation and mitochondrial damage are important features, while ROS play the main role for I-CRP mediated cytotoxicity in lung cancer cells.
Collapse
Affiliation(s)
- Ana Carolina Martinez-Torres
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Luis Gomez-Morales
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Alan B. Martinez-Loria
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ashanti Concepcion Uscanga-Palomeque
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Jose Manuel Vazquez-Guillen
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cristina Rodriguez-Padilla
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
15
|
Mohammed SJ, Amin HHH, Aziz SB, Sha AM, Hassan S, Abdul Aziz JM, Rahman HS. Structural Characterization, Antimicrobial Activity, and In Vitro Cytotoxicity Effect of Black Seed Oil. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6515671. [PMID: 31531117 PMCID: PMC6721493 DOI: 10.1155/2019/6515671] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/20/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
This study was aimed to investigate the structure of bioactive components of black seed oil (BSO) and their antimicrobial and cytotoxic effects. Initially, the structural examination was conducted using various spectroscopic techniques, such as FTIR, TLC, and UV-visible spectroscopy, which are important in determining substituents, functional groups, and the presence of conjugated double bonds in BSO. From the FTIR spectra, a variety of sharp, strong, and weak peaks were specified relating to the main components of thymoquinone (TQ), dithymoquinone, thymohydroquinone, and thymol in BSO. The results of UV-visible spectroscopy confirmed the presence of thymoquinone as a major compound, and conjugated double bonds were also found. In addition, qualitative TLC analysis was used to identify thymoquinone from the methanol-extracted layer in BSO, by calculating the retention factor (R f) value. Furthermore, antimicrobial activity of BSO was studied against various types of bacteria. Strong bacterial inhibitory effects were observed, especially against Bacillus subtilis, with an average inhibition zone of 15.74 mm. Moreover, through the use of the MTT assay in vitro, it was shown that BSO does not exhibit any cytotoxicity towards human peripheral blood mononuclear cells (PBMCs). It was also found from the structural characterization of BSO that the existence of TQ is responsible for potential antibacterial activity without any cytotoxic effects. The main observation of this work is that BSO has antimicrobial activity even against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Sewara J. Mohammed
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
| | - Hassan H. H. Amin
- Department of Biology, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
| | - Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
- Komar Research Center, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Aram M. Sha
- Department of Periodontics, College of Dentistry, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
| | - Sarwar Hassan
- Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government, Iraq
| | - Jeza M. Abdul Aziz
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimani, Kurdistan Regional Government, Iraq
- Baxshin Research Centre, Baxshin Hospital, Sulaymaniyah, Kurdistan Region, Iraq
| | - Heshu S. Rahman
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani, Kurdistan Regional Government, Iraq
| |
Collapse
|
16
|
Girisa S, Shabnam B, Monisha J, Fan L, Halim CE, Arfuso F, Ahn KS, Sethi G, Kunnumakkara AB. Potential of Zerumbone as an Anti-Cancer Agent. Molecules 2019; 24:molecules24040734. [PMID: 30781671 PMCID: PMC6413012 DOI: 10.3390/molecules24040734] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is still a major risk factor to public health globally, causing approximately 9.8 million deaths worldwide in 2018. Despite advances in conventional treatment modalities for cancer treatment, there are still few effective therapies available due to the lack of selectivity, adverse side effects, non-specific toxicities, and tumour recurrence. Therefore, there is an immediate need for essential alternative therapeutics, which can prove to be beneficial and safe against cancer. Various phytochemicals from natural sources have been found to exhibit beneficial medicinal properties against various human diseases. Zerumbone is one such compound isolated from Zingiber zerumbet Smith that possesses diverse pharmacological properties including those of antioxidant, antibacterial, antipyretic, anti-inflammatory, immunomodulatory, as well as anti-neoplastic. Zerumbone has shown its anti-cancer effects by causing significant suppression of proliferation, survival, angiogenesis, invasion, and metastasis through the molecular modulation of different pathways such as NF-κB, Akt, and IL-6/JAK2/STAT3 (interleukin-6/janus kinase-2/signal transducer and activator of transcription 3) and their downstream target proteins. The current review briefly summarizes the modes of action and therapeutic potential of zerumbone against various cancers.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Bano Shabnam
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Javadi Monisha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Clarissa Esmeralda Halim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
17
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Pradeepkumar P, Rajendran NK, Alarfaj AA, Munusamy MA, Rajan M. Deep Eutectic Solvent-Mediated FA-g-β-Alanine-co-PCL Drug Carrier for Sustainable and Site-Specific Drug Delivery. ACS APPLIED BIO MATERIALS 2018; 1:2094-2109. [DOI: 10.1021/acsabm.8b00554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Periyakaruppan Pradeepkumar
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu,India
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu,India
| |
Collapse
|
19
|
Jamali T, Kavoosi G, Safavi M, Ardestani SK. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci Rep 2018; 8:15787. [PMID: 30361692 PMCID: PMC6202332 DOI: 10.1038/s41598-018-34055-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Oliveria decumbens is an Iranian endemic plant used extensively in traditional medicine. Recently, some studies have been performed on biological effects of Oliveria essential oil (OEO). However, to our knowledge, the anticancer activity of OEO has not been reported. Based on our GC/MS analysis, the basic ingredients of OEO are thymol, carvacrol, p-cymene and γ-terpinene. Therefore, we used OEO and its main component, thymol, to explore their effects on cell growth inhibition and anticancer activity. Despite having a limited effect on L929 normal cells, OEO/thymol induced cytotoxicity in MDA-MB231 breast cancer monolayers (2D) and to a lesser extent in MDA-MB231 spheroids (3D). Flow cytometry, caspase-3 activity assay in treated monolayers/spheroids and also fluorescence staining and DNA fragmentation in treated monolayers demonstrated apoptotic death mode. Indeed, OEO/thymol increased the Reactive Oxygen Species (ROS) level leading to mitochondrial membrane potential (MMP, ΔΨm) loss, caspase-3 activation and DNA damage caused S-phase cell cycle arrest. Furthermore, immunoblotting studies revealed the activation of intrinsic and maybe extrinsic apoptosis pathways by OEO/thymol. Additionally, in-vitro experiments, indicated that OEO/thymol interacts with DNA via minor grooves confirmed by docking method. Altogether, our reports underlined the potential of OEO to be considered as a new candidate for cancer therapy.
Collapse
Affiliation(s)
- Tahereh Jamali
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Susan K Ardestani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Zerumbone-Loaded Nanostructured Lipid Carrier Induces Apoptosis of Canine Mammary Adenocarcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8691569. [PMID: 30410940 PMCID: PMC6205321 DOI: 10.1155/2018/8691569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/30/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022]
Abstract
Canine mammary gland tumor (CMT) is the most common tumor in intact female dog. Zerumbone (ZER) has promising anticancer properties, but plagued with poor water solubility, poor absorption, bioavailability, and delivery to target tissues. To solubilize, ZER was loaded into nanostructured lipid carrier (NLC) to produce ZER-loaded NLC (ZER-NLC). The objectives of this study were to determine the antiproliferative effect and the mode of cell death induced by ZER-NLC and ZER on a canine mammary gland tumor (CMT) adenocarcinoma primary cell line. There was no significant difference (p>0.05) between ZER-NLC and ZER treatments in the inhibition of CMT cell proliferation; thus, the loading of ZER into NLC did not compromise the cytotoxic effect of ZER. Microscopically, ZER-NLC- and ZER-treated CMT cells showed apoptotic cell morphology. ZER-NLC and ZER treatments significantly downregulated the antiapoptotic Bcl-2 and upregulated the proapoptotic Bax gene expressions in CMT cells. Both ZER-NLC and ZER-treated CMT cells showed significant (p<0.0001) increases in caspase-8, -9, and -3/7 protein activities. In conclusion, ZER-NLC induced CMT cell death via regulation of Bcl-2 and Bax gene expressions and caspase activations, indicating the involvement of both the intrinsic and extrinsic pathways of apoptosis. This study provided evidences for the potential of ZER-NLC as an anticanine mammary gland adenocarcinoma chemotherapy.
Collapse
|
21
|
Rahman HS. Phytochemical analysis and antioxidant and anticancer activities of mastic gum resin from Pistacia atlantica subspecies kurdica. Onco Targets Ther 2018; 11:4559-4572. [PMID: 30122948 PMCID: PMC6084073 DOI: 10.2147/ott.s170827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The mastic gum resin has been used in traditional Kurdish medicine for treating various disorders such as topical wound and gastric ulcer. The study designed to evaluate the total polyphenol and flavonoid content, free radical scavenging activity, and anticancer effects of mastic gum resin derived from Pistacia atlantica subspecies kurdica. MATERIALS AND METHODS Folin -Ciocalteau and the aluminum chloride colorimetric assays were used to determine the total phenol and flavonoid contents in the mastic gum resin respectively. Whereas, DPPH and ABTS+ assays were used to determine the antioxidant activities of mastic gum resin. Regarding anticancer activities, the MTT assay was used to study the effect of mastic gum resin on the proliferation of various cancer cells and the morphological changes were identified after Acridine Orange/Propidium Iodide staining. Flow cytometry was applied to determine the influence of mastic gum resin on the apoptosis rate by Annexin V double staining and to investigate the influence on cell cycle progression. Caspase colorimetric assay was used to estimate the hallmark enzyme of apoptosis, and finally RNA were obtained from COLO205 cells and analyzed by qRT-PCR analyses. RESULTS The MTT results showed that the mastic gum resin at concentrations from 0.01 to 100 μM induced death of cancer cells in a dose and time-dependent manner. The mastic gum resin suppressed proliferation of human cancer cells with 72 h IC50 value of 15.34 ± 0.21, 11.52 ± 0.18, 8.11 ± 0.23 and 5.2 ± 0.8 μg/mL for bile duct cancer (cholangiocarcinoma) (KMBC), pancreatic carcinoma (PANC-1), gastric adenocarcinoma (CRL-1739), and colonic adenocarcinoma (COLO205) cells, respectively. Normal human colon fibroblast (CCD-18Co) cells were not adversely affected by resin treatment. Flow cytometry showed that the mastic gum resin significantly (P<0.05) arrested COLO205 cell proliferation at the G2/M phase of cell cycle. The resin caused apoptotic morphological changes in COLO205 cells. The apoptotic effect to mastic gum resin was via the mitochondrial as shown by the up-regulation of Bax, down-regulation of Bcl-2 genes, and activation of caspase-9 and -3 activities. CONCLUSION It was confirmed that the antiproliferative efficacy of the resin is positively correlated with its polyphenolic contents, suggesting a causal link related to exudate content of phenolic acid and flavonoids. The results revealed that the mastic gum resin has potential to be developed as an anticancer and antioxidant product due to its high content of polyphenol compounds.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani, Kurdistan Region, Republic of Iraq,
- Department of Medical Laboratory Sciences, College of Science, Komar University of Science and Technology, Chaq-Chaq Qularaisee, Sarchinar District, Sulaimani, Kurdistan Region, Republic of Iraq,
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia,
| |
Collapse
|
22
|
Development and In Vitro Evaluation of a Zerumbone Loaded Nanosuspension Drug Delivery System. CRYSTALS 2018. [DOI: 10.3390/cryst8070286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zerumbone extracted from the volatile oil of rhizomes available from the Zinigiber zerumbet has promising pharmacological activity. However, it has poor aqueous solubility and dissolution characteristics. To improve this, a nanosuspension formulation of zerumbone was developed. Nanosuspensions were formulated using high-pressure homogenization (HPH) with sodium dodecyl sulphate (SDS) and hydroxypropylmethylcellulose (HPMC) as stabilizers; the formulation was optimized and freeze dried. The optimized nanosuspension product was evaluated using an optical light microscope, photon correlation spectroscopy (PCS), polydispersity index, zeta potential, SEM, differential scanning calorimetry (DSC) and FT-IR. The physical stability of the nanosuspensions was evaluated for 30 days at 4 °C, 25 °C, and 37 °C. To validate the theoretical benefit of the increased surface area, we determined an in vitro saturation solubility and dissolution profile. The mean particle size, polydispersity index and zeta potential of the zerumbone nanosuspensions stabilized by SDS versus HPMC were found to be 211 ± 27 nm vs. 398 ± 3.5 nm, 0.39 ± 0.06 vs. 0.55 ± 0.004, and −30.86 ± 2.3 mV vs. −3.37 ± 0.002 mV, respectively. The in vitro saturation solubility and dissolution revealed improved solubility for the zerumbone nanosuspension. These results suggested that the nanosuspensionlization improves the saturation solubility and dissolution profile of zerumbone, which may facilitate its use as a therapeutic agent in the future.
Collapse
|
23
|
Samad NA, Abdul AB, Rahman HS, Rasedee A, Tengku Ibrahim TA, Keon YS. Zerumbone Suppresses Angiogenesis in HepG2 Cells through Inhibition of Matrix Metalloproteinase-9, Vascular Endothelial Growth Factor, and Vascular Endothelial Growth Factor Receptor Expressions. Pharmacogn Mag 2018; 13:S731-S736. [PMID: 29491625 PMCID: PMC5822492 DOI: 10.4103/pm.pm_18_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Context Due to increase in the number of patients with impaired immunity, the incidence of liver cancer has increased considerably. Aims The aim of this study is the investigation the in vitro anticancer effect of zerumbone (ZER) on hepatocellular carcinoma (HCC). Materials and Methods The anticancer mechanism of ZER was determined by the rat aortic ring, human umbilical vein endothelial cells (HUVECs) proliferation, chorioallantoic membrane, cell migration, and proliferation inhibition assays. Results Our results showed that ZER reduced tube formation by HUVECs effectively inhibits new blood vessel and tissue matrix formation. Western blot analysis revealed that ZER significantly (P < 0.05) decreased expression of molecular effectors of angiogenesis, the matrix metalloproteinase-9, vascular endothelial growth factor (VEGF), and VEGF receptor proteins. We found that ZER inhibited the proliferation and suppressed migration of HepG2 cell in dose-dependent manner. Statistical Analysis Used Statistical analyses were performed according to the Statistical Package for Social Science (SPSS) version 17.0. The data were expressed as the mean ± standard deviation and analyzed using a one-way analysis of variance. A P < 0.05 was considered statistically significant. Conclusion The study for the first time showed that ZER is an inhibitor angiogenesis, tumor growth, and spread, which is suggested to be the mechanisms for its anti-HCC effect. SUMMARY Tumor angiogenesis has currently become an important research area for the control of cancer growth and metastasis. The current study determined the effect of zerumbone on factors associated with angiogenesis that occurs in tumor formation. Abbreviations used: ZER: Zerumbone, MMP-9: Matrix metalloproteinase-9, VEGF: Vascular endothelial growth factor, VEGFR: Vascular endothelial growth factor receptor, HUVECs: Human umbilical vein endothelial cells, HCC: Hepatocellular carcinoma, HIFCS: Heat inactivated fetal calf serum, DMSO: Dimethyl sulfoxide, EDTA: Ethyldiaminetetraacetic acid, Ig: Immunoglobulin, CAM: Chorioallantoic membrane, HRP: Horseradish peroxidase, NIH: National Institutes of Health, MTT: Microtetrazolium, SPSS: Statistical Package for Social Science.
Collapse
Affiliation(s)
- Nozlena Abdul Samad
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Ahmad Bustamam Abdul
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Northern Iraq.,Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaese, Sulaimani City, Kurdistan Region, Northern Iraq.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdullah Rasedee
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Tengku Azmi Tengku Ibrahim
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yeap Swee Keon
- UPM-MAKNA, Cancer Research Laboratory, Institute of Bioscience, Universiti Putra, Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Azizi S, Mahdavi Shahri M, Rahman HS, Rahim RA, Rasedee A, Mohamad R. Green synthesis palladium nanoparticles mediated by white tea ( Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int J Nanomedicine 2017; 12:8841-8853. [PMID: 29276385 PMCID: PMC5734231 DOI: 10.2147/ijn.s149371] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs) are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis) extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The Pd@W.tea NPs were spherical (size 6–18 nm) and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH), OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that Pd@W.tea NPs (IC50 =0.006 μM) were more antiproliferative toward the human leukemia (MOLT-4) cells than the W.tea extract (IC50 =0.894 μM), doxorubicin (IC50 =2.133 μM), or cisplatin (IC50 =0.013 μM), whereas they were relatively innocuous for normal human fibroblast (HDF-a) cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis and G2/M cell-cycle arrest.
Collapse
Affiliation(s)
- Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | | | - Heshu Sulaiman Rahman
- College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe.,College of Health Science, Komar University of Science and Technology (KUST), Chaq-Chaq Qularaise, Sulaimani City, Iraq.,Faculty of Veterinary Medicine
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences
| | | | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Beh CY, How CW, Foo JB, Foong JN, Selvarajah GT, Rasedee A. Development of erythropoietin receptor-targeted drug delivery system against breast cancer using tamoxifen-loaded nanostructured lipid carriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:771-782. [PMID: 28352153 PMCID: PMC5358988 DOI: 10.2147/dddt.s123939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tamoxifen (TAM) has been used in the treatment of breast cancers and is supplemented with erythropoietin (EPO) to alleviate the cancer-related anemia. The purported deleterious effects caused by the use of EPO with chemotherapeutic agents in the treatment of cancer-related anemia vary across studies and remain controversial. The use of nanoparticles as a drug delivery system has the potential to improve the specificity of anticancer drugs. In this study, we simultaneously incorporated two pharmacological active ingredients in one nanocarrier to develop EPO-conjugated TAM-loaded lipid nanoparticles (EPO-TAMNLC), a targeted delivery system, to enhance the cytotoxic activity while reducing the side effects of the ingredients. The effect of temperature in modulating the thermodynamic parameters associated with the binding of EPO and TAMNLC was assessed using isothermal titration calorimetry, while the unfolding of EPO structure was determined using fluorescence-quenching approach. The association efficiency of EPO and TAMNLC was 55.43%. Unlike binding of albumin to TAMNLC, the binding of EPO to TAMNLC occurred through endothermic and entropy-driven reaction. The EPO-TAMNLC formulation was stable because of the hydrophobic interaction and the high free energy, suggesting the spontaneity of the interactions between EPO and TAMNLC. The EPO-TAMNLC enhanced the in vitro cytotoxicity of TAM to MCF-7 cells. The EPO surface-functionalized TAMNLC could sequentially deliver EPO and TAM as well as improving site-specific delivery of these therapeutic compounds.
Collapse
Affiliation(s)
- Chaw Yee Beh
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang
| | - Chee Wun How
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang; Faculty of Pharmacy, MAHSA University, Jenjarom
| | | | - Jia Ning Foong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Abdullah Rasedee
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
26
|
Bosco A, Golsteyn RM. Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells. Molecules 2017; 22:molecules22030459. [PMID: 28335397 PMCID: PMC6155193 DOI: 10.3390/molecules22030459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s) required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology.
Collapse
Affiliation(s)
- Alessandra Bosco
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
27
|
Arshad L, Jantan I, Bukhari SNA, Haque MA. Immunosuppressive Effects of Natural α,β-Unsaturated Carbonyl-Based Compounds, and Their Analogs and Derivatives, on Immune Cells: A Review. Front Pharmacol 2017; 8:22. [PMID: 28194110 PMCID: PMC5277008 DOI: 10.3389/fphar.2017.00022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
The immune system is complex and pervasive as it functions to prevent or limit infections in the human body. In a healthy organism, the immune system and the redox balance of immune cells maintain homeostasis within the body. The failure to maintain the balance may lead to impaired immune response and either over activity or abnormally low activity of the immune cells resulting in autoimmune or immune deficiency diseases. Compounds containing α,β-unsaturated carbonyl-based moieties are often reactive. The reactivity of these groups is responsible for their diverse pharmacological activities, and the most important and widely studied include the natural compounds curcumin, chalcone, and zerumbone. Numerous studies have revealed the mainly immunosuppressive and anti-inflammatory activities of the aforesaid compounds. This review highlights the specific immunosuppressive effects of these natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives on different types of immune cells of the innate (granulocytes, monocytes, macrophages, and dendritic cells) and adaptive (T cells, B cells, and natural killer cells) immune systems. The inhibitory effects of these compounds have been comprehensively studied on neutrophils, monocytes and macrophages but their effects on T cells, B cells, natural killer cells, and dendritic cells have not been well investigated. It is of paramount importance to continue generating experimental data on the mechanisms of action of α,β-unsaturated carbonyl-based compounds on immune cells to provide useful information for ensuing research to discover new immunomodulating agents.
Collapse
Affiliation(s)
- Laiba Arshad
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| | - Md Areeful Haque
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Zhao N, Yang Z, Li B, Meng J, Shi Z, Li P, Fu S. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int J Nanomedicine 2016; 11:5595-5610. [PMID: 27822038 PMCID: PMC5089827 DOI: 10.2147/ijn.s104034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multifunctional nanoprobes have great potential as effective radiosensitizers and drug carriers. RGD-modified gold nanorods could increase the uptake of nanoparticles via receptor-mediated endocytosis in integrin alphaV beta3-overexpressing breast cancer cells, which could enhance the effects of radiation on tumor cells, leading to further radiosensitization. The purpose of our study was to demonstrate that RGD-conjugated mesoporous silica-encapsulated gold nanorods significantly enhanced the sensitization of triple-negative breast cancer to megavoltage energy. The results indicated that RGD-conjugated mesoporous silica-encapsulated gold nanorod multifunctional nanoprobes could achieve radiosensitization in vitro and in vivo, which suggests the potential translation of this nanotechnology to clinical applications in tumor-targeting and selective therapy.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Radiation Oncology, 6th People's Hospital of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhangru Yang
- Department of Radiation Oncology, 6th People's Hospital of Shanghai Jiao Tong University, Shanghai, People's Republic of China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bingxin Li
- Department of Radiation Oncology, 6th People's Hospital of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jin Meng
- Department of Radiation Oncology, 6th People's Hospital of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zeliang Shi
- Department of Radiation Oncology, 6th People's Hospital of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Li
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Namvar F, Azizi S, Rahman HS, Mohamad R, Rasedee A, Soltani M, Rahim RA. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite. Onco Targets Ther 2016; 9:4549-59. [PMID: 27555781 PMCID: PMC4968863 DOI: 10.2147/ott.s95962] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet-vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers.
Collapse
Affiliation(s)
- Farideh Namvar
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences
| | - Heshu Sulaiman Rahman
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani
- Department of Laboratory Medical Sciences, Komar University of Science and Technology, Sulaimani City, Kurdistan Region, Northern Iraq
| | - Rosfarizan Mohamad
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences
| | - Abdullah Rasedee
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mozhgan Soltani
- Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Novel piperazine core compound induces death in human liver cancer cells: possible pharmacological properties. Sci Rep 2016; 6:24172. [PMID: 27072064 PMCID: PMC4829832 DOI: 10.1038/srep24172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/23/2016] [Indexed: 11/22/2022] Open
Abstract
The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
Collapse
|
31
|
Samie N, Muniandy S, Kanthimathi MS, Haerian BS. Mechanism of action of novel piperazine containing a toxicant against human liver cancer cells. PeerJ 2016; 4:e1588. [PMID: 27019772 PMCID: PMC4806608 DOI: 10.7717/peerj.1588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to assess the cytotoxic potential of a novel piperazine derivative (PCC) against human liver cancer cells. SNU-475 and 423 human liver cancer cell lines were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on liver cancer cells with an IC50 value of 6.98 ± 0.11 µM and 7.76 ± 0.45 µM against SNU-475 and SNU-423 respectively after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of this study suggest that PCC is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
Collapse
Affiliation(s)
- Nima Samie
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - MS Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Batoul Sadat Haerian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Ajdari Z, Rahman H, Shameli K, Abdullah R, Abd Ghani M, Yeap S, Abbasiliasi S, Ajdari D, Ariff A. Novel Gold Nanoparticles Reduced by Sargassum glaucescens: Preparation, Characterization and Anticancer Activity. Molecules 2016; 21:123. [PMID: 26938520 PMCID: PMC6273738 DOI: 10.3390/molecules21030123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 11/30/2022] Open
Abstract
The current study investigated the anticancer properties of gold nanoparticles (SG-stabilized AuNPs) synthesized using water extracts of the brown seaweed Sargassum glaucescens (SG). SG-stabilized AuNPs were characterized by ultraviolet-visible spectroscopy, transmission and scanning electron microscopy, and energy dispersive X-ray fluorescence spectrometry. The SG-stabilized AuNPs were stable and small at 3.65 ± 1.69 nm in size. The in vitro anticancer effect of SG-stabilized AuNPs was determined on cervical (HeLa), liver (HepG2), breast (MDA-MB-231) and leukemia (CEM-ss) cell lines using fluorescence microscopy, flow cytometry, caspase activity determination, and MTT assays. After 72 h treatment, SG-stabilized AuNPs was shown to be significant (p < 0.05) cytotoxic to the cancer cells in a dose- and time-dependent manner. The IC50 values of SG-stabilized AuNPs on the HeLa, HepG2, CEM-ss, MDA-MB-231 cell lines were 4.75 ± 1.23, 7.14 ± 1.45, 10.32 ± 1.5, and 11.82 ± 0.9 μg/mL, respectively. On the other hand, SG-stabilized AuNPs showed no cytotoxic effect towards the normal human mammary epithelial cells (MCF-10A). SG-stabilized AuNPs significantly (p < 0.05) arrest HeLa cell cycle at G2/M phase and significantly (p < 0.05) activated caspases-3 and -9 activities. The anticancer effect of SG-stabilized AuNPs is via the intrinsic apoptotic pathway. The study showed that SG-stabilized AuNPs is a good candidate to be developed into a chemotherapeutic compound for the treatment of cancers especially cervical cancer.
Collapse
Affiliation(s)
- Zahra Ajdari
- Innovation Center for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
- Darou Pakhsh Pharmaceutical Manufacturing Company, St 61th Daroupakhsh City, Km 18- Karaj Hiway, 1411816616 Tehran, Iran.
| | - Heshu Rahman
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- College of Veterinary Medicine, University of Sulaimani, Street 11, Zone 207, Sulaimani Nwe, 00964 Sulaimani City, Kurdistan Region, Iraq.
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Technology Malaysia, Jalan Sultan Yahya Ahmad Petra, 54100 Kuala Lumpur, Malaysia.
| | - Rasedee Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Maaruf Abd Ghani
- Innovation Center for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Swee Yeap
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Sahar Abbasiliasi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Daniel Ajdari
- Iranian Fisheries Research Organization, No. 297, West Fatemi Avenue, P. O. Box 14155-6116, 1411816616 Tehran, Iran.
| | - Arbakariya Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
33
|
Wan Nor Hafiza WAG, Yazan LS, Tor YS, Foo JB, Armania N, Rahman HS. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa. Pharmacogn Mag 2016; 12:S86-95. [PMID: 27041866 PMCID: PMC4792007 DOI: 10.4103/0973-1296.176107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/18/2014] [Indexed: 01/21/2023] Open
Abstract
Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Wan Abd Ghani Wan Nor Hafiza
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; College of Medical Laboratory Technology, Institute for Medical Research, Jin Pahang, 50588 Kuala Lumpur, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Samie N, Haerian BS, Muniandy S, Marlina A, Kanthimathi MS, Abdullah NB, Ahmadian G, Aziddin RER. Mechanism of Action of the Novel Nickel(II) Complex in Simultaneous Reactivation of the Apoptotic Signaling Networks Against Human Colon Cancer Cells. Front Pharmacol 2016; 6:313. [PMID: 26858642 PMCID: PMC4729910 DOI: 10.3389/fphar.2015.00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines.
Collapse
Affiliation(s)
- Nima Samie
- Department of Pharmacology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
- Drug and Research Unit, Department of Pathology, Hospital Kuala LumpurKuala Lumpur, Malaysia
| | - Batoul Sadat Haerian
- Department of Pharmacology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
| | - Anita Marlina
- Department of Chemistry, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - M. S. Kanthimathi
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya Centre for Proteomics Research, University of MalayaKuala Lumpur, Malaysia
| | - Norbani B. Abdullah
- Department of Chemistry, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Gholamreza Ahmadian
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and BiotechnologyTehran, Iran
| | - Raja E. R. Aziddin
- Drug and Research Unit, Department of Pathology, Hospital Kuala LumpurKuala Lumpur, Malaysia
| |
Collapse
|
35
|
El-Far AH, Badria FA, Shaheen HM. Possible Anticancer Mechanisms of Some Costus speciosus Active Ingredients Concerning Drug Discovery. Curr Drug Discov Technol 2016; 13:123-143. [PMID: 27515456 PMCID: PMC5086671 DOI: 10.2174/1570163813666160802154403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 04/23/2023]
Abstract
Costus speciosus is native to South East Asia, especially found in India, Srilanka, Indonesia and Malaysia. C. speciosus have numerous therapeutic potentials against a wide variety of complains. The therapeutic properties of C. speciosus are attributed to the presence of various ingredients such as alkaloids, flavonoids, glycosides, phenols, saponins, sterols and sesquiterpenes. This review presented the past, present, and the future status of C. speciosus active ingredients to propose a future use as a potential anticancer agent. All possible up-regulation of cellular apoptotic molecules as p53, p21, p27, caspases, reactive oxygen species (ROS) generation and others attribute to the anticancer activity of C. speciosus along the down-regulation of anti-apoptotic agents such as Akt, Bcl2, NFKB, STAT3, JAK, MMPs, actin, surviving and vimentin. Eventually, we recommend further investigation of different C. speciosus extracts, using some active ingredients and evaluate the anticancer effect of these chemicals against different cancers.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Faried A. Badria
- Departments of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| |
Collapse
|
36
|
Rahman HS, Rasedee A, How CW, Zeenathul NA, Chartrand MS, Yeap SK, Abdul AB, Tan SW, Othman HH, Ajdari Z, Namvar F, Arulselvan P, Fakurazi S, Mehrbod P, Daneshvar N, Begum H. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model. Int J Nanomedicine 2015; 10:1649-66. [PMID: 25767386 PMCID: PMC4354694 DOI: 10.2147/ijn.s67113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia ; Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia ; Faculty of Veterinary Medicine, University of Sulaimany, Sulaimany City, Northern Iraq
| | - Abdullah Rasedee
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia ; Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nazariah Allaudin Zeenathul
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia ; Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Ahmad Bustamam Abdul
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia ; Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hemn Hassan Othman
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia ; Faculty of Veterinary Medicine, University of Sulaimany, Sulaimany City, Northern Iraq
| | - Zahra Ajdari
- Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| | - Farideh Namvar
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Sharida Fakurazi
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia ; Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia
| | - Parvaneh Mehrbod
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nasibeh Daneshvar
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hasina Begum
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
37
|
Namvar F, Rahman HS, Mohamad R, Azizi S, Tahir PM, Chartrand MS, Yeap SK. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:593014. [PMID: 25784947 PMCID: PMC4345278 DOI: 10.1155/2015/593014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 01/05/2023]
Abstract
The aim of this study is to evaluate the in vitro cytotoxic activity and cellular effects of previously prepared ZnO-NPs on murine cancer cell lines using brown seaweed (Sargassum muticum) aqueous extract. Treated cancer cells with ZnO-NPs for 72 hours demonstrated various levels of cytotoxicity based on calculated IC50 values using MTT assay as follows: 21.7 ± 1.3 μg/mL (4T1), 17.45 ± 1.1 μg/mL (CRL-1451), 11.75 ± 0.8 μg/mL (CT-26), and 5.6 ± 0.55 μg/mL (WEHI-3B), respectively. On the other hand, ZnO-NPs treatments for 72 hours showed no toxicity against normal mouse fibroblast (3T3) cell line. On the other hand, paclitaxel, which imposed an inhibitory effect on WEHI-3B cells with IC50 of 2.25 ± 0.4, 1.17 ± 0.5, and 1.6 ± 0.09 μg/mL after 24, 48, and 72 hours treatment, respectively, was used as positive control. Furthermore, distinct morphological changes were found by utilizing fluorescent dyes; apoptotic population was increased via flowcytometry, while a cell cycle block and stimulation of apoptotic proteins were also observed. Additionally, the present study showed that the caspase activations contributed to ZnO-NPs triggered apoptotic death in WEHI-3 cells. Thus, the nature of biosynthesis and the therapeutic potential of ZnO-NPs could prepare the way for further research on the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer.
Collapse
Affiliation(s)
- Farideh Namvar
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Heshu Sulaiman Rahman
- Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe, Street 27, Sulaimani City, Kurdistan Region, Iraq
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Paridah Mohd Tahir
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | | | - Swee Keong Yeap
- Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
Acute toxicity study of zerumbone-loaded nanostructured lipid carrier on BALB/c mice model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:563930. [PMID: 25276798 PMCID: PMC4172924 DOI: 10.1155/2014/563930] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/01/2014] [Indexed: 12/02/2022]
Abstract
Zerumbone- (ZER-) loaded nanostructure lipid carrier (NLC) (ZER-NLC) prepared for its antileukemia effect in vitro was evaluated for its toxicological effects by observing changes in the liver, kidney, spleen, lung, heart, and brain tissues, serum biochemical parameters, total haemogram, and bone marrow stem cells. The acute toxicity study for ZER-NLC was conducted by orally treating BALB/c mice with a single dose with either water, olive oil, ZER, NLC, or ZER-NLC for 14 days. The animals were observed for clinical and behavioral abnormalities, toxicological symptoms, feed consumption, and gross appearance. The liver, kidney, heart, lung, spleen, and brain tissues were assessed histologically. Total haemogram was counted by hemocytometry and microhematocrit reader. Bone marrow examination in terms of cellular morphology was done by Wright staining with bone marrow smear. Furthermore, serum biochemical parameters were determined spectrophotometrically. Grossly all treated mice, their investigated tissues, serum biochemical parameters, total haemogram, and bone marrow were normal. At oral doses of 100 and 200 mg/kg ZER-NLC there was no sign of toxicity or mortality in BALB/c mice. This study suggests that the 50% lethal dose (LD50) of ZER-NLC is higher than 200 mg/kg, thus, safe by oral administration.
Collapse
|
39
|
Hafiza WAGWN, Latifah SY. Potential implications of GRP58 expression and susceptibility of cervical cancer to cisplatin and thymoquinone-based therapy. Onco Targets Ther 2014; 7:1375-87. [PMID: 25143744 PMCID: PMC4132255 DOI: 10.2147/ott.s62928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A new therapeutic approach of looking at the expression of glucose-regulated protein (GRP) 58 as an indication of cisplatin sensitivity may eradicate fruitless treatment and side effects in patients with cervical cancer. Thymoquinone, the bioactive compound in Nigella sativa, has been reported to have an antiproliferative effect on cervical cancer cells. This study compared the cytotoxic effects of cisplatin, a drug commonly used in the treatment of cervical cancer, and thymoquinone in cervical cancer (HeLa and SiHa) cell lines by 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and measured GRP58 expression in the cells by quantitative real-time polymerase chain reaction and Western blotting. Cisplatin had higher antiproliferative activity towards the cervical cancer cell lines than thymoquinone in a dose-dependent and time-dependent manner. However, cisplatin was more toxic to normal 3T3 and Vero cell lines than thymoquinone. The half maximal inhibitory concentration (IC50) of cisplatin in HeLa and SiHa cells at 72 hours was 13.3±2.52 μM and 19.5±2.12 μM, respectively. Meanwhile, the IC50 of thymoquinone in HeLa and SiHa cells was 29.57±5.81 μM and 23.41±1.51 μM, respectively (P<0.05). A significant correlation was found between the cytotoxicity of cisplatin and expression of GRP58, but this relationship was not significant for thymoquinone. Therefore, the response of cervical cancer cells to cisplatin can be predicted on the basis of GRP58 expression.
Collapse
Affiliation(s)
- Wan Abd Ghani Wan Nor Hafiza
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia ; College of Medical Laboratory Technology, Institute for Medical Research, Ministry of Health, Jalan Pahang, Kuala Lumpur, Malaysia
| | - Saiful Yazan Latifah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia ; Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
40
|
Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:920742. [PMID: 25025076 PMCID: PMC4082908 DOI: 10.1155/2014/920742] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
Abstract
Zerumbone (ZER) is a naturally occurring dietary compound, present in many natural foods consumed today. The compound derived from several plant species of the Zingiberaceae family that has been found to possess multiple biomedical properties, such as antiproliferative, antioxidant, anti-inflammatory, and anticancer activities. However, evidence of efficacy is sparse, pointing to the need for a more systematic review for assessing scientific evidence to support therapeutic claims made for ZER and to identify future research needs. This review provides an updated overview of in vitro and in vivo investigations of ZER, its cancer chemopreventive properties, and mechanisms of action. Therapeutic effects of ZER were found to be scientifically plausible and could be explained partially by in vivo and in vitro pharmacological activities. Much of the research outlined in this paper will serve as a foundation to explain ZER anticancer bioactivity, which will open the door for the development of strategies in the treatment of malignancies using ZER.
Collapse
|